• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      有機(jī)污染物的被動(dòng)采樣材料-水分配系數(shù)的QSAR研究

      2016-03-17 08:27:11楊蕾羅翔王雅張亞南陳景文
      生態(tài)毒理學(xué)報(bào) 2016年6期
      關(guān)鍵詞:描述符硅橡膠被動(dòng)

      楊蕾,羅翔,王雅,張亞南,陳景文

      工業(yè)生態(tài)與環(huán)境工程教育部重點(diǎn)實(shí)驗(yàn)室,大連理工大學(xué)環(huán)境學(xué)院,大連 116024

      有機(jī)污染物的被動(dòng)采樣材料-水分配系數(shù)的QSAR研究

      楊蕾,羅翔,王雅,張亞南,陳景文*

      工業(yè)生態(tài)與環(huán)境工程教育部重點(diǎn)實(shí)驗(yàn)室,大連理工大學(xué)環(huán)境學(xué)院,大連 116024

      被動(dòng)采樣材料-水分配系數(shù);聚乙烯;聚丙烯酸酯;硅橡膠;定量構(gòu)效關(guān)系

      Received 15 April 2016 accepted 26 May 2016

      近年來(lái),被動(dòng)采樣技術(shù)在水中痕量有機(jī)污染物的監(jiān)測(cè)領(lǐng)域得到了廣泛應(yīng)用。半透膜采樣裝置(SPMDs)[1]、聚乙烯被動(dòng)采樣器(PE)[2]和梯度擴(kuò)散薄膜技術(shù)(DGT)[3]等被動(dòng)采樣技術(shù)被用于測(cè)定污染物的自由溶解態(tài)的濃度,對(duì)于生物有效性評(píng)價(jià)具有重要意義。在被動(dòng)采樣過(guò)程中,被動(dòng)采樣器通過(guò)吸附作用將水中的污染物富集到采樣材料上,從而得到污染物的時(shí)間加權(quán)平均濃度[4]。有機(jī)污染物的被動(dòng)采樣材料-水分配系數(shù)(KPW),是衡量被動(dòng)采樣器性能和進(jìn)行優(yōu)化的一個(gè)重要指標(biāo)[5]。目前,大部分污染物的KPW值都是通過(guò)實(shí)驗(yàn)測(cè)定獲得,但實(shí)驗(yàn)方法費(fèi)時(shí)費(fèi)力[6],難以滿(mǎn)足數(shù)量龐大且與日俱增的有機(jī)污染物的監(jiān)測(cè)需求,需要發(fā)展預(yù)測(cè)方法來(lái)獲得有機(jī)污染物的KPW值。

      定量構(gòu)效關(guān)系(QSAR)是一種可以有效預(yù)測(cè)有機(jī)污染物理化性質(zhì)、環(huán)境行為和毒理學(xué)效應(yīng)參數(shù)的方法[7]。許多研究曾采用有機(jī)化合物的正辛醇-水分配系數(shù)(logKOW)、正十六烷-水分配系數(shù)(logKHW)或水溶解度(logSW)對(duì)其KPW進(jìn)行預(yù)測(cè)[8-16]。Lohmann[8]分別用logKHW和logSW預(yù)測(cè)了100種化合物的聚乙烯-水分配系數(shù),相關(guān)系數(shù)(R2)分別為0.86和0.92;用logKOW預(yù)測(cè)79種化合物的聚乙烯-水分配系數(shù),R2達(dá)到0.91。Hale等[9]分別用logKHW和logKOW預(yù)測(cè)了34種化合物的聚乙烯-水分配系數(shù),R2分別為0.85和0.53。另外,有些研究基于線(xiàn)性溶解能關(guān)系(LSER)預(yù)測(cè)KPW。Endo等[5]構(gòu)建了79種化合物的聚丙烯酸酯-水分配系數(shù)的LSER模型,R2達(dá)到0.97。然而這些模型所采用的預(yù)測(cè)變量通常也是需要實(shí)驗(yàn)測(cè)定的經(jīng)驗(yàn)性參數(shù),導(dǎo)致模型的適用范圍有限。本研究針對(duì)3類(lèi)常用的被動(dòng)采樣材料,即聚乙烯(PE)、聚丙烯酸酯(PA)和硅橡膠(SR),遵循經(jīng)濟(jì)合作與發(fā)展組織(OECD)發(fā)布的QSAR構(gòu)建與驗(yàn)證導(dǎo)則[17],構(gòu)建KPW的QSAR預(yù)測(cè)模型,并對(duì)模型進(jìn)行表征和機(jī)理解釋。

      1 材料與方法(Materials and methods)

      1.1 數(shù)據(jù)來(lái)源

      考慮7種被動(dòng)采樣材料(聚乙烯、聚丙烯和5種不同的硅橡膠),有機(jī)污染物在19 ~ 26 ℃下的KPW實(shí)測(cè)數(shù)據(jù)均來(lái)自文獻(xiàn)報(bào)道[2,5-6,8-9,18-27],包括:215種有機(jī)物的聚乙烯-水分配系數(shù)(此處為區(qū)分不同采樣材料記為logKPE),數(shù)值范圍為2.3 ~ 7.8;107種有機(jī)物的聚丙烯酸酯-水分配系數(shù)(logKPA),數(shù)值范圍為0.0 ~ 6.0;67種有機(jī)物的Silastic A型硅橡膠-水分配系數(shù)(logKSR1),數(shù)值范圍為3.0 ~ 7.6;67種有機(jī)物的SR batch 0型硅橡膠-水分配系數(shù)(logKSR2),數(shù)值范圍為2.8 ~ 7.4;93種有機(jī)物的AlteSil型硅橡膠-水分配系數(shù)(logKSR3),數(shù)值范圍為3.0 ~ 7.8;67種有機(jī)物的SR-RED型硅橡膠-水分配系數(shù)(logKSR4),數(shù)值范圍為3.0 ~ 7.6;67種有機(jī)物的SR-TF型硅橡膠-水分配系數(shù)(logKSR5),數(shù)值范圍為2.9 ~ 7.4。有機(jī)物涵蓋烷烴、烯烴、芳香類(lèi)、醇類(lèi)、酮類(lèi)、酯類(lèi)、醚類(lèi)等多種類(lèi)別。

      將各個(gè)數(shù)據(jù)集以4∶1的比例隨機(jī)拆分為訓(xùn)練集和驗(yàn)證集,其中,訓(xùn)練集中的化合物用于構(gòu)建模型,驗(yàn)證集中的化合物用于模型驗(yàn)證。

      1.2 分子結(jié)構(gòu)描述符的計(jì)算

      采用ChemBio3D Ultra (Version 12.0)軟件中MOPAC 2012模塊的PM7算法[28],對(duì)化合物結(jié)構(gòu)進(jìn)行優(yōu)化并獲得穩(wěn)定構(gòu)型。同時(shí),基于化合物優(yōu)化后的穩(wěn)定結(jié)構(gòu),由Dragon (Version 6.0)軟件計(jì)算得到分子結(jié)構(gòu)描述符。

      1.3 模型的建立

      (1)

      (2)

      (3)

      1.4 應(yīng)用域表征

      采用基于標(biāo)準(zhǔn)殘差(δ)對(duì)leverage值(hi)的Williams圖對(duì)模型的應(yīng)用域進(jìn)行表征[30]。δ和hi及其預(yù)警值(h*)的計(jì)算公式如下:

      (4)

      hi= xiT(XTX)-1xi

      (5)

      h*= 3(k + 1)/n

      (6)

      式中,k為自變量的個(gè)數(shù),xi是第i個(gè)化合物的描述符矢量,X是描述符矩陣。將|δ| > 3的化合物視為離群點(diǎn)。

      2 結(jié)果(Results)

      2.1 最優(yōu)QSAR模型

      得到7種被動(dòng)采樣材料的最優(yōu)QSAR模型如下:

      (1) 聚乙烯-水分配系數(shù)(logKPE)

      logKPE= 0.015Vx- 0.034TPSA(NO) + 0.110nBM + 0.137nCl - 0.841

      (2) 聚丙烯酸酯-水分配系數(shù)(logKPA)

      logKPA= 0.010Vx+ 0.154nCl + 0.078nBM - 0.026TPSA(NO)+ 0.940NddsN - 0.778nROH + 0.701

      (3) Silastic A型硅橡膠-水分配系數(shù)(logKSR1)

      logKSR1= 0.024Vx- 0.117Rperim - 0.088

      (4) SR batch 0型硅橡膠-水分配系數(shù)(logKSR2)

      logKSR2= 0.024Vx- 0.139Rperim - 0.088

      (5) AlteSil型硅橡膠-水分配系數(shù)(logKSR3)

      logKSR3= 0.021Vx- 0.824

      (6) SR-RED型硅橡膠-水分配系數(shù)(logKSR4)

      logKSR4= 0.017Vx+ 0.140nCl

      (7) SR-TF型硅橡膠-水分配系數(shù)(logKSR5)

      logKSR5= 0.023Vx- 0.144Rperim + 0.327

      2.2 模型的應(yīng)用域表征

      7個(gè)模型的應(yīng)用域表征結(jié)果如圖2所示。訓(xùn)練集和驗(yàn)證集所有化合物的|δ| < 3,模型無(wú)離群點(diǎn),表明訓(xùn)練集化合物具有很好的代表性。logKPE模型中訓(xùn)練集的4種化合物和logKPA模型中訓(xùn)練集的1種化合物,hi> h*但|δ| < 3,說(shuō)明這些化合物增加了模型的穩(wěn)定性和準(zhǔn)確性。logKPE模型中驗(yàn)證集的1種化合物,hi> h*但|δ| < 3,落在描述符域外,但其預(yù)測(cè)效果較好,說(shuō)明模型適用于遠(yuǎn)離描述符中心的化合物,進(jìn)一步推論出模型具有一定的延展能力和外推性。因此,建立的模型可用于預(yù)測(cè)應(yīng)用域內(nèi)其他化合物的logKPW值。

      圖1 logKPW的實(shí)測(cè)值與預(yù)測(cè)值擬合關(guān)系圖Fig. 1 Plot of the predicted versus experimental logKPW values

      圖2 logKPW模型的Williams應(yīng)用域表征圖Fig. 2 Williams plot of logKPW models

      表1 本研究構(gòu)建的預(yù)測(cè)模型中分子結(jié)構(gòu)描述符的含義Table 1 Definitions of the molecular structural descriptors involved in the developed models

      3 討論(Discussion)

      3.1 機(jī)理解釋

      7個(gè)模型中,共包含7個(gè)描述符(如表1所示),其中,Vx, nBM, nCl和NddsN與logKPW呈正相關(guān);TPSA(NO), nROH和Rperim與logKPW呈負(fù)相關(guān)。在所有模型中,Vx的貢獻(xiàn)最大,是影響KPW的最主要因素。Vx是分子McGowan體積,表征空穴形成作用。由于水分子排列高度有序且凝聚性強(qiáng)[31],在水中形成空穴所需能量遠(yuǎn)大于其在被動(dòng)采樣材料中所需能量,因此化合物分子更容易通過(guò)空穴形成作用分配到被動(dòng)采樣材料相中。具有較大Vx值的化合物,其logKPW值越大。nCl是氯原子的個(gè)數(shù)。有研究表明,logKOW與鹵素原子個(gè)數(shù)有關(guān)[32],可用化合物的鹵素原子數(shù)表征其疏水作用,nCl值越大的化合物疏水作用越強(qiáng),因而越容易分配到采樣材料中。TPSA(NO)是由N, O極性貢獻(xiàn)的拓?fù)錁O性表面積,nROH是羥基的個(gè)數(shù)。這些親水結(jié)構(gòu)中的氮和氧原子具有孤對(duì)電子,易形成氫鍵,增加了與水的氫鍵相互作用[33],使化合物更不易被采樣材料吸附,從而具有更小的logKPW值。Rperim是環(huán)的周長(zhǎng),化合物的環(huán)周長(zhǎng)越大,空間位阻越大,越難進(jìn)入到被動(dòng)采樣材料相中,從而具有更小的logKPW值。此外,nBM和NddsN表明logKPW還與化合物多重鍵和[-N(=)=] (硝基氮)原子的個(gè)數(shù)有關(guān)。

      表2 本研究模型和前人相關(guān)模型的比較Table 2 Comparison of KPW prediction models from the current study and previous studies

      注:N表示無(wú)應(yīng)用域表征,Y表示有應(yīng)用域表征;— 表示未報(bào)道。

      Note: N, applicability domain was not characterized; Y, applicability domain was characterized; —, unreported.

      3.2 模型比較

      將本研究構(gòu)建的模型與前人的一些代表性模型進(jìn)行比較,見(jiàn)表2。本研究logKPE, logKPA和logKSR模型與前人模型相比,化合物種類(lèi)更豐富且數(shù)量更多,而且所采用的分子結(jié)構(gòu)參數(shù)均可通過(guò)計(jì)算獲得,不依賴(lài)于實(shí)驗(yàn)測(cè)定。此外,本研究將數(shù)據(jù)集劃分為訓(xùn)練集和驗(yàn)證集,利用MLR方法建立模型,所有模型均進(jìn)行了外部驗(yàn)證和應(yīng)用域的表征,并進(jìn)行了機(jī)理解釋。

      綜上,本研究遵循OECD關(guān)于QSAR模型構(gòu)建和驗(yàn)證的導(dǎo)則,構(gòu)建了3類(lèi)共7種被動(dòng)采樣材料的KPW的QSAR預(yù)測(cè)模型。模型具有良好的擬合優(yōu)度、穩(wěn)健性和預(yù)測(cè)能力,能夠用于預(yù)測(cè)含有>C=C<, -OH, -O-, >C=O, -C=O(O), -C6H5, -NO2, -NH2, -NH-, -X(F, Cl, Br, I)等多種結(jié)構(gòu)官能團(tuán)的有機(jī)污染物的logKPW值,可為快速獲取有機(jī)污染物的KPW值以及為被動(dòng)采樣器的應(yīng)用提供基礎(chǔ)數(shù)據(jù)。

      輔助信息:化合物logKPW實(shí)測(cè)值、預(yù)測(cè)值以及模型中包含的分子結(jié)構(gòu)描述符值,需要者請(qǐng)和通訊作者聯(lián)系。

      [1] Booij K, van Bommel R, van Aken H M, et al. Passive sampling of nonpolar contaminants at three deep-ocean sites [J]. Environmental Pollution, 2014, 195: 101-108

      [2] Sacks V P, Lohmann R. Development and use of polyethylene passive samplers to detect triclosans and alkylphenols in an urban estuary [J]. Environmental Science & Technology, 2011, 45(6): 2270-2277

      [3] Chen C E, Zhang H, Ying G G, et al. Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters [J]. Environmental Science & Technology, 2013, 47(23): 13587-13593

      [4] Alvarez D A, Cranor W L, Perkins S D, et al. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers [J]. Journal of Environmental Quality, 2008, 37(3): 1024-1033

      [5] Endo S, Droge S T J, Goss K U. Polyparameter linear free energy models for polyacrylate fiber-water partition coefficients to evaluate the efficiency of solid-phase microextraction [J]. Analytical Chemistry, 2011, 83(4): 1394-1400

      [6] Choi Y, Cho Y M, Luthy R G. Polyethylene-water partitioning coefficients for parent-and alkylated-polycyclic aromatic hydrocarbons and polychlorinated biphenyls [J]. Environmental Science & Technology, 2013, 47(13): 6943-6950

      [7] 陳景文, 全燮. 環(huán)境化學(xué)[M]. 大連: 大連理工大學(xué)出版社, 2009: 260

      Chen J W, Quan X. Environmental Chemistry [M]. Dalian: Dalian University of Technology Press, 2009: 260 (in Chinese)

      [8] Lohmann R. Critical review of low-density polyethylene’s partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler [J]. Environmental Science & Technology, 2011, 46(2): 606-618

      [9] Hale S E, Martin T J, Goss K U, et al. Partitioning of organochlorine pesticides from water to polyethylene passive samplers [J]. Environmental Pollution, 2010, 158(7): 2511-2517

      [10] Josefsson S, Arp H P H, Kleja D B, et al. Determination of polyoxymethylene (POM)-water partition coefficients for oxy-PAHs and PAHs [J]. Chemosphere, 2015, 119: 1268-1274

      [11] Perron M M, Burgess R M, Suuberg E M, et al. Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern [J]. Environmental Toxicology and Chemistry, 2013, 32(10): 2182-2189

      [12] Reitsma P J, Adelman D, Lohmann R. Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions [J]. Environmental Science & Technology, 2013, 47(18): 10429-10437

      [13] Sacks V P, Lohmann R. Freely dissolved PBDEs in water and porewater of an urban estuary [J]. Environmental Pollution, 2012, 162: 287-293

      [14] Kwon J H, Wuethrich T, Mayer P, et al. Dynamic permeation method to determine partition coefficients of highly hydrophobic chemicals between poly (dimethylsiloxane) and water [J]. Analytical Chemistry, 2007, 79(17): 6816-6822

      [15] Booij K, Smedes F, van Weerlee E M, et al. Environmental monitoring of hydrophobic organic contaminants: The case of mussels versus semipermeable membrane devices [J]. Environmental Science & Technology, 2006, 40(12): 3893-3900

      [16] Hawthorne S B, Miller D J, Grabanski C B. Measuring low picogram per liter concentrations of freely dissolved polychlorinated biphenyls in sediment pore water using passive sampling with polyoxymethylene [J]. Analytical Chemistry, 2009, 81(22): 9472-9480

      [17] OECD. Guidance document on the validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] models [R]. Paris: OECD, 2007

      [18] Booij K, Hofmans H E, Fischer C V, et al. Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes [J]. Environmental Science & Technology, 2003, 37(2): 361-366

      [19] Adams R G, Lohmann R, Fernandez L A, et al. Polyethylene devices: Passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments [J]. Environmental Science & Technology, 2007, 41(4): 1317-1323

      [20] Paschke A, Popp P. Solid-phase microextraction fibre-water distribution constants of more hydrophobic organic compounds and their correlations with octanol-water partition coefficients [J]. Journal of Chromatography A, 2003, 999(1): 35-42

      [21] Yates K, Davies I, Webster L, et al. Passive sampling: Partition coefficients for a silicone rubber reference phase [J]. Journal of Environmental Monitoring, 2007, 9(10): 1116-1121

      [22] Smedes F, Geertsma R W, Zande T, et al. Polymer-water partition coefficients of hydrophobic compounds for passive sampling: Application of cosolvent models for validation [J]. Environmental Science & Technology, 2009, 43(18): 7047-7054

      [23] Thompson J M, Hsieh C H, Luthy R G. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers [J]. Environmental Science & Technology, 2015, 49(4): 2270-2277

      [24] Hale S E, Tomaszewski J E, Luthy R G, et al. Sorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries [J]. Water Research, 2009, 43(17): 4336-4346

      [25] Cornelissen G, Pettersen A, Broman D, et al. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations [J]. Environmental Toxicology and Chemistry, 2008, 27(3): 499-508

      [26] Fernandez L A, MacFarlane J K, Tcaciuc A P, et al. Measurement of freely dissolved PAH concentrations in sediment beds using passive sampling with low-density polyethylene strips [J]. Environmental Science & Technology, 2009, 43(5): 1430-1436

      [27] Bao L J, You J, Zeng E Y. Sorption of PBDE in low-density polyethylene film: Implications for bioavailability of BDE-209 [J]. Environmental Toxicology and Chemistry, 2011, 30(8): 1731-1738

      [28] Jhin C, Hwang K T. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors [J]. International Journal of Molecular Sciences, 2014, 15(8): 14715-14727

      [29] Noru?is M J. SPSS Inc. SPSS 7.5 Guide to Data Analysis [M]. Upper Saddle River, New Jersey: Prentice Hall, 1997: 458

      [30] Gramatica P. Principles of QSAR models validation: Internal and external [J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701

      [31] Vitha M, Carr P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography [J]. Journal of Chromatography A, 2006, 1126(1): 143-194

      [32] Li F, Xie Q, Li X H, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: In vitro and in silico investigations [J]. Environmental Health Perspectives, 2010, 118(5): 602-606

      [33] Schüürmann G, Ebert R U, Kühne R. Prediction of the sorption of organic compounds into soil organic matter from molecular structure [J]. Environmental Science & Technology, 2006, 40(22): 7005-7011

      [34] Fernández A, Rallo R, Giralt F. Prioritization of in silico models and molecular descriptors for the assessment of ready biodegradability [J]. Environmental Research, 2015, 142: 161-168

      [35] Abraham M H, McGowan J C. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography [J]. Chromatographia, 1987, 23(4): 243-246

      [36] Wang Y, Chen J W, Yang X H, et al. In silico model for predicting soil organic carbon normalized sorption coefficient (KOC) of organic chemicals [J]. Chemosphere, 2015, 119: 438-444

      [37] Tang W Z, Wang F. Quantitative structure activity relationship (QSAR) of chlorine effects on ELUMOof disinfection by-product: Chlorinated alkanes [J]. Chemosphere, 2010, 78(7): 914-921

      [38] Edraki N, Hemmateenejad B, Miri R, et al. QSAR study of phenoxypyrimidine derivatives as potent inhibitors of p38 kinase using different chemometric tools [J]. Chemical Biology & Drug Design, 2007, 70(6): 530-539

      [39] Butina D. Performance of Kier-hall E-state descriptors in quantitative structure activity relationship (QSAR) studies of multifunctional molecules [J]. Molecules, 2004, 9(12): 1004-1009

      [40] Patel J R, Prajapati L M. Predictive QSAR modeling on tetrahydropyrimidine-2-one derivatives as HIV-1 protease enzyme inhibitors [J]. Medicinal Chemistry Research, 2013, 22(6): 2795-2801

      QSAR Models for Predicting Partition Coefficients of Organic Pollutants between Passive Sampling Materials and Water

      Yang Lei, Luo Xiang, Wang Ya, Zhang Ya’nan, Chen Jingwen*

      Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

      passive sampling materials-water partition coefficients; polyethylene; polyacrylate; silicone rubber; quantitative structure-activity relationships

      國(guó)家自然科學(xué)基金(21325729; 21661142001)

      楊蕾(1990-),女,碩士,研究方向?yàn)槲廴旧鷳B(tài)化學(xué),E-mail: yanglei_dlut@mail.dlut.edu.cn;

      *通訊作者(Corresponding author), E-mail: jwchen@dlut.edu.cn

      10.7524/AJE.1673-5897.20160415001

      2016-04-15 錄用日期:2016-05-26

      1673-5897(2016)6-053-08

      X171.5

      A

      陳景文(1969-),男,博士,教授,研究方向?yàn)槲廴旧鷳B(tài)化學(xué)、污染控制化學(xué)和環(huán)境生態(tài)技術(shù)。

      楊蕾, 羅翔, 王雅, 等. 有機(jī)污染物的被動(dòng)采樣材料-水分配系數(shù)的QSAR研究[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(6): 53-60

      Yang L, Luo X, Wang Y, et al. QSAR models for predicting partition coefficients of organic pollutants between passive sampling materials and water [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 53-60 (in Chinese)

      猜你喜歡
      描述符硅橡膠被動(dòng)
      基于結(jié)構(gòu)信息的異源遙感圖像局部特征描述符研究
      新聞?wù)Z篇中被動(dòng)化的認(rèn)知話(huà)語(yǔ)分析
      主動(dòng)句都能轉(zhuǎn)換成被動(dòng)句嗎
      第五課 拒絕被動(dòng)
      硅橡膠拉伸力學(xué)的應(yīng)變率相關(guān)性研究
      Linux單線(xiàn)程并發(fā)服務(wù)器探索
      利用CNN的無(wú)人機(jī)遙感影像特征描述符學(xué)習(xí)
      一種耐高溫氟硅橡膠墊片
      一種耐溫耐侵蝕改性硅橡膠電纜料
      60Co γ-輻照對(duì)硅橡膠GD414損傷機(jī)理的研究
      真空與低溫(2015年4期)2015-06-18 10:47:22
      酒泉市| 江华| 丰城市| 南阳市| 湖南省| 酒泉市| 九台市| 乾安县| 治多县| 桦川县| 奇台县| 彭州市| 庄河市| 宁化县| 鹤峰县| 上杭县| 定南县| 铁岭市| 扶余县| 雷州市| 昌都县| 土默特右旗| 伊川县| 铜山县| 长宁区| 马公市| 民乐县| 巴彦县| 丰顺县| 砚山县| 西青区| 南和县| 屏南县| 西盟| 信宜市| 孝感市| 广灵县| 临西县| 府谷县| 东台市| 抚远县|