范風(fēng)云, 沈婉婷, 鄭青青, 高 媛, 胡凱媛, 范小芳, 毛孫忠, 龔永生
(溫州醫(yī)科大學(xué)低氧醫(yī)學(xué)研究所, 浙江 溫州 325035)
低氧性肺動(dòng)脈高壓小鼠體內(nèi)脂質(zhì)水平的變化*
范風(fēng)云, 沈婉婷, 鄭青青, 高 媛, 胡凱媛, 范小芳, 毛孫忠, 龔永生Δ
(溫州醫(yī)科大學(xué)低氧醫(yī)學(xué)研究所, 浙江 溫州 325035)
目的:觀察低氧性肺動(dòng)脈高壓小鼠體內(nèi)脂質(zhì)代謝的變化,探討脂質(zhì)代謝異常在低氧性肺動(dòng)脈高壓發(fā)生發(fā)展中的意義。方法:SPF級雄性C57BL/6小鼠20只,隨機(jī)分為2組(n=10):常氧組和低氧組。常壓連續(xù)低氧3周(9%~11% O2,23 h/d)復(fù)制慢性低氧性肺動(dòng)脈高壓模型,測定小鼠右心室壓(RVSP)和右心室與左心室加室間隔重量比[RV/(LV+S)],Elisa法檢測血漿中總膽固醇(TC)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)的含量;real-time PCR法檢測肝組織中3-羥基-3-甲基戊二酸單酰輔酶A還原酶(HMGCR)、低密度脂蛋白受體(LDLR)、清道夫受體B1(SR-B1)、固醇調(diào)節(jié)元件結(jié)合因子2(SREBF2)等基因的表達(dá)。結(jié)果:低氧組小鼠RVSP、RV/(LV+S)顯著高于常氧組(P<0.05),血漿中HDL含量及HDL/LDL比值較常氧組顯著降低(P<0.05),肝組織中LDLR、SR-B1基因表達(dá)較常氧組顯著下調(diào)(P<0.05);RVSP與HDL/LDL比值及LDLR、SR-B1基因表達(dá)呈顯著負(fù)相關(guān)(P<0.05)。結(jié)論:脂質(zhì)代謝異常參與小鼠低氧性肺動(dòng)脈高壓的形成。
脂質(zhì)代謝;肺動(dòng)脈高壓;低氧;小鼠
近年來,脂質(zhì)代謝異常在肺動(dòng)脈高壓和肺血管重塑進(jìn)程中的作用倍受關(guān)注。研究表明:低氧或高脂膳食更容易誘發(fā)脂質(zhì)代謝相關(guān)基因如載脂蛋白E(apolipoprotein E,apoE)[1]、脂聯(lián)素(adiponectin,APN)[2]、過氧化物酶體增殖物激活受體γ(peroxisome proliferators-activated receptor gamma,PPARγ)[3]等基因敲除小鼠肺血管重塑和肺動(dòng)脈高壓的形成,而應(yīng)用APN[4]、PPARγ激動(dòng)劑[5]可降低肺動(dòng)脈高壓和改善肺血管重塑,提示脂質(zhì)代謝異常參與肺動(dòng)脈高壓的形成。但脂質(zhì)代謝相關(guān)基因敲除小鼠本身就已存在脂質(zhì)代謝異常,高脂膳食喂養(yǎng)亦可導(dǎo)致小鼠脂質(zhì)代謝異常,有關(guān)單純低氧誘導(dǎo)的肺動(dòng)脈高壓形成中是否存在脂質(zhì)代謝異常的問題尚未明了。
本實(shí)驗(yàn)復(fù)制小鼠低氧性肺動(dòng)脈高壓模型,觀察其血漿脂質(zhì)含量及肝組織脂質(zhì)代謝相關(guān)基因表達(dá)的變化,旨在探討低氧性肺動(dòng)脈高壓的形成中脂質(zhì)代謝的變化及可能的意義。
1.1 實(shí)驗(yàn)動(dòng)物與試劑
SPF級雄性C57BL/6小鼠,體重20~25 g,由上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司提供,動(dòng)物許可證號SCXK(滬2007-0005)。小鼠血漿總膽固醇(total cholesterol,TC)、低密度脂蛋白(low density lipoprotein,LDL)、高密度脂蛋白(high density lipoprotein,HDL)等Elisa試劑盒購自美國Phoenix Pharm Inc.;Quantscript RT Kit和Real Master Mix (Probe)購自天根生化科技(北京)有限公司。
1.2 動(dòng)物模型的制備
SPF級雄性C57BL/6小鼠20只,隨機(jī)分為2組(n=10):常氧組和低氧組。將低氧組小鼠置于常壓低氧艙內(nèi)(9%~11% O2,23 h/d),連續(xù)3周,常規(guī)飼料喂養(yǎng);常氧組置于艙外,自由呼吸空氣,其它飼養(yǎng)條件與低氧組相同。
1.3 動(dòng)物處理與標(biāo)本留取
動(dòng)物飼養(yǎng)3周后,用異氟烷吸入麻醉,右心導(dǎo)管法經(jīng)右側(cè)頸外靜脈插管至右心室,經(jīng)PowerLab生理信號處理系統(tǒng)(AD Instruments Inc.,Australia)記錄右心室收縮壓(right ventricular systolic pressure,RVSP),RVSP可間接反映小鼠肺動(dòng)脈壓。然后,經(jīng)腹動(dòng)脈取血,裝入預(yù)冷含肝素試管內(nèi),離心后取上清,-70℃保存待測血脂含量。
放血處死動(dòng)物立即取出心肺,分別稱取右心室(right ventricle,RV)和左心室加室間隔(left ventricle plus septum,LV+S)的重量,并計(jì)算出RV/(LV+S)的重量比作為反映右室肥大的指標(biāo)。每組取6只小鼠的右肝組織約100 mg,用于提取總RNA,待測脂質(zhì)代謝相關(guān)基因mRNA的表達(dá)水平。
1.4 血漿TC、LDL、HDL含量檢測(Elisa法)
血漿TC、LDL、HDL含量通過Elisa試劑盒檢測,步驟完全按照試劑盒說明書操作。
1.5 肝組織脂質(zhì)代謝相關(guān)基因mRNA的表達(dá)水平檢測(real-time PCR法)
Trizol一步法提取肝組織中總RNA,Quant Reverse Transcriptase一步法逆轉(zhuǎn)錄成cDNA,TaqMan探針法行實(shí)時(shí)定量PCR擴(kuò)增。PCR反應(yīng)條件:95℃預(yù)變性15 min,95℃變性10 s,60℃退火20 s,40個(gè)循環(huán)。每個(gè)樣本做3個(gè)復(fù)孔,TaqMan探針由ABI公司提供。以10倍稀釋模板梯度樣本進(jìn)行實(shí)時(shí)定量PCR反應(yīng),目標(biāo)基因與內(nèi)參照基因擴(kuò)增效率接近100%情況下,以內(nèi)參照基因β-actin基因作為標(biāo)準(zhǔn)進(jìn)行相對定量,結(jié)果采用ΔΔCT法分析,計(jì)算低密度脂蛋白受體(low density lipoprotein receptor,LDLR),3-羥基-3-甲基戊二酸單酰輔酶A 還原酶(HMG-CoA reductase,HMGCR)、清道夫受體B1(scavenger receptor class B1,SR-B1)、固醇調(diào)節(jié)元件結(jié)合因子2(sterol regulatory element-binding factor-2,SREBF2)等基因的相對表達(dá)水平。
1.6 統(tǒng)計(jì)學(xué)處理
2.1 低氧性肺動(dòng)脈高壓小鼠RVSP和RV/(LV+S)的變化
低氧小鼠組RVSP與RV/(LV+S)分別較常氧組高69.8%和50.7%(P<0.05,表1),提示低氧性肺動(dòng)脈高壓小鼠復(fù)制成功。
GroupRVSP(mmHg)RV/(LV+S)Normoxia23.2±8.40.229±0.052Hypoxia39.4±9.9?0.345±0.066?
RVSP: Right ventricular systolic pressure; RV/(LV+S): The weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S)
*P<0.05vsnormoxia
2.2 低氧性肺動(dòng)脈高壓小鼠血脂含量的變化
低氧組小鼠血漿中TC、LDL含量與常氧組之間無顯著差異(P>0.05);低氧組小鼠HDL含量、HDL/LDL比值較常氧組分別低17%和38%(P<0.05,表2)。
Tab. 2 Comparison of the concentrations of lipids in mice plasma between the two groups(±s,n=10)
GroupTC(mmol/L)LDL(mg/dl)HDL(mg/dl)HDL/LDLNormoxia2.20±0.4741.52±6.8131.24±3.750.83±0.21Hypoxia2.23±0.2148.45±5.6525.98±1.74?0.51±0.13?
TC: Total cholesterol; LDL: Low density lipoprotein; HDL: High density lipoprotein
*P<0.05vsnormoxia
2.3 低氧性肺動(dòng)脈高壓小鼠肝組織脂質(zhì)代謝相關(guān)基因表達(dá)的變化
低氧組小鼠肝組織中HMGCR、SREBF2基因表達(dá)與常氧組無顯著性差異(P>0.05);與常氧組比較,低氧組小鼠肝組織中LDLR、SR-B1基因表達(dá)分別下調(diào)41%、53%(P<0.05,表3)。
GroupHMGCRLDLRSR?B1SRBEF2Normoxia0.934±0.2581.064±0.3970.916±0.2470.893±0.208Hypoxia0.861±0.1960.623±0.199?0.429±0.072?0.774±0.144
HMGCR: HMG-CoA reductase; LDLR: Low density lipoprotein receptor; SR-B1: Scavenger receptor class B1; SREBF2: Sterol regulatory element-binding factor-2
*P<0.05vsnormoxia
2.4 相關(guān)性分析
RVSP與血漿中HDL/LDL比值以及肝組織中HMGCR,LDLR,SR-B1,SREBF2 mRNA表達(dá)的相關(guān)性分析表明:RVSP與HDL/LDL(r=-0.627,P=0.026)及LDLR(r=-0.757,P=0.006)、SR-B1(r=-0.934,P=0.001)基因表達(dá)呈顯著負(fù)相關(guān)(P<0.05,圖1),而與HMGCR(r=-0.32,P=0.168)、SREBF2(r=-0.38,P=0.122)基因表達(dá)無顯著相關(guān)性。
Fig. 1 Correlation analysis of RVSP and HDL/LDL, LDLR and SR-B1 between the two groups
臨床和動(dòng)物實(shí)驗(yàn)表明:肥胖、高脂血癥、胰島素抵抗與肺動(dòng)脈高壓、肺血管重塑的發(fā)生發(fā)展密切相關(guān)[6,7]。目前常在基因敲除小鼠水平探討脂質(zhì)代謝異常與肺動(dòng)脈高壓發(fā)生發(fā)展的關(guān)系,APN、PPARγ、apoE是常見的脂質(zhì)代謝相關(guān)基因,研究發(fā)現(xiàn)APN或PPARγ基因敲除小鼠更容易誘發(fā)肺血管重塑、肺動(dòng)脈高壓,而外源性APN可以直接抑制肺血管平滑肌細(xì)胞增殖,在低氧和炎癥誘導(dǎo)的肺動(dòng)脈高壓中具有抗炎和抗血管重塑的作用[4],PPARγ激動(dòng)劑可降低肺動(dòng)脈高壓和改善肺血管重塑等作用[5];另外,Allan Lawrie等人用高脂膳食喂養(yǎng)apoE基因敲除小鼠發(fā)現(xiàn)該小鼠右心室收縮壓顯著增高、肺血管重塑明顯[1],這些都提示脂質(zhì)代謝異常參與肺動(dòng)脈高壓的發(fā)生發(fā)展。但脂質(zhì)代謝相關(guān)基因敲除小鼠本身就存在脂質(zhì)代謝異常,高脂膳食本身亦可導(dǎo)致小鼠脂質(zhì)代謝異常,并不能真實(shí)反映脂質(zhì)代謝異常在低氧性肺動(dòng)脈高壓形成中的作用。
實(shí)驗(yàn)結(jié)果顯示:低氧小鼠組RVSP與RV/(LV+S)較常氧組顯著升高,提示低氧性肺動(dòng)脈高壓小鼠復(fù)制成功[8]。HDL被認(rèn)為是動(dòng)脈粥樣硬化的保護(hù)因素,血漿中HDL的含量與冠心病的發(fā)生呈負(fù)相關(guān),因?yàn)镠DL具有逆轉(zhuǎn)運(yùn)膽固醇、抗氧化、促纖溶、抗血栓等作用[9,10]。提示低氧性肺動(dòng)脈高壓小鼠血漿中脂質(zhì)含量發(fā)生變化,HDL/LDL比值下調(diào)可能是引發(fā)低氧性肺動(dòng)脈的因素之一。
血漿膽固醇的來源途徑主要有兩種:一是從食物中吸收的外源性膽固醇;另一種是肝臟中合成的內(nèi)源性膽固醇。HMGCR是體內(nèi)催化膽固醇內(nèi)源性合成的關(guān)鍵酶,是一些抗動(dòng)脈粥樣硬化藥物治療靶點(diǎn)[11]。SRECF2是一類核轉(zhuǎn)錄因子,主要參與調(diào)節(jié)HMGCR等基因的轉(zhuǎn)錄[12],在膽固醇的合成途徑中發(fā)揮重要作用。LDLR為一種膜鑲嵌式蛋白質(zhì),該受體介導(dǎo)和調(diào)控LDL的胞吞作用,是攝取和清除LDL的關(guān)鍵受體,上調(diào)LDLR基因表達(dá),可使血中LDL水平降低[13]。SR-B1是高密度脂蛋白受體,在肝臟中表達(dá)豐富,SR-B1介導(dǎo)HDL的膽固醇逆轉(zhuǎn)運(yùn),并且具有清除氧化型LDL(ox-LDL)的作用[14]。
低氧組SR-B1、LDLR基因表達(dá)下調(diào),提示膽固醇的清除減少,預(yù)示低氧肺動(dòng)脈高壓小鼠血漿LDL含量應(yīng)該是上升的,但實(shí)驗(yàn)結(jié)果卻顯示:低氧組小鼠血漿LDL含量與常氧組相比雖然有少量升高但無顯著性差異,這或許與低氧妨礙LDL的形成[15],或低氧誘導(dǎo)LDL氧化修飾為ox-LDL增加而LDL本身含量無明顯變化[16]等因素有關(guān)。有關(guān)低氧對機(jī)體內(nèi)LDL的形成、LDLR介導(dǎo)的膽固醇攝取與清除的影響及意義值得進(jìn)一步深入研究。
綜上所述,在低氧性肺動(dòng)脈高壓形成中小鼠體內(nèi)脂質(zhì)含量水平及脂質(zhì)代謝相關(guān)基因表達(dá)水平發(fā)生變化,提示脂質(zhì)代謝異??赡軈⑴c小鼠低氧性肺動(dòng)脈高壓的形成。
[1] Lawrie A, Hameed AG, Chamberlain J,etal. Paigen diet-fed apolipoprotein E knockout mice develop severe pulmonary hypertension in an interleukin-1-dependent manner [J].AmJPathol, 2011, 179(4): 1693-1705.
[2] Summer R, Fiack CA, Ikeda Y,etal. Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease [J].AmJPhysiolLungCellMolPhysiol, 2009, 297(3): L432-438.
[3] Hansmann G, Wagner RA, Schellong S,etal. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation [J].Circulation, 2007, 115(10): 1275-1284.
[4] Weng M, Raher MJ, Leyton P,etal. Adiponectin decreases pulmonary arterial remodeling in murine models of pulmonary hypertension [J].AmJRespirCellMolBiol, 2011, 45(2): 340-347.
[5] Nisbet RE, Bland JM, Kleinhenz DJ,etal. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model [J].AmJRespirCellMolBiol, 2010, 42(4): 482-490.
[6] Green DE, Sutliff RL, Hart CM. Is peroxisome proliferator-activated receptor gamma (PPARγ) a therapeutic target for the treatment of pulmonary hypertension [J]?PulmCirc, 2011, 1(1): 33-47.
[7] Zamanian RT, Hansmann G, Snook S,etal. Insulin resistance in pulmonary arterial hypertension [J].EurRespirJ, 2009, 33(2): 318-324.
[8] 李先偉, 杜 潔, 李元建. 降鈣素基因相關(guān)肽對低氧性肺動(dòng)脈高壓肺動(dòng)脈膠原沉積的影響[J]. 中國應(yīng)用生理學(xué)雜志, 2013, 29(2): 182-186.
[9] Rohatgi A, Khera A, Berry JD,etal. HDL cholesterol efflux capacity and incident cardiovascular events [J].NEnglJMed, 2014, 371(25): 2383-2393.
[10]丁 宇, 司全金. 重組人生長激素對老年男性慢性心力衰竭患者血脂代謝影響的研究[J]. 中國應(yīng)用生理學(xué)雜志, 2014, 30(3): 247-250.
[11]Peng P, Wang L, Yang X,etal. A preliminary study of the relationship between promoter methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart disease [J].PLoSOne, 2014, 9(8): e102265.
[12]Musso G, Cassader M, Bo S,etal. Sterol regulatory element-binding factor 2 (SREBF-2) predicts 7-year NAFLD incidence and severity of liver disease and lipoprotein and glucose dysmetabolism [J].Diabetes, 2013, 62(4):1109-1120.
[13]Martinelli N, Girelli D, Lunghi B,etal. Polymorphisms at LDLR locus may be associated with coronary artery disease through modulation of coagulation factor VIII activity and independently from lipid profile[J].Blood, 2010, 116(25):5688-5697.
[14]Gao M, Zhao D, Schouteden S,etal. Regulation of high-density lipoprotein on hematopoietic stem/progenitor cells in atherosclerosis requires scavenger receptor type BI expression[J].ArteriosclerThrombVascBiol, 2014, 34(9): 1900-1909.
[15]Douglas RM, Bowden K, Pattison J,etal. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice[J].JApplPhysiol(1985), 2013, 115(11): 1694-1704.
[16]Rydberg EK, Krettek A, Ullstr?m C,etal. Hypoxia increases LDL oxidation and expression of 15-lipoxygenase-2 in human macrophages [J].ArteriosclerThrombVascBiol, 2004, 24(11): 2040-2045.
Changes of lipid levels in mice with hypoxic pulmonary arterial hypertension
FAN Feng-yun, SHEN Wan-ting, ZHENG Qing-qing, GAO Yuan, HU Kai-yuan, FAN Xiao-fang, MAO Sun-zhong, GONG Yong-shengΔ
(Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou 325035, China)
Objective: To observe the changes of lipid levels in mice with pulmonary hypertension induced by hypoxia. Methods: The animal model of hypoxic pulmonary hypertension was established by exposing the mice to isobaric hypoxic chamber for 3 weeks (23 h/d, regular chow feed). Twenty male C57BL/6 mice were randomly divided into normoxia group and hypoxia group (n=10). The concentrations of total cholesterol, low density lipoprotein (LDL)and high density lipoprotein (HDL) in plasma were detected by Elisa method.The mRNA levels of HMG-CoA reductase (HMGCR), low density lipoprotein receptor (LDLR), scavenger receptor class B1 (SR-B1), and sterol regulatory element-binding factor-2 (SREBF2) in liver were measured by real-time PCR. Results: ① The right ventricular systolic pressure (RVSP) and the weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S) of hypoxia group were significantly higher than those of normoxia group (P<0.05).② The concentrations of HDL and HDL/LDL in plasma were significantly higher in hypoxia group, compared with normoxia group (P<0.05).③The mRNA levels of LDLR and SR-B1in liver were significantly down-regulated in hypoxia group (P<0.05).④RVSP were significantly negative correlated with HDL/LDL, the gene expression of LDLR and SR-B1 (P<0.05). Conclusion: Abnormal lipid metabolism participates in the pathological proceeding of pulmonary hypertension induced by hypoxia.
lipid metabolism; pulmonary hypertension; hypoxia; mice
浙江省自然基金(LY14H010005);浙江省大學(xué)生科技創(chuàng)新項(xiàng)目(2014R413029)
2015-06-23
2016-05-12
R363.2
A
1000-6834(2016)05-463-04
10.13459/j.cnki.cjap.2016.05.020
△【通訊作者】Tel: 0577-86699521; E-mail: fxbwzmc@126.com