王濤 羅強(qiáng) 張世榮 龍乾發(fā)
·論著·
骨髓間充質(zhì)干細(xì)胞移植對(duì)大鼠癲癇海馬神經(jīng)炎癥的抑制作用研究
王濤 羅強(qiáng) 張世榮 龍乾發(fā)
目的 探討骨髓間充質(zhì)干細(xì)胞(BMSCs)移植對(duì)大鼠癲癇海馬神經(jīng)炎癥的抑制作用。方法 體外分離純化SD大鼠BMSCs,BMSCs處理的無(wú)血清αMEM和單純無(wú)血清αMEM分別設(shè)為實(shí)驗(yàn)組和對(duì)照組,而后應(yīng)用ELISA檢測(cè)BMSCs培養(yǎng)基中抗炎細(xì)胞因子單核細(xì)胞趨化蛋白-1(MCP-1)和腫瘤壞死因子-α-刺激基因-6(TSG-6)的表達(dá)。匹羅卡品腹腔注射誘導(dǎo)大鼠癲癇模型,側(cè)腦室注射5×106個(gè)BMSCs和同體積生理鹽水分別設(shè)為實(shí)驗(yàn)組和對(duì)照組,未經(jīng)處理的SD大鼠設(shè)為正常對(duì)照,4 d后免疫組織化學(xué)檢測(cè)各組海馬小膠質(zhì)細(xì)胞或活化的小膠質(zhì)細(xì)胞表達(dá)變化。單因素方差分析檢測(cè)各組數(shù)據(jù)差異,組間數(shù)據(jù)比較采用獨(dú)立 t檢驗(yàn)。結(jié)果 BMSCs條件培養(yǎng)基中MCP-1(61.8 ±15.64)pg/ml和TSG-6(1.3±0.12)ng/ml的表達(dá)較對(duì)照組明顯上升(P < 0.01)。匹羅卡品誘導(dǎo)癲癇模型后,小膠質(zhì)細(xì)胞胞體和突起所占面積百分比(39.2%± 7.68%)較正常對(duì)照組(11.7%±3.47%)明顯增多(P < 0.01),且ED1染色發(fā)現(xiàn)小膠質(zhì)細(xì)胞明顯活化。BMSCs移植4 d后,小膠質(zhì)細(xì)胞和活化的小膠質(zhì)細(xì)胞表達(dá)較癲癇對(duì)照組明顯下降(P <0.01)。結(jié)論 BMSCs具有旁分泌抗炎細(xì)胞因子的潛能,其移植對(duì)大鼠癲癇海馬神經(jīng)炎癥具有明顯抑制作用。
腦炎; 骨髓; 間質(zhì)干細(xì)胞; 旁分泌; 癲癇
癲癇是大腦神經(jīng)元突發(fā)性異常放電引起的慢性神經(jīng)功能障礙綜合征,危害世界約5 000萬(wàn)人口的生命健康,其中我國(guó)約900萬(wàn)人受影響,因此癲癇已成為我國(guó)乃至全球范圍內(nèi)最常見(jiàn)的神經(jīng)系統(tǒng)疾病之一[1]。隨著醫(yī)學(xué)科學(xué)的發(fā)展,抗癲癇藥物、手術(shù)、神經(jīng)刺激等使60%~ 70%的癲癇患者病情得以控制,但仍有約1/3的患者對(duì)藥物不敏感或手術(shù)等治療作用有限[2]。骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)源于發(fā)育早期中胚層和外胚層,因其具有多向分化潛能、低免疫原性、旁分泌功能等生物學(xué)特性,已成為目前研究最為廣泛的干細(xì)胞之一,且被發(fā)現(xiàn)在癲癇中具有重要的治療潛能[3]。前期研究證實(shí)BMSCs移植對(duì)癲癇海馬中間神經(jīng)元損傷具有明顯保護(hù)作用,但移植細(xì)胞在海馬中的分化替代作用并不明顯[4-5],越來(lái)越多的證據(jù)表明BMSCs治療疾病的基礎(chǔ)主要源于其旁分泌作用特別是免疫調(diào)節(jié)功能[6]。盡管癲癇的病理機(jī)制不清,可能包括神經(jīng)炎癥、線粒體損傷、氧化應(yīng)激、血腦屏障受損等,其中以小膠質(zhì)細(xì)胞活化為代表的神經(jīng)炎癥被認(rèn)為是癲癇海馬中間神經(jīng)元損傷的重要原因[7-8]。但國(guó)內(nèi)外關(guān)于BMSCs移植對(duì)癲癇海馬神經(jīng)炎癥的治療作用未見(jiàn)報(bào)道,因此本研究假設(shè)BMSCs移植對(duì)癲癇模型海馬神經(jīng)炎癥具有抑制作用。
一、材料
1.實(shí)驗(yàn)動(dòng)物:35只4 ~ 6周雄性SD大鼠購(gòu)于西安交通大學(xué)醫(yī)學(xué)部實(shí)驗(yàn)動(dòng)物中心,動(dòng)物飼養(yǎng)及操作均遵循實(shí)驗(yàn)動(dòng)物倫理學(xué)標(biāo)準(zhǔn)。
2. BMSCs準(zhǔn)備:BMSCs準(zhǔn)備參照參考文獻(xiàn)[9]報(bào)道的方法。主要方法如下:4只SD大鼠充分麻醉后,無(wú)菌條件下取股骨和脛骨骨髓,加入等體積的Histopaques-1077(美國(guó)Sigma-Aldrich公司)分離液,400×g離心25 min收集交界面單核細(xì)胞,阿爾法最小基本培養(yǎng)基(α-Minimum Essential Medium, αMEM)+10%FBS培養(yǎng)(37℃,5% CO2)7~10 d,細(xì)胞融合達(dá)70%~ 80%傳代,以此類(lèi)推。BMSCs表面抗原CD105、CD90、CD73、CD34和 CD11b(相應(yīng)抗體購(gòu)于北京博奧森公司,使用濃度1∶100)檢測(cè)應(yīng)用流式細(xì)胞術(shù);成骨(美國(guó)Gibco公司,A1007201)、成軟骨(美國(guó)Gibco公司,A1007101)或成脂肪(美國(guó)Gibco公司,A1007001)分化試劑盒用于檢測(cè)BMSCs的多能分化潛能。第3代BMSCs應(yīng)用于細(xì)胞移植。
3. ELISA檢測(cè):第3代BMSCs用無(wú)血清αMEM培養(yǎng)48 h,收集培養(yǎng)基,而后用0.22 μm小濾器(millipore)過(guò)濾待檢,同時(shí)未經(jīng)細(xì)胞培養(yǎng)的αMEM為陰性對(duì)照。根據(jù)單核細(xì)胞趨化蛋白-1(monocyte chemotactic protein 1,MCP-1)(ERMCP1,美國(guó)Thermo公司)和腫瘤壞死因子-α-刺激基因-6(tumor necrosis factor-α-stimulated gene 6,TSG-6)(MBS705965,美國(guó)Biocompare公司)ELISA試劑盒說(shuō)明分別加入樣品、酶結(jié)合物和底物,37℃孵育2 h后洗滌顯色,酶標(biāo)比色儀(美國(guó)Thermo公司)比色分析。
二、方法
1. 大鼠癲癇模型建立及BMSCs移植:匹羅卡品誘導(dǎo)癲癇模型建立如參考文獻(xiàn)[4]所報(bào)道,25只SD大鼠分別腹腔注射127 mg/kg的氯化鋰(美國(guó)Sigma-Aldrich公司),18 h后,1 mg/kg的甲基東莨菪堿皮下注射以降低毛果蕓香堿的外周膽堿能作用,30 min后,腹腔注射40 mg/kg的匹羅卡品誘發(fā)癲癇,癲癇4 ~ 5級(jí)發(fā)作(抽搐不能站立或摔倒)后2 h,予以10 mg/kg地西泮皮下注射終止。30 min后癲癇大鼠分別接受10 μl生理鹽水稀釋的BMSCs(2次,共計(jì)5×106BMSCs)(實(shí)驗(yàn)組,n = 9)和10 μl生理鹽水(2次,共計(jì)20 μl)(對(duì)照組,n = 8)側(cè)腦室注射(中線旁開(kāi)1.5 mm前囟后1 mm,進(jìn)針深度距硬膜4.5 mm),癲癇造模死亡率32%(8/25)。剩余6只未經(jīng)處理的SD大鼠設(shè)為正常對(duì)照。
2. 免疫組織化學(xué):各組SD大鼠接受細(xì)胞或生理鹽水處理4 d(基于該時(shí)間點(diǎn)為炎癥高峰期)后死亡率為12%(3/25),而后實(shí)驗(yàn)組(n = 8)、對(duì)照組(n = 6)和正常對(duì)照(n = 6)分別斷頭取腦組織,4%多聚甲醛固定并石蠟包埋,橫向石蠟切片(厚度30 μm),組織切片染色選擇前囟后2.64 mm ~ 5.40 mm海馬顯著部位[9],二甲苯脫蠟和酒精水化后,檸檬酸高溫高壓修復(fù)抗原。3%過(guò)氧化氫處理20 min后,0.1% Triton-X 100和10%的馬血清封閉30 min,而后添加山羊抗Iba1(CD68)(Catalog # ab5076,Abcam)或小鼠抗ED-1(Catalog # MACA341R,Bio-Rad Laboratories)孵育24 h(4℃)。過(guò)氧化物酶反應(yīng)應(yīng)用相應(yīng)二抗(均購(gòu)于Vector)室溫孵育1 h和ABC試劑(Vector)處理后,DAB或vector SG(Cat#SK-4700,Vector)顯色,脫水透明處理后封片觀察。免疫熒光反應(yīng)應(yīng)用驢抗山羊CY3(Cat#118790,Jackson)或驢抗小鼠CY2(Cat#55046,Jackson)孵育2 h,DAPI封片照相。陰性對(duì)照用PBS替代一抗。Image-Pro plus 6.0軟件分析各陽(yáng)性細(xì)胞所占面積百分比,每組取8或6只大鼠,每只隨機(jī)選取5個(gè)海馬切片(×20)。
三、統(tǒng)計(jì)學(xué)分析方法
采用SPSS 16.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,細(xì)胞因子濃度和陽(yáng)性細(xì)胞所占面積百分比表達(dá)采用± s表示,使用單因素方差分析合并Bonferroni和 LSD檢驗(yàn),組間數(shù)據(jù)比較采用獨(dú)立 t檢測(cè)。以P <0.05為差異有統(tǒng)計(jì)學(xué)意義。
圖1 抗炎細(xì)胞因子分泌和小膠質(zhì)細(xì)胞表達(dá)
一、BMSCs培養(yǎng)鑒定
骨髓單核細(xì)胞經(jīng)貼壁培養(yǎng)7 ~ 10 d即可達(dá)70%~ 80%融合,傳第2代后細(xì)胞基本純化,多呈紡錘形或梭形,第3代細(xì)胞經(jīng)流式細(xì)胞術(shù)檢測(cè)顯示CD105(98.8%),CD73(96.5%)和CD90(97.2%)強(qiáng)表達(dá),CD34(0.24%)和CD11b(0.92%)基本不表達(dá)。同時(shí)多能誘導(dǎo)顯示細(xì)胞具有成骨、成軟骨和成脂肪分化特性。
二、BMSCs旁分泌結(jié)果
ELISA結(jié)果顯示,相比陰性對(duì)照,αMEM經(jīng)BMSCs培養(yǎng)48 h后,所含抗炎性細(xì)胞因子MCP-1(61.80±15.64 pg/ml,圖1a)和TSG-6(1331.00± 116.53 ng/ml,圖1b)濃度明顯升高(*P < 0.05;**P <0.001,圖1a,b),尤其是TSG-6增高的濃度顯著。
三、BMSCs抑制小膠質(zhì)細(xì)胞活化
免疫組織化學(xué)結(jié)果顯示,SD大鼠經(jīng)匹羅卡品腹腔注射誘導(dǎo)癲癇后,經(jīng)小膠質(zhì)細(xì)胞特異性抗體Iba1染色發(fā)現(xiàn)(圖2b,e),細(xì)胞胞體明顯增大,突起增多,陽(yáng)性細(xì)胞所占面積百分比(39.2%±7.68%)明顯多于正常對(duì)照(11.7%±3.47%)(圖2a,d)(P <0.01,圖1c)。同時(shí)活化的小膠質(zhì)細(xì)胞特異性抗體ED1染色結(jié)果顯示,正常對(duì)照組中ED1(圖3a,d)表達(dá)不明顯,癲癇海馬ED1明顯增多(圖3b,e)(P <0.01,圖1d)。BMSCs移植后,癲癇海馬Iba1(圖2c,f)和ED1(圖2c,f)的表達(dá)均出現(xiàn)明顯下降(P < 0.01,與癲癇對(duì)照比較;圖1c,d)。同時(shí)免疫熒光染色結(jié)果顯示(圖4),癲癇對(duì)照組ED1(圖4b)完全與Iba1陽(yáng)性細(xì)胞(圖4a)共定位(圖4c),且較多表達(dá)于海馬CA1區(qū)。BMSCs移植后,Iba1陽(yáng)性細(xì)胞(圖4d)除胞體明顯收縮外,只見(jiàn)較少ED1(圖4e)與Iba1共存(圖4f)。
圖2 倒置顯微鏡下觀察BMSCs經(jīng)Iba1免疫組化后細(xì)胞形態(tài)
圖3 倒置顯微鏡下觀察BMSCs經(jīng)ED1免疫組化后細(xì)胞形態(tài)
圖4 熒光顯微鏡下觀察Iba1和ED1細(xì)胞形態(tài) (免疫熒光染色×40)
癲癇海馬小膠質(zhì)細(xì)胞活化可釋放炎性細(xì)胞因子如白介素-1/6、腫瘤壞死因子受體-α或細(xì)胞毒性物質(zhì)如一氧化氮、活性氧等[8],這些物質(zhì)一方面可通過(guò)阻斷N-甲基-D-天冬氨酸受體(N-methyl-D-aspartate receptor,NMDAR)介導(dǎo)的谷氨酸鹽重吸收功能產(chǎn)生谷氨酸毒性[8],另一方面可與海馬神經(jīng)細(xì)胞表面受體如Toll樣受體等結(jié)合激活NMDAR引發(fā)Ca2+內(nèi)流導(dǎo)致神經(jīng)元過(guò)度興奮,因此越來(lái)越多的研究支持海馬炎癥是癲癇形成的重要原因[9-10]。Iba1和ED1分別為小膠質(zhì)細(xì)胞和活化的小膠質(zhì)細(xì)胞特異性抗體,且都在神經(jīng)炎癥中具有重要表達(dá)意義[11]。結(jié)合本研究ED1和Iba1在癲癇模型的表達(dá)變化,再次證實(shí)海馬炎癥是癲癇形成的重要病理過(guò)程。
間充質(zhì)干細(xì)胞在再生醫(yī)學(xué)領(lǐng)域中占有重要地位,特別是其旁分泌相關(guān)的免疫調(diào)節(jié)功能。盡管研究表明BMSCs具有分泌MCP-1、TSG-6、前列腺素E2、轉(zhuǎn)化生長(zhǎng)因子-β等旁分泌功能[6],但是不同來(lái)源、代數(shù)、生長(zhǎng)條件的BMSCs生物學(xué)特性各異[12]。因此本實(shí)驗(yàn)為證實(shí)BMSCs的旁分泌潛能,同時(shí)基于MCP-1可增強(qiáng)調(diào)節(jié)性T細(xì)胞活性[13],TSG-6能促進(jìn)白介素-10和誘生型一氧化氮合酶表達(dá)抑制免疫反應(yīng)[14]等,挑選MCP-1和TSG-6作為抗炎檢測(cè)因素,實(shí)驗(yàn)通過(guò)條件培養(yǎng)基ELISA檢測(cè)證實(shí)大鼠BMSCs培養(yǎng)可顯著提高抗炎性細(xì)胞因子MCP-1和TSG-6的表達(dá),尤其是TSG-6的高表達(dá)提示其潛在的旁分泌-免疫調(diào)節(jié)功能。進(jìn)而通過(guò)體內(nèi)研究發(fā)現(xiàn)BMSCs移植后,Iba1和ED1陽(yáng)性細(xì)胞在癲癇海馬的表達(dá)效率明顯下降,特別是ED1作為活化的小膠質(zhì)細(xì)胞抗體,通常也為神經(jīng)炎癥的標(biāo)記物[8],因此結(jié)果表明BMSCs明顯抑制以小膠質(zhì)細(xì)胞活化為代表的癲癇海馬神經(jīng)炎癥。此外國(guó)內(nèi)外研究顯示,BMSCs移植后在癲癇海馬內(nèi)不發(fā)揮細(xì)胞分化替代作用[3-5],結(jié)合本實(shí)驗(yàn)中BMSCs條件培養(yǎng)基中抗炎細(xì)胞因子的表達(dá)變化,綜合提示BMSCs的旁分泌作用可能是細(xì)胞發(fā)揮抗癲癇海馬神經(jīng)炎癥的主要原因。但MCP-1或TSG-6是否為BMSCs抗癲癇海馬神經(jīng)炎癥的確定因素還待進(jìn)一步探明,如利用siRNA降解BMSCs中的MCP-1或TSG-6觀察其治療潛能,將在后續(xù)試驗(yàn)中繼續(xù)驗(yàn)證??傊狙芯孔C實(shí)BMSCs具有旁分泌抗炎細(xì)胞因子的特性和抑制癲癇海馬神經(jīng)炎癥的功能。
1 秦兵, 廖衛(wèi)平, 臼井直敬, 等. 癲癇∶全球重點(diǎn)防治的神經(jīng)精神疾病[J]. 實(shí)用醫(yī)學(xué)雜志, 2012 (13)∶2109-2111.
2 Moshé SL, Perucca E, Ryvlin P, et al. Epilepsy∶ new advances[J]. Lancet, 2015, 385(9971)∶884-898.
3 Agadi S, Shetty AK. Concise review∶ prospects of bone marrow mononuclear cells and mesenchymal stem cells for treating status epilepticus and chronic epilepsy[J]. Stem Cells, 2015, 33(7)∶2093-2103. 4 Long Q, Qiu B, Wang K, et al. Genetically engineered bone marrow mesenchymal stem cells improve functional outcome in a rat model of epilepsy[J]. Brain Res, 2013, 1532∶1-13.
5 Long Q, Qiu B, Liu W, et al. Functional recovery and neuronal regeneration of a rat model of epilepsy by transplantation of Hes1-down regulated bone marrow stromal cells[J]. Neuroscience, 2012, 212∶214-224.
6 Wang Y, Chen XD, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation∶ pathological and therapeutic implications[J]. Nat Immunol, 2014, 15(11)∶1009-1016.
7 Dey A, Kang X, Qiu J, et al. Anti-infammatory small molecules to treat seizures and epilepsy∶ from bench to bedside[J]. Trends Pharmacol Sci, 2016, 37(6)∶463-484.
8 Devinsky O, Vezzani A, Najjar S, et al. Glia and epilepsy∶ excitability and infammation[J]. Trends Neurosci, 2013, 36(3)∶174-184.
9 Amini E, Rezaei M, Mohamed Ibrahim N, et al. A molecular approach to epilepsy management∶from current therapeutic methods to preconditioning efforts[J]. Mol Neurobiol, 2015, 52(1)∶492-513.
10 Maroso M, Balosso S, Ravizza T, et al. Toll-like receptor 4 and highmobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures[J]. Nat Med, 2010, 16(4)∶413-419.
11 Walter HL, Walberer M, Rueger MA, et al. In vivo analysis of neuroinfammation in the late chronic phase after experimental stroke [J]. Neuroscience, 2015, 292∶71-80.
12 Siddappa R, Licht R, Van Blitterswijk C, et al. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering[J]. J Orthop Res, 2007, 25(8)∶1029-1041.
13 Akiyama K, Chen C, Wang D, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis [J]. Cell Stem Cell, 2012, 10(5)∶544-555.
14 Sala E, Genua M, Petti L, et al. Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine[J]. Gastroenterology, 2015, 149(1)∶163-176.
Bone marrow mesenchymal stem cells inhibite rat epilepsy-induced hippocampal neuroinflammation
Wang Tao, Luo Qiang, Zhang Shirong, Long Qianfa. Department of Neurosurgery, Xi'an Central Hospital, School of Medicine, Xi’an Jiao Tong University, Xi'an 710003, China
Long Qianfa, Email: lonva@live.cn
Objective To explore the inhibitory effects of transplanted bone marrow mesenchymal stem cells (BMSCs) on neuroinflammation in a rat model of epilepsy. Methods BMSCs were isolated from SD rats. The concentrations of anti-inflammatory cytokines such as monocyte chemotactic protein 1 (MCP-1) and tumor necrosis factor-α-stimulated gene 6 (TSG-6) in BMSCs conditioned medium were measured using ELISA. Epileptic model was induced by intraperitoneal injection of Pilocarpine, the experimental group and control group received tralateroventricular injection of 5×106BMSCs and same volume of saline respectively. 4 days later, immunohistochemistry was employed to detect the expression of microglia and activated microglia in hippocampus of different groups. One way ANOVA was used to test the variance of the data and the differences between groups were compared using Student's t-test. Results Both MCP-1 (61.8±15.64)pg/ml and TSG-6 (1.3±0.12)ng/ml in BMSCs conditioned medium were remarkably higher than the control medium (P < 0.01). After SD rats were induced by pilocarpine for 4 days,the area fractions of soma and processes of hippocampal microglia (39.2%±7.68%)increased signigicantly in comparison to the normal control (11.7%±3.47%)(P < 0.01), and the activatation of ed microglia was confirmed by ED1 staining as well. Nevertheless, after BMSCstransplantation, microglia and activated microglia significantly decreased (P < 0.01) in comparison to the epileptic model. Conclusion BMSCs transplantation is capable of inhibiting the epilepsyinduced hippocampal neuroinflammation.
Encephalitis; Bone marrow;Mesenchymal stem cells ; Paracrine;Epilepsy
2016-07-05)
(本文編輯:李少婷)
10.3877/cma.j.issn.2095-1221.2016.06.003
陜西省科學(xué)技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(2014KJXX-29)
710003 西安市中心醫(yī)院神經(jīng)外科
龍乾發(fā),Email:lonva@live.cn
王濤,羅強(qiáng),張世榮,等. 骨髓間充質(zhì)干細(xì)胞移植對(duì)大鼠癲癇海馬神經(jīng)炎癥的抑制作用研究[J/CD].中華細(xì)胞與干細(xì)胞雜志∶電子版, 2016, 6(6)∶339-344.