萬(wàn)濤梅 甘霖莉 左之才 任 毅(四川農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,環(huán)境公害與動(dòng)物疾病四川省高校重點(diǎn)實(shí)驗(yàn)室,動(dòng)物疫病與人類健康四川省重點(diǎn)實(shí)驗(yàn)室,雅安625014)
?
肥胖影響呼吸系統(tǒng)抗感染的機(jī)制
萬(wàn)濤梅甘霖莉左之才?任毅
(四川農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,環(huán)境公害與動(dòng)物疾病四川省高校重點(diǎn)實(shí)驗(yàn)室,動(dòng)物疫病與人類健康四川省重點(diǎn)實(shí)驗(yàn)室,雅安625014)
摘要:肥胖是由多因素引起的一種慢性代謝性疾病,也是一種系統(tǒng)性的低度炎癥,同時(shí)影響著機(jī)體的能量代謝和免疫狀態(tài)。大量研究報(bào)道,肥胖在一定程度上影響了呼吸系統(tǒng)的功能,增加了呼吸道感染的風(fēng)險(xiǎn),同時(shí)調(diào)節(jié)了機(jī)體清除病原體的能力,使機(jī)體預(yù)后出現(xiàn)兩極化。目前這種機(jī)制尚不清楚,明確的是脂肪組織的大量堆積,使炎性細(xì)胞浸潤(rùn)增加,炎性介質(zhì)和脂肪因子的表達(dá)水平提高,這可能是肥胖改變肺臟對(duì)病原微生物敏感性的主要原因。本文就肥胖影響呼吸道抗感染的可能機(jī)制作一簡(jiǎn)要闡述,為深入探究肥胖與呼吸道感染之間的關(guān)系奠定一定的基礎(chǔ)。
關(guān)鍵詞:肥胖;呼吸道;感染;機(jī)制
呼吸系統(tǒng)是執(zhí)行機(jī)體與外界氣體交換的主要場(chǎng)所,最易受到病原體的侵襲,在此過(guò)程中,機(jī)體的免疫系統(tǒng)發(fā)揮功能抵御病原體的增殖擴(kuò)散,但這種能力受諸多因素影響,如營(yíng)養(yǎng)狀況、體況等。肥胖是由多因素引起的體內(nèi)脂肪堆積過(guò)多、脂質(zhì)異位沉積的一種慢性代謝性疾病,可改變機(jī)體的生理?xiàng)l件,包括免疫功能,從而影響呼吸系統(tǒng)對(duì)炎癥刺激的敏感性。1993年,Hotamisligil等[1]發(fā)現(xiàn),腫瘤壞死因子-α(tumor necrosis factor,TNF-α)在肥胖動(dòng)物模型的脂肪組織及循環(huán)血液中高表達(dá),首次提出肥胖與炎癥存在一定的聯(lián)系。隨后大量調(diào)查顯示,肥胖使肺部處于一種高度促炎狀態(tài),不僅增加了肺炎感染的風(fēng)險(xiǎn)[2],增強(qiáng)了機(jī)體的炎癥反應(yīng)[3],還與死亡率呈正相關(guān)[4-5],但也有研究報(bào)道肥胖雖然提高了肺炎的發(fā)病率,卻也降低了肺炎患者的死亡率,對(duì)機(jī)體起到了重要的抗感染作用[6-7]。目前關(guān)于肥胖動(dòng)物肺臟對(duì)病原微生物敏感性的影響鮮有報(bào)道,但Gebrehiwot等[8]通過(guò)分析1 148只待宰牛肺部眼觀病變與年齡和營(yíng)養(yǎng)狀態(tài)的關(guān)系發(fā)現(xiàn),肥胖牛肺充血、肺膿腫發(fā)生的幾率較高,肺氣腫的幾率卻明顯較低。小鼠試驗(yàn)表明,肥胖可提高肺部感染的嚴(yán)重程度,降低巨噬細(xì)胞的吞噬能力,延長(zhǎng)機(jī)體自然痊愈的時(shí)間,增加死亡率[9-10],但其具體機(jī)制尚不明確。本文就肥胖影響呼吸道抗感染的可能機(jī)制作一簡(jiǎn)要闡述,為深入探究肥胖與肺部感染之間的關(guān)系奠定一定的基礎(chǔ),同時(shí)為在動(dòng)物領(lǐng)域的相關(guān)研究提供新視角。
肥胖,尤其是腹部肥胖,可機(jī)械性地阻礙膈肌和呼吸道平滑肌的運(yùn)動(dòng),使胸腔及肺順應(yīng)性下降,氣道阻力增加,肺容量受到一定限制,導(dǎo)致通氣功能受損[11],肺臟生理功能的一系列改變?cè)黾恿朔闻K感染的幾率。同時(shí),肥胖誘導(dǎo)了支氣管周圍大量的膠原纖維沉積,基質(zhì)金屬蛋白酶-9(MMP-9)表達(dá)增加,從而促進(jìn)了肺組織纖維化導(dǎo)致氣道重塑,影響呼吸系統(tǒng)疾病的嚴(yán)重程度和治療效果[12]。但國(guó)內(nèi)外學(xué)者發(fā)現(xiàn),肥胖患者在減肥等控制體重的過(guò)程中,呼吸道癥狀雖然可以得到一定程度的緩解,但氣道高反應(yīng)性(AHR)卻沒(méi)有明顯的減弱[13],即使在手術(shù)解除肺泡負(fù)荷的情況下,肥胖動(dòng)物的AHR依然存在,且明顯高于非肥胖動(dòng)物[14],均說(shuō)明機(jī)械因素不是肥胖影響呼吸系統(tǒng)炎癥效果的主要原因。
2.1糖脂代謝紊亂
肥胖機(jī)體脂肪細(xì)胞內(nèi)甘油三酯(triglyceride,TG)含量超負(fù)荷累積,導(dǎo)致脂質(zhì)儲(chǔ)存能力下降,循環(huán)血液中TG、游離脂肪酸(free fatty acid,F(xiàn)FAs)含量升高[15],其中TG作為細(xì)胞內(nèi)的第二信使,可直接激活胞內(nèi)信號(hào)激酶,如蛋白激酶C(protein kinase C,PKC)、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)、抑制性κB激酶(inhibitor of nuclear factor kappa-B kinase,IKK)等[16],介導(dǎo)特定因子基因的轉(zhuǎn)錄與表達(dá)。FFAs是體內(nèi)Toll樣受體4(Toll-like receptors,TLR4)的天然配體[17],特異性結(jié)合后,一方面直接激活下游信號(hào)通路,如髓樣分化因子(myeloiddifferentiationfactor88,MyD88)和磷脂酰肌醇3-激酶(phosphatidylinositol kinase,PI3K)[18];另一方面通過(guò)活化PKC,間接激活JNKs和IKKs[19],從而影響免疫細(xì)胞的代謝與功能。體內(nèi)調(diào)節(jié)脂代謝的重要核受體——過(guò)氧化物酶體增殖物激活受體(peroxisome proliferators-activated receptors,PPARs)和肝X受體(liver X receptors,LXRs),同時(shí)也參與了機(jī)體的免疫進(jìn)程和炎癥反應(yīng)。PPARs在巨噬細(xì)胞、T細(xì)胞、B細(xì)胞、樹(shù)狀突細(xì)胞等免疫細(xì)胞和LXRs在巨噬細(xì)胞核內(nèi)的表達(dá)受到機(jī)體營(yíng)養(yǎng)狀況的影響,肥胖時(shí)FFAs、膽固醇等脂質(zhì)配體與PPARs、LXRs結(jié)合能力及水平提高,PPARs、LXRs被激活,IKKs活性受到抑制,核轉(zhuǎn)錄因子kappa B抑制蛋白(inhibitor of NF-κB,IκB)磷酸化水平升高,與DNA結(jié)合位點(diǎn)的暴露減少,從而直接抑制核轉(zhuǎn)錄因子kappa B(nuclear transcription factor kappa-B,NF-κB)信號(hào)通路,導(dǎo)致炎性因子基因表達(dá)水平下降,不僅如此,LXRs還能抑制病原體誘導(dǎo)的巨噬細(xì)胞凋亡,發(fā)揮著重要的抗炎作用[20-21]。但脂肪組織的代謝產(chǎn)物,如脂肪酸或葡萄糖在線粒體內(nèi)氧化后產(chǎn)生的活性氧(ROS)也可活化介導(dǎo)炎癥發(fā)生的蛋白激酶JNKs 和IKKs,從而增強(qiáng)NF-κB的轉(zhuǎn)錄活性,高水平的ROS還可誘導(dǎo)細(xì)胞凋亡,從而誘導(dǎo)炎癥的發(fā)生[22]。
2.2炎性細(xì)胞浸潤(rùn)
脂肪組織是一個(gè)復(fù)雜的器官,主要由脂肪細(xì)胞、胞外基質(zhì)、血管和神經(jīng)組織以及前脂肪細(xì)胞、成纖維細(xì)胞、干細(xì)胞和免疫細(xì)胞組成。調(diào)查研究顯示,肥胖機(jī)體循環(huán)血液中白細(xì)胞總數(shù)顯著升高,中性粒細(xì)胞不僅數(shù)量明顯增加,其活性也顯著提高,表明機(jī)體的營(yíng)養(yǎng)狀況影響了白細(xì)胞的增殖分化[14,23-24]。血液中白細(xì)胞的增加促進(jìn)了炎性細(xì)胞在肺部的浸潤(rùn),研究發(fā)現(xiàn),肥胖增加了肺泡灌洗液中白細(xì)胞總數(shù),誘導(dǎo)了炎性細(xì)胞在氣管、支氣管周圍及肺泡間隔的聚集,其中以中性粒細(xì)胞和巨噬細(xì)胞為主[12,25]。脂肪組織中巨噬細(xì)胞數(shù)量與肥胖指數(shù)、脂肪細(xì)胞大小有關(guān),缺失巨噬細(xì)胞的脂肪組織中TNF-α和其他促炎細(xì)胞因子的含量減少,表明巨噬細(xì)胞在脂肪組織的浸潤(rùn)是調(diào)節(jié)肥胖機(jī)體炎癥反應(yīng)的中心事件[26-27]。有學(xué)者提出巨噬細(xì)胞和脂肪細(xì)胞是由相同的前體細(xì)胞分化而來(lái),在肥胖機(jī)體,巨噬細(xì)胞主要聚集在凋亡的脂肪細(xì)胞周圍,負(fù)責(zé)清除局部衰老、死亡的細(xì)胞,并防止脂肪細(xì)胞的過(guò)度擴(kuò)張,在一定程度上控制著機(jī)體的肥胖程度。同時(shí)肥胖程度也能使巨噬細(xì)胞從抗炎M2表型轉(zhuǎn)換成促炎M1表型,從而影響其功能[28]。此外,CD8+T細(xì)胞[29-30]、CD4+T細(xì)胞[31-32]、CD3+T細(xì)胞[33]、B淋巴細(xì)胞[34-35]、肥大細(xì)胞[36]、嗜酸性粒細(xì)胞[37]等炎性細(xì)胞在脂肪組織中的募集不僅直接介導(dǎo)了炎癥的發(fā)生,還促進(jìn)了巨噬細(xì)胞的大量聚集、分化和活化,對(duì)炎癥的發(fā)生過(guò)程也發(fā)揮著重要作用。其中CD4+T細(xì)胞不同亞群在肥胖機(jī)體的脂肪組織中發(fā)揮著獨(dú)立的功效,在營(yíng)養(yǎng)型肥胖的內(nèi)臟脂肪組織中Th1細(xì)胞數(shù)量增加,Th2細(xì)胞數(shù)量減少,Th1/ Th2上升,這種結(jié)果即使增加脂肪組織中Th2細(xì)胞也不能抑制Th1細(xì)胞的募集,從而逐漸形成了促炎狀態(tài)。此外,Th2細(xì)胞還能促進(jìn)巨噬細(xì)胞從M1表型轉(zhuǎn)換成M2表型[31]。
2.3脂肪細(xì)胞因子平衡被破壞
脂肪組織組成的復(fù)雜性決定了其不僅是機(jī)體儲(chǔ)存能量的重要倉(cāng)庫(kù),也是一個(gè)龐大的高度活化的內(nèi)分泌器官,能分泌許多種類的生物活性物質(zhì),包括脂肪細(xì)胞特異分泌的瘦素、脂聯(lián)素、抵抗素和非特異性分泌的TNF-α、白介素-6(interleukin-6,IL-6)等[38],這些分子統(tǒng)稱為脂肪細(xì)胞分泌因子,不僅能通過(guò)自分泌或旁分泌作用,與分布于器官和組織中的相應(yīng)受體結(jié)合,影響和調(diào)節(jié)脂肪組織或其他組織乃至整個(gè)動(dòng)物機(jī)體的能量代謝,還能調(diào)節(jié)機(jī)體的炎癥水平和免疫功能,在呼吸系統(tǒng)感染的發(fā)生發(fā)展過(guò)程中發(fā)揮著重要作用。
2.3.1非特異性脂肪因子
2.3.1.1TNF-α
TNF-α是一種具有多種生物學(xué)功能的細(xì)胞因子,主要由激活的單核-巨噬細(xì)胞分泌,脂肪組織中巨噬細(xì)胞是TNF-α的重要來(lái)源。已有研究報(bào)道,肥胖機(jī)體的循環(huán)血液及脂肪組織中TNF-α基因表達(dá)及蛋白質(zhì)水平均顯著增加[1,39]。分離肥胖小鼠脂肪組織中的脂肪細(xì)胞和非脂肪細(xì)胞檢測(cè)TNF-α mRNA的豐度,發(fā)現(xiàn)脂肪細(xì)胞表達(dá)TNF-α的能力強(qiáng)于其他細(xì)胞(巨噬細(xì)胞、肥大細(xì)胞等),是脂肪組織中TNF-α的主要來(lái)源[1]。TNF-α的2種結(jié)構(gòu)不同的受體(TNF-RⅠ、TNF-RⅡ)分布在除了紅細(xì)胞外其他所有細(xì)胞的膜上,這2種受體在結(jié)合的親和力和胞內(nèi)信號(hào)通路存在顯著的差異,在受到體內(nèi)外刺激時(shí),TNF-RⅠ與TNF受體相關(guān)的死亡結(jié)構(gòu)域(TRADD)結(jié)合,通過(guò)脂肪酸合成酶相關(guān)死亡結(jié)構(gòu)域(FADD)蛋白激活細(xì)胞凋亡通路和促炎信號(hào)通路,并通過(guò)TNF受體相關(guān)因子2 (TRAF2)和受體作用蛋白共同作用提高NF-κB的轉(zhuǎn)錄水平[40],促進(jìn)炎癥的發(fā)生。隨后調(diào)查呼吸道感染患者發(fā)現(xiàn)TNF-α水平在急性下呼吸道感染患者血清中顯著上升[41-42]。動(dòng)物試驗(yàn)表明,TNF-α能增強(qiáng)肺炎小鼠的抵抗力,降低肺炎小鼠的死亡率,增強(qiáng)機(jī)體清除病原菌的能力,增加中性粒細(xì)胞的募集,此外TNF-α還與肺臟中病原菌的增殖數(shù)量呈正相關(guān)[42-43]。肥胖小鼠感染肺炎后,TNF-α基因表達(dá)水平明顯上調(diào),但在早期顯著低于瘦鼠,而在后期持續(xù)升高高于瘦鼠,肥胖對(duì)炎癥的反應(yīng)延遲,可能與肺臟局部增加的炎癥細(xì)胞有關(guān)[9]。
2.3.1.2IL-6
IL-6是一種多功能的細(xì)胞因子,由眾多不同的細(xì)胞分泌,如免疫細(xì)胞、成纖維細(xì)胞、內(nèi)皮細(xì)胞、單核-巨噬細(xì)胞及多種內(nèi)分泌細(xì)胞[44]。此外,成熟的脂肪細(xì)胞也是IL-6的重要來(lái)源[45-46]。大量調(diào)查顯示,肥胖機(jī)體循環(huán)血液中IL-6水平急劇升高,處于異常狀態(tài),其水平與肥胖程度呈正相關(guān)[39],且脂肪組織IL-6表達(dá)分泌的增加,是血清中IL-6水平升高的主要原因[45,47]。IL-6與細(xì)胞表面的特異性受體IL-6膜結(jié)合受體(mIL-6R)結(jié)合后,主要通過(guò)信號(hào)傳導(dǎo)及轉(zhuǎn)錄激活因子3(signal transducers and activators of transcription-3,STAT3)信號(hào)通路抑制細(xì)胞凋亡,促進(jìn)上皮細(xì)胞的增殖分化,發(fā)揮顯著的抗炎功效。但在機(jī)體發(fā)生感染時(shí),內(nèi)皮細(xì)胞分泌大量的IL-6和趨化因子促使中性粒細(xì)胞等炎性細(xì)胞在炎癥部分大量聚集。當(dāng)細(xì)胞凋亡時(shí),mIL-6R被蛋白酶切脫離胞膜,形成可溶性IL-6受體(sIL-6R),IL-6與sIL-6R結(jié)合后,使趨化因子發(fā)生調(diào)整(CXC型轉(zhuǎn)化成CC型),引起單核巨噬細(xì)胞和T淋巴細(xì)胞的浸潤(rùn)增加,促進(jìn)淋巴細(xì)胞向Th2和Th17亞群分化,抑制Th1和Treg的分化,提高黏附分子的表達(dá),表現(xiàn)出強(qiáng)烈的促炎屬性[48-49]。由于IL-6與sIL-6R和mIL-6R結(jié)合的親和力相當(dāng),而mIL-6R只存在于肝細(xì)胞和巨噬細(xì)胞、中性粒細(xì)胞和某些T細(xì)胞表面,而信號(hào)轉(zhuǎn)導(dǎo)蛋白gp130幾乎存在機(jī)體的所有細(xì)胞表面,IL-6與sIL-6R結(jié)合后可與細(xì)胞表面的gp130相互作用并激活gp130,從而啟動(dòng)一系列的信號(hào)通路,故IL-6的功能主要由其含量決定。低水平的IL-6能增強(qiáng)體內(nèi)中性粒細(xì)胞的殺菌能力、下調(diào)各類細(xì)胞因子的表達(dá)分泌,增強(qiáng)機(jī)體抵御感染的能力,但當(dāng)IL-6升高超過(guò)一定范圍后,將誘導(dǎo)機(jī)體發(fā)生一系列的炎癥反應(yīng)[50-51]。小鼠感染細(xì)菌性肺炎后,IL-6 mRNA、蛋白質(zhì)濃度在局部組織及循環(huán)系統(tǒng)中表達(dá)分泌水平持續(xù)升高,敲除IL-6將導(dǎo)致小鼠死亡速度更快,死亡率更高,肺臟促炎細(xì)胞因子(TNF-α、IL-1β、INF-γ)、抗炎因子(IL-10)水平和細(xì)菌總數(shù)均更高[50-51]。肥胖小鼠發(fā)生肺損傷時(shí)較常規(guī)小鼠含有更高水平的IL-6,IL-6能促進(jìn)中性粒細(xì)胞募集到肺部,增強(qiáng)上皮細(xì)胞損傷程度,從而導(dǎo)致肥胖小鼠肺部炎癥反應(yīng)強(qiáng)于瘦鼠[52]。此外,IL-6在肺組織的長(zhǎng)期高表達(dá)將引起單核-巨噬細(xì)胞在局部的浸潤(rùn),誘導(dǎo)明顯的炎癥反應(yīng)[53]。
2.3.2特異性脂肪因子
2.3.2.1瘦素
1994年Zhang等[54]通過(guò)基因定位克隆獲得了小鼠的肥胖基因,其蛋白質(zhì)產(chǎn)物具有抑制攝食、降低體重的作用,故命名為瘦素,主要由脂肪組織分泌。瘦素能通過(guò)結(jié)合跨膜功能性受體(Ob-Rb)激活下游JAK-STAT-NF-κB信號(hào)通路,廣泛參與調(diào)控免疫系統(tǒng)動(dòng)態(tài)平衡及免疫細(xì)胞的增殖分化,抑制免疫細(xì)胞的凋亡,發(fā)揮顯著的抗炎功效[55-56]。1998年,Lord等[57]首次提出,瘦素能誘導(dǎo)外周血液中淋巴細(xì)胞的增殖,特異性調(diào)節(jié)初始T細(xì)胞和記憶T細(xì)胞的活性,促進(jìn)Th1細(xì)胞因子的生成,抑制Th2細(xì)胞因子的分泌,并能調(diào)節(jié)因感染引起的Th1/ Th2失衡,緩解因急性饑餓造成的免疫抑制,改善營(yíng)養(yǎng)缺失引起的免疫功能紊亂。此外,瘦素還能提高促紅細(xì)胞生成素的活性,刺激紅細(xì)胞的生成[58]。在肺部,瘦素不僅能作為肺部的生長(zhǎng)因子直接影響肺臟的收縮舒張功能,還能通過(guò)作用于中樞呼吸調(diào)節(jié)器間接影響機(jī)體的通氣機(jī)能[59]。在肥胖機(jī)體感染細(xì)菌性肺炎時(shí),瘦素發(fā)揮著重要的抗炎作用,一方面通過(guò)增強(qiáng)巨噬細(xì)胞的吞噬能力,提高機(jī)體清除病原菌的速率,降低感染的死亡率;另一方面,又控制著TNF-α等炎性細(xì)胞因子的表達(dá)分泌水平,降低肺炎炎癥反應(yīng)強(qiáng)度,抑制炎癥的進(jìn)程[10,60]。
2.3.2.2脂聯(lián)素
脂聯(lián)素是1995年和1996年4個(gè)不同研究小組用不同的方法發(fā)現(xiàn)的一種由脂肪細(xì)胞特異性分泌的激素類蛋白質(zhì)[61-64],在不同組織器官發(fā)揮著不同的生理功能。在肝臟,脂聯(lián)素可通過(guò)減少肝臟對(duì)脂肪酸的利用,促進(jìn)FFAs的氧化,間接影響炎癥的發(fā)生;在血管壁,脂聯(lián)素不僅能降低黏附因子的表達(dá),抑制單核細(xì)胞的黏附,還能通過(guò)抑制巨噬細(xì)胞表面清道夫受體的表達(dá)和TNF-α的合成,干擾TNF-α的信號(hào)傳導(dǎo),降低泡沫細(xì)胞的水平,直接參與免疫調(diào)節(jié)過(guò)程。在體內(nèi)脂聯(lián)素與特異性受體結(jié)合后,可直接活化PPAR-α、腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)、分裂原激活的蛋白激酶(mitogen activated protein kinases,MAPK)和NF-κB等信號(hào)通路,影響細(xì)胞的分化及分泌功能[65-66]。在支氣管哮喘小鼠模型中,脂聯(lián)素的基因表達(dá)和蛋白質(zhì)分泌水平顯著升高,過(guò)敏原在健康小鼠和脂聯(lián)素基因敲除小鼠體內(nèi)引起的氣道高反應(yīng)性和過(guò)敏性炎癥反應(yīng)均可被外源性脂聯(lián)素顯著減弱[67-68],因此在呼吸系統(tǒng)疾病發(fā)展過(guò)程中脂聯(lián)素表現(xiàn)為明顯的抗炎效應(yīng)。
2.3.2.3抵抗素
抵抗素是2001年發(fā)現(xiàn)的一種由脂肪組織特異分泌的小分子蛋白質(zhì),因具有顯著的胰島素抵抗作用,故被命名為抵抗素。隨后研究表明,抵抗素在骨髓細(xì)胞中大量表達(dá)[69],與肺部炎癥誘導(dǎo)蛋白炎癥區(qū)域發(fā)現(xiàn)的分子1(FIZZ1)具有同源性[70],為炎癥區(qū)域發(fā)現(xiàn)的分子3(FIZZ3),顯示抵抗素參與了機(jī)體的炎癥過(guò)程。隨后報(bào)道稱抵抗素主要通過(guò)與細(xì)胞表面的TLR4相互作用,激活MAPK和NF-κB信號(hào)通路,介導(dǎo)相應(yīng)細(xì)胞因子的表達(dá)分泌,但抵抗素與TLR4是否是直接特異性結(jié)合誘發(fā)的細(xì)胞反應(yīng)還尚未可知[71-72],Lee等[73]的研究卻發(fā)現(xiàn)抵抗素直接與單核細(xì)胞表面的CAP1結(jié)合,激活了PKA和NF-κB信號(hào)通路,使促炎細(xì)胞因子基因的表達(dá)上調(diào),單核細(xì)胞的趨化性與遷移率提高。抵抗素能通過(guò)PI3K信號(hào)傳導(dǎo)通路,降低由大腸桿菌引起的多形核白細(xì)胞(PMNL)的氧化爆發(fā)作用,調(diào)節(jié)PMNL和CD4+T淋巴細(xì)胞的趨化作用,但抵抗素的這種效果是可逆性的,在一定濃度范圍內(nèi)能促進(jìn)細(xì)胞的遷移,但當(dāng)濃度過(guò)高時(shí),則表現(xiàn)出抑制作用[74],而抵抗素對(duì)黏附分子的誘導(dǎo)作用卻是絕對(duì)的正相關(guān)[75-76],并能通過(guò)增強(qiáng)內(nèi)皮細(xì)胞中細(xì)胞因子信號(hào)抑制物3(suppressor of cytokine signaling-3,SOCS-3)的分泌來(lái)放大誘導(dǎo)黏附因子表達(dá)的效應(yīng)[77],促進(jìn)循環(huán)血液中單核細(xì)胞與內(nèi)皮細(xì)胞黏附[76]。此外,抵抗素還能通過(guò)活化樹(shù)突狀細(xì)胞(DCs)誘導(dǎo)Treg細(xì)胞的擴(kuò)增[78],同時(shí)降低DCs遞呈抗原和吞噬細(xì)菌的能力[79],表現(xiàn)出明顯的促炎屬性。
肥胖是一種慢性的、系統(tǒng)性的低度炎癥,這種炎癥導(dǎo)致循環(huán)血液中白細(xì)胞數(shù)量、炎癥介質(zhì)如細(xì)胞因子、趨化因子、黏附因子等水平適度上調(diào),這種炎癥是可控的,對(duì)于維持體內(nèi)生理平衡和健康很重要,但當(dāng)肥胖機(jī)體受到病原體的侵襲或外界刺激時(shí),炎癥過(guò)度發(fā)展到不可控的地步,機(jī)體平衡被破壞,將產(chǎn)生不可修復(fù)的損傷。肥胖不僅能機(jī)械性地影響肺臟的收縮功能,還能通過(guò)體循環(huán)將局部增加的炎性介質(zhì)運(yùn)送至肺部,從而對(duì)肺臟的生理功能及對(duì)病原微生物的敏感性產(chǎn)生影響。但目前用于研究肥胖與感染關(guān)系的試驗(yàn)?zāi)P痛蠖嗉性诨蚯贸∈笊?,不符合人類和?dòng)物自然肥胖的生理特征,且動(dòng)物方面關(guān)于肥胖與呼吸系統(tǒng)感染的報(bào)道甚少,而飲食誘導(dǎo)的肥胖(DIO)與自然肥胖更接近,未來(lái)應(yīng)更多地使用DIO模型進(jìn)行相關(guān)研究,并對(duì)動(dòng)物的營(yíng)養(yǎng)狀況及發(fā)病情況做系統(tǒng)的統(tǒng)計(jì)、分析,為肥胖對(duì)動(dòng)物呼吸道感染的影響提供更直接的佐證。
參考文獻(xiàn):
[1] HOTAMISLIGILGS,SHARGILLNS,SPIEGELMAN B M. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance[J].Science,1993,259(5091):87-91.
[2] KORNUM J B,N?RGAARD M,DETHLEFSEN C,et al. Obesity and risk of subsequent hospitalisation with pneumonia[J]. European Respiratory Journal,2010,36(6):1330-1336.
[3] SINGANAYAGAM A,SINGANAYAGAM A,CHALMERS J D.Obesity is associated with improved survival in community-acquired pneumonia[J].European Respiratory Journal,2013,42(1):180-187.
[4] CORRALES-MEDINA V F,VALAYAM J,SERPA J A,et al. The obesity paradox in community-acquired bacterial pneumonia[J].International Journal of Infectious Diseases,2011,15(1):e54-e57.
[5] LOUIE J K,ACOSTA M,SAMUEL M C,et al.A novel risk factor for a novel virus:obesity and 2009 pandemic influenza A(H1N1)[J]. Clinical Infectious Diseases,2011,52(3):301-312.
[6] O’BRIEN J M Jr,PHILLIPS G S,ALI N A,et al. Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury[J].Critical Care Medicine,2006,34 (3):738-744.
[7] NIE W,ZHANG Y,JEE S H,et al.Obesity survival paradox in pneumonia:a meta-analysis[J]. BMC Medicine,2014,12:61,doi:10. 1186/1741 - 7015 -12-61.
[8] GEBREHIWOT T,VERMA P C,BERHANU H.Study on gross pulmonary lesions in lungs of slaughtered animals and their economic importance in Tigray,E-thiopia[J]. Momona Ethiopian Journal of Science,2015,7(1):46-54.
[9] SMITH A G,SHERIDAN P A,HARP J B,et al.Dietinduced obese mice have increased mortality and altered immune responses when infected with influenza virus[J]. The Journal of Nutrition,2007,137(5):1236-1243.
[10] MANCUSO P,GOTTSCHALK A,PHARE S M,et al.Leptin-deficient mice exhibit impaired host defense in gram-negative pneumonia[J]. The Journal of Immunology,2002,168(8):4018-4024.
[11] MCCLEAN K M,KEE F,YOUNG I S,et al.Obesity and the lung:1. Epidemiology[J]. Thorax,2008,63(7):649-654.
[12] 王冬娟.肥胖及飲食控制對(duì)哮喘發(fā)生的影響及機(jī)制探討[D].碩士學(xué)位論文.重慶:重慶醫(yī)科大學(xué),2014.
[13] LITTLETON S W. Impact of obesity on respiratory function[J].Respirology,2012,17(1):43-49.
[14] SHORE S A,RIVERA-SANCHEZ Y M,SCHWARTZMAN I N,et al.Responses to ozone are increased in obese mice[J].Journal of Applied Physiology,1985,95(3):938-945.
[15] GOOSSENS G H.The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance[J]. Physiology&Behavior,2008,94(2):206-218.
[16] BROSE N,ROSENMUND C. Move over protein kinase C,you’ve got company:alternative cellular effectors of diacylglycerol and phorbol esters[J].Journal of Cell Science,2002,115(Pt 23):4399-4411.
[17] LEE J Y,SOHN K H,RHEE S H,et al.Saturated fatty acids,but not unsaturated fatty acids,induce the expression of cyclooxygenase-2 mediated through Tolllike receptor 4[J]. Journal of Biological Chemistry,2001,276(20):16683-16689.
[18] LEE J Y,YE J P,GAO Z G,et al.Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/ AKT by saturated and polyunsaturated fatty acids[J].Journal of Biological Chemistry,2003,278(39):37041-37051.
[19] GAO Z G,ZHANG X Y,ZUBERI A R,et al.Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes[J]. Molecular Endocrinology,2004,18(8):2024-2034.
[20] CHAWLA A,REPA J J,EVANS R M,et al.Nuclear receptors and lipid physiology:opening the X-files [J].Science,2001,294(5548):1866-1870.
[21] GLASS C K,OGAWA S.Combinatorial roles of nuclear receptors in inflammation and immunity[J].Nature Reviews Immunology,2005,6(1):44-55.
[22] GLOIRE G,LEGRAND-POELS S,PIETTE J.NF-κB activation by reactive oxygen species:fifteen years later[J]. Biochemical Pharmacology,2006,72(11):1493-1505.
[23] HERISHANU Y,ROGOWSKI O,POLLIACK A,et al.Leukocytosis in obese individuals:possible link in patients with unexplained persistent neutrophilia[J]. European Journal of Haematology,2006,76(6):516-520.
[24] KIM J A,PARK H S.White blood cell count and abdominal fat distribution in female obese adolescents [J].Metabolism,2008,57(10):1375-1379.
[25] 葉澤慧.肥胖對(duì)小鼠氣道反應(yīng)性和肺部炎癥的影響[D].碩士學(xué)位論文.重慶:重慶醫(yī)科大學(xué),2013.
[26] WEISBERG S P,MCCANN D,DESAI M,et al.Obesity is associated with macrophage accumulation in adipose tissue[J].The Journal of Clinical Investigation,2003,112(12):1796-1808.
[27] APOVIAN C M,BIGORNIA S,MOTT M,et al.Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects[J]. Arteriosclerosis,Thrombosis,and Vascular Biology,2008,28(9):1654-1659.
[28] CALDER P C,AHLUWALIA N,BROUNS F,et al. Dietary factors and low-grade inflammation in relation to overweight and obesity[J].British Journal of Nutrition,2011,106(Suppl.3):S5-S78.
[29] ROCHA V Z,F(xiàn)OLCO E J,SUKHOVA G,et al.Interferon-γ,a Th1 cytokine,regulates fat inflammation a role for adaptive immunity in obesity[J].Circulation Research,2008,103(5):467-476.
[30] NISHIMURA S,MANABE I,NAGASAKI M,et al. CD8+effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity [J].Nature Medicine,2009,15(8):914-920.
[31] WINER S,CHAN Y,PALTSER G,et al.Normalization of obesity-associated insulin resistance through immunotherapy[J]. Nature Medicine,2009,15(8):921-929.
[32] STRISSEL K J,DEFURIA J,SHAUL M E,et al.T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice[J].O-besity,2010,18(10):1918-1925.
[33] BORNSTEIN S R,ABU-ASAB M,GLASOW A,et al. Immunohistochemical and ultrastructural localization of leptin and leptin receptor in human white adipose tissue and differentiating human adipose cells in primary culture[J].Diabetes,2000,49(4):532-538.
[34] WINER D A,WINER S,SHEN L,et al.B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies[J].Nature Medicine,2011,17(5):610-617.
[35] DUFFAUT C,GALITZKY J,LAFONTAN M,et al. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity[J].Biochemical and Biophysical Research Communications,2009,384(4):482-485.
[36] LIU J,DIVOUX A,SUN J S,et al.Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice[J].Nature Medicine,2009,15(8):940-945.
[37] WU D,MOLOFSKY A B,LIANG H E,et al.Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis[J].Science,2011,332(6026):243-247.
[38] KERSHAW E E,F(xiàn)LIER J S.Adipose tissue as an endocrine organ[J].The Journal of Clinical Endocrinology&Metabolism,2004,89(6):2548-2556.
[39] KERN P A,RANGANATHAN S,LI C L,et al.Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance[J]. American Journal of Physiology-Endocrinology and Metabolism,2001,280(5):E745-E751.
[40] POPA C,NETEA M G,VAN RIEL P L C M,et al. The role of TNF-α in chronic inflammatory conditions,intermediary metabolism,and cardiovascular risk [J].Journal of Lipid Research,2007,48(4):751 -762.
[41] NOHYNEK H,TEPPO A M,LAINE E,et al.Serum tumor necrosis factor-α concentrations in children hospitalized for acute lower respiratory tract infection[J]. Journal of Infectious Diseases,1991,163(5):1029-1032.
[42] TAKASHIMA K,TATEDA K,MATSUMOTO T,et al.Role of tumor necrosis factor alpha in pathogenesis of pneumococcal pneumonia in mice[J].Infection and Immunity,1997,65(1):257-260.
[43] LAICHALK L L,KUNKEL S L,STRIETER R M,et al. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia[J].Infection and Immunity,1996,64(12):5211-5218.
[44] VAN SNICK J.Interleukin-6:an overview[J].Annual Review of Immunology,1990,8(1):253-278.
[45] FRIED S K,BUNKIN D A,GREENBERG A S. O-mental and subcutaneous adipose tissues of obese subjects release interleukin-6:depot difference and regulation by glucocorticoid 1[J]. The Journal of Clinical Endocrinology&Metabolism,1998,83(3):847-850.
[46] PA?TH G,BORNSTEIN S R,GURNIAK M,et al. Human breast adipocytes express interleukin-6(IL-6)and its receptor system:increased IL-6 production by β-adrenergic activation and effects of IL-6 on adipo-cyte function[J].The Journal of Clinical Endocrinology&Metabolism,2001,86(5):2281-2288.
[47] MOHAMED-ALI V,GOODRICK S,RAWESH A,et al.Subcutaneous adipose tissue releases interleukin-6,but not tumor necrosis factor-α,in vivo[J].The Journal of Clinical Endocrinology&Metabolism,1997,82 (12):4196-4200.
[48] SCHELLER J,CHALARIS,A SCHMIDT-ARRAS D,et al.The pro- and anti-inflammatory properties of the cytokine interleukin-6[J].Biochim Biophys Acta (BBA)-Molecular Cell Research,2011,1813(5):878-888.
[49] SCHELLER J,ROSE-JOHN S.Interleukin-6 and its receptor:from bench to bedside[J].Medical Microbiology and Immunology,2006,195(4):173-183.
[50] SUTHERLAND R E,OLSEN J S,MCKINSTRY A,et al.Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing [J]. The Journal of Immunology,2008,181(8):5598-5605.
[51] VAN DER POLL T,KEOGH C V,GUIRAO X,et al. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia[J].Journal of Infectious Diseases,1997,176(2):439-444.
[52] LANG J E,WILLIAMS E S,MIZGERD J P,et al. Effect of obesity on pulmonary inflammation induced by acute ozone exposure:role of interleukin-6[J].A-merican Journal of Physiology-Lung Cellular and Molecular Physiology,2008,294(5):L1013-L1020.
[53] YOSHIDA M,SAKUMA J,HAYASHI S,et al.A histologically distinctive interstitial pneumonia induced by overexpression of the interleukin 6,transforming growth factor beta 1,or platelet-derived growth factor B gene[J].Proceedings of the National Academy of Sciences of the United States of America,1995,92 (21):9570-9574.
[54] ZHANG Y Y,PROENCA R,MAFFEI M,et al.Positional cloning of the mouse obese gene and its human homologue[J].Nature,1994,372(6505):425-432.
[55] CAVA A L,MATARESE G.The weight of leptin in immunity[J]. Nature Reviews Immunology,2004,4 (5):371-379.
[56] LAM Q L,LU L W.Role of leptin in immunity[J]. Cellular&Molecular Immunology,2007,4(1):1-13.
[57] LORD G M,MATARESE G,HOWARD J K,et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression[J].Nature,1998,394(6696):897-901.
[58] UMEMOTO Y,TSUJI K,YANG F C,et al. Leptin stimulates the proliferation of murine myelocytic and primitive hematopoietic progenitor cells[J]. Blood,1997,90(9):3438-3443.
[59] O’DONNELL C P,TANKERSLEY C G,POLOTSKY V P,et al. Leptin,obesity,and respiratory function[J]. Respiration Physiology,2000,119(2/ 3):163-170.
[60] HSU A,ARONOFF D M,PHIPPS J,et al.Leptin improves pulmonary bacterial clearance and survival in ob/ ob mice during pneumococcal pneumonia[J]. Clinical&Experimental Immunology,2007,150(2):332-339.
[61] SCHERER P E,WILLIAMS S,F(xiàn)OGLIANO M,et al. A novel serum protein similar to C1q,produced exclusively in adipocytes[J].Journal of Biological Chemistry,1995,270(45):26746-26749.
[62] MAEDA K,OKUBO K,SHIMOMURA I,et al. cDNA cloning and expression of a novel adipose specific collagen-like factor,apM1(adipose most abundant gene transcript 1)[J]. Biochemical and Biophysical Research Communications,1996,221(2):286-289.
[63] NAKANO Y,TOBE T,CHOI-MIURA N H,et al.Isolation and characterization of GBP28,a novel gelatinbinding protein purified from human plasma[J].Journal of Biochemistry,1996,120(4):803-812.
[64] HU E,LIANG P,SPIEGELMAN B M. AdipoQ is a novel adipose-specific gene dysregulated in obesity [J].Journal of Biological Chemistry,1996,271(18):10697-10703.
[65] CHANDRAN M,PHILLIPS S A,CIARALDI T,et al. Adiponectin:more than just another fat cell hormone?[J].Diabetes Care,2003,26(8):2442-2450.
[66] DIEZ J J,IGLESIAS P.The role of the novel adipocyte-derived hormone adiponectin in human disease [J]. European Journal of Endocrinology,2003,148 (3):293-300.
[67] SHORE S A,TERRY R D,F(xiàn)LYNT L,et al.Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice[J].Journal of Allergy and Clinical Immunology,2006,118(2):389 -395.
[68] MEDOFF B D,OKAMOTO Y,LEYTON P,et al.Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling[J].American Journal of Respiratory Cell and Molecular Biolo-gy,2009,41(4):397-406.
[69] BOKAREWA M,NAGAEV I,DAHLBERG L,et al. Resistin,an adipokine with potent proinflammatory properties[J].The Journal of Immunology,2005,174 (9):5789-5795.
[70] HOLCOMB I N,KABAKOFF R C,CHAN B,et al. FIZZ1,a novel cysteine-rich secreted protein associated with pulmonary inflammation,defines a new gene family[J].The EMBO Journal,2000,19(15):4046-4055.
[71] TARKOWSKI A,BJERSING J,SHESTAKOV A,et al.Resistin competes with lipopolysaccharide for binding to toll-like receptor 4[J].Journal of Cellular and Molecular Medicine,2010,14(6b):1419-1431.
[72] HSIEH Y Y,SHEN C H,HUANG W S,et al.Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells[J].Journal of Biomedical Science,2014,21:59,doi:10.1186/1423-0127-21-59.
[73] LEE S,LEE H C,KWON Y W,et al.Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes[J].Cell Metabolism,2014,19(3):484-497.
[74] WALCHER D,HESS K,BERGER R,et al.Resistin:a newly identified chemokine for human CD4-positive lymphocytes[J]. Cardiovascular Research,2010,85(1):167-174.
[75] KAWANAMI D,MAEMURA K,TAKEDA N,et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells:a new insight into adipocytokine-endothelial cell interactions[J]. Biochemical and Biophysical Research Communications,2004,314 (2):415-419.
[76] HSU W Y,CHAO Y W,TSAI Y L,et al.Resistin induces monocyte-endothelial cells adhesion by increasing ICAM-1 and VCAM-1 expression in endothelial cells via p38MAPK-dependent pathway[J].Journal of Cellular Physiology,2011,226(8):2181-2188.
[77] PIRVULESCU M,MANDUTEANU I,GAN A M,et al.A novel pro-inflammatory mechanism of action of resistin in human endothelial cells:up-regulation of SOCS3 expression through STAT3 activation[J].Biochemical and Biophysical Research Communications,2012,422(2):321-326.
[79] SON Y M,AHN S M,JANG M S,et al.Immunomodulatory effect of resistin in human dendritic cells stimulated with lipoteichoic acid from Staphylococcus aureus[J].Biochemical and Biophysical Research Communications,2008,376(3):599-604.
Mechanisms of Impact of Obesity on Respiratory Infection
WAN Taomei GAN Linli ZUO Zhicai?REN Yi
(Key Laboratory of Animal Disease and Human Health of Sichuan Province,Key Laboratory of Environmental Hazard and Animal Disease of Sichuan Province,College of Veterinary Medicine,Sichuan Agricultural University,Ya’an 625014,China)
Abstract:Obesity is a chronic metabolic disease caused by many factors,and it is also a kind of systemic low grade inflammation,which affects both the energy metabolism and immune state in the body. A large numbers of studies have reported that obesity has a certain effect on the function of respiratory system,which not only improves the severity of respiratory diseases,increases the risk of respiratory tract infections,also destroys the capacity to clear the pathogens. Even though,there are some voices said that obesity is associated with lower odds and hospital mortality,but the specific mechanism is still unknown. It is clear that the increased inflammatory cells infiltration and the elevated inflammatory mediators and adipocytokines caused by the substantial accumulation of adipose tissue in obese individuals may be the main factors contributing to the alters of lung susceptibility to pathogenic microorganisms. This review summarizes the mechanisms of obesity may affect respiratory resistance to infections,to lay a certain foundation for further exploring the relationship between obesity and lung infection.[Chinese Journal of Animal Nutrition,2016,28(3):695-703]
Key words:obesity;respiratory tract;infection;mechanism
(責(zé)任編輯武海龍)
[78] SON Y M,AHN S M,KIM G R,et al.Resistin enhances the expansion of regulatory T cells through modulation of dendritic cells[J].BMC Immunology,11:3,doi:10.1186/1471-2172-11-33.
Corresponding author?,professor,E-mail:zzcjl@126.com
通信作者:?左之才,教授,博士生導(dǎo)師,E-mail:zzcjl@126.com
作者簡(jiǎn)介:萬(wàn)濤梅(1990—),女,四川南充人,碩士研究生,研究方向?yàn)橹形鳙F醫(yī)與臨床。E-mail:408914590@qq.com
收稿日期:2015-09-10
doi:10.3969/ j.issn.1006-267x.2016.03.009
中圖分類號(hào):S811.2
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-267X(2016)03-0695-09
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2016年3期