陳炳佑,劉廣志,侍福梅
(聊城大學 生命科學學院,山東 聊城 252059)
微管參與的植物激素信號轉導研究進展
陳炳佑,劉廣志,侍福梅*
(聊城大學 生命科學學院,山東 聊城 252059)
微管骨架和植物激素都參與多個植物生長發(fā)育過程的調(diào)控和多種脅迫應答。以生長素、赤霉素、油菜素內(nèi)酯和脫落酸為代表,綜述了植物激素發(fā)揮生理功能的同時與微管骨架的交叉聯(lián)系,以期尋找參與微管骨架和植物激素對話互作的關鍵分子及其共性,為進一步完善植物激素信號網(wǎng)絡和微管骨架功能提供參考。
植物激素; 微管; 信號轉導; 周質(zhì)微管
微管(microtubule,MT)的基本組成單位是微管蛋白(tubulin)。其中,包括α微管蛋白和β微管蛋白。植物微管在漫長的進化過程中形成了4種不同的微管列陣形式,包括周質(zhì)微管、早前期帶、有絲分裂紡錘體和成膜體[1]。這些微管列陣調(diào)控細胞分裂和生長的方向。植物的周質(zhì)微管列陣對于植物形態(tài)建成和生長發(fā)育十分重要[2]。周質(zhì)微管列陣具有高度動態(tài)的組織特性,始終處于解聚和聚合的動態(tài)過程中,并在多種信號轉導過程中發(fā)揮功能[3-5],同時受到許多微管結合蛋白(microtubule-associated proteins,MAPs)的調(diào)控,其中植物的微管結合蛋白包括Csi1p(CSI1)、Spr2p(SPR2)、Microtubule-associated protein 70(MAP70)、WAVE-DAMPENED 2(WVD2/WDL)、Ribosome-inactivating protein(RIP/MIDD)、SPIRAL1(SPR1)、Microtubule-associated protein 18(MAP18/PCaP)、ENDOSPERM DEFECTIVE 1(EDE1)、renin 2 tandem duplication of Ren1(REN2) 和Centrosomal protein 190kD(MAP190) 等[2,6]。
植物激素和微管骨架共同參與植物生長發(fā)育和逆境脅迫應答過程。在生長素、赤霉素和油菜素內(nèi)酯調(diào)節(jié)植物細胞伸長生長的過程中,微管骨架應答上游的信號轉導發(fā)生周質(zhì)列陣的重排[7-9]。脫落酸作為重要的植物抗逆激素,通過調(diào)節(jié)保衛(wèi)細胞的微管動態(tài)變化,從而調(diào)控植物葉片的氣孔開度,使植物更好地應對來自外界的逆境變化[10]。有研究表明,在以上植物激素信號通路中,微管骨架是其中重要的參與者[10]。綜述了近年來微管骨架參與的植物激素信號轉導研究成果,以期尋找參與微管骨架和植物激素對話互作的關鍵分子及共性,為進一步完善植物激素信號網(wǎng)絡和微管骨架功能提供參考。
吲哚乙酸(IAA)是生長素(AUX)的主要化學成分。植物生長和發(fā)育的幼嫩部位為AUX在植物中的主要分布位置,而在其他成熟的器官或衰老的器官中分布很少[11-12]。AUX主要調(diào)控植株的頂端優(yōu)勢、根的向地生長、器官的形態(tài)建成、維管組織的分化和細胞的伸長等生理活動[13-15]。由4個亞基(Skp1、Cdc53、F-box和RBX1)組成的SCF泛素連接酶復合體,是AUX信號轉導途徑的關鍵蛋白[16]。當植物體內(nèi)的AUX含量減少時,轉錄因子ARF的活性被AUX和信號轉運抑制因子TPL蛋白抑制。當植物體內(nèi)AUX含量增加時,AUX和SCFTR1結合,使其泛素化后降解。此后,TPL蛋白脫離復合體,ARF轉錄因子恢復活性,整個信號通路重新暢通[17-18]。
微管和AUX共同參與植物遮光條件下的生長。植物在遮蔭條件下,莖和葉柄會快速伸長[19]。AUX主要的功能是調(diào)控植物的生長。周質(zhì)微管列陣的動態(tài)變化也影響細胞的定向伸長。研究發(fā)現(xiàn),AUX通過調(diào)控周質(zhì)微管列陣的排布而影響植物在遮蔭條件下的生長。其機制:AUX在調(diào)控細胞定向伸長的過程中不僅將細胞壁軟化,而且還通過周質(zhì)微管影響纖維素的沉積方向,從而誘導植物細胞的生長。但AUX并非直接作用于周質(zhì)微管,而是作用于微管調(diào)控蛋白,如ABP1、KATANIN 1以及一系列下游的原件如ROP6 GTPase和RIC1(ROP-interactive protein)等[20-24]。木葡聚糖內(nèi)轉糖苷酶(XTHs)也參與AUX在遮蔭條件下調(diào)控周質(zhì)微管列陣動態(tài)的變化。周質(zhì)微管通過調(diào)節(jié)細胞壁修飾蛋白的表達,影響AUX的分布,而AUX調(diào)節(jié)XTHs的表達,進而影響周質(zhì)微管列陣的排布,即AUX和周質(zhì)微管通過XTHs和細胞壁修飾蛋白共同調(diào)節(jié)葉柄伸長的過程[19]。此外,在早前期帶和成膜體中發(fā)現(xiàn)了AUX和其載體PIN2蛋白的積累,說明AUX參與調(diào)控這些過程[25],但具體機制目前還不清楚。生長素反應因子ARF8也參與調(diào)控擬南芥下胚軸和雄蕊的伸長,模型為光→光受體→ARF8→AUX→下胚軸和雄蕊的生長,而這些過程中微管都參與,但目前缺乏其參與調(diào)控的直接證據(jù)[26]。
赤霉素(GA)是一類環(huán)狀的雙萜類化合物的統(tǒng)稱。GA促進植物從營養(yǎng)生長向生殖生長的過渡。GA還影響植物種子萌發(fā)、花粉成熟和莖的生長等生長發(fā)育過程[27-28]。GA的信號轉導通路包括關鍵蛋白DELLA[29-30], 還有GA受體GID1[31]、F-box型蛋白GID2和SLY1 等主要的組成部分[32-33]。植物體內(nèi)沒有GA時,DELLA蛋白結合調(diào)控植物生長的轉錄因子,抑制植物生長。當植物體內(nèi)有GA時,GA受體GID1蛋白識別并結合GA,之后再結合DELLA蛋白形成復合體,特異的E3 連接酶復合物 SCFSLY1/GID2作用于復合物,使DELLA蛋白發(fā)生泛素化降解,解除靶基因的抑制,進一步促發(fā)植物的GA應答,表現(xiàn)促進生長作用。相反,沒有GA時不發(fā)生后面的一系列反應,DELLA不能降解,植物生長發(fā)育受阻[34-38]。
微管和GA共同參與調(diào)節(jié)植物的胚軸生長和花器官的發(fā)育。GA顯著誘導下胚軸軸向的伸長[8]。GA與在細胞核中的DELLA蛋白和前折疊素復合體相互作用調(diào)節(jié)微管走向[39]。在有GA的條件下,DELLA蛋白被分解,前折疊素復合體在細胞質(zhì)中行使功能。在沒有GA的條件下,前折疊素復合體則定位于細胞核中,并顯著抑制α/β微管蛋白二聚體的活性,從而影響微管列陣的排布[40]。類激酶蛋白BC12/GDD1有轉錄因子活性,通過調(diào)控GA合成調(diào)節(jié)細胞伸長;微管免疫共沉淀試驗進一步表明,在有ATP存在時,BC12/GDD1與微管結合, 表明GA信號和微管都位于BC12/GDD1的下游,存在潛在的互作關系[41]。向日葵的舌狀花發(fā)育過程中,決定花大小的主要因素是細胞的體積而非細胞數(shù)目。而周質(zhì)微管調(diào)控細胞的定向伸長和異向擴張[42]。研究發(fā)現(xiàn),GA信號類似光信號,誘導舌狀花細胞周質(zhì)微管出現(xiàn)明顯的垂直于伸長方向的列陣,進而促進了舌狀花細胞的伸長生長,表明GA通過影響微管列陣調(diào)節(jié)舌狀花細胞的生長過程[42-43]。另外,在非洲菊(Gerberahybrida)的舌狀花的發(fā)育中也發(fā)現(xiàn)GA和光信號參與調(diào)控周質(zhì)微管,影響細胞的伸長,當光和GA同時作用時舌狀花既有縱向伸長又有橫向擴展,而GA作用時只發(fā)生縱向伸長,不發(fā)生橫向擴展,進一步研究發(fā)現(xiàn)在微管抑制劑氨璜樂靈(oryzalin)作用下細胞縱向伸長明顯受到抑制,說明微管和GA共同參與調(diào)控非洲菊舌狀花的伸長生長[44]。
油菜素甾醇類化合物(BR)是一類甾醇類化合物的統(tǒng)稱[45]。其中,油菜素內(nèi)酯(BL)活性最強[46]。BR在植物的各個器官中都有分布,特別是在幼嫩的器官如芽、幼葉中含量較高[47-48]。BR參與多種植物生長發(fā)育的過程,如細胞的伸長[49]、種子萌發(fā)[50]、氣孔的開閉[51]、植物抗逆性的提高[52]、植物育性的調(diào)節(jié)[53-54]以及光形態(tài)的建成[9,55]等。BR的信號轉導過程中,受體激酶(BRI1)的作用十分關鍵[9],其位于細胞膜的表面。當不存在BR時,BR負調(diào)控蛋白BKI1與其結合,無法啟動下游反應。當存在BR時,BRI1感知并結合BR,啟動下游反應,調(diào)控植株生長[56-57]。
微管和BR都參與調(diào)節(jié)胚軸細胞的伸長。MDP40是微管去穩(wěn)定蛋白,正調(diào)節(jié)下胚軸細胞的伸長。BRI1是一個在BR信號通路中關鍵的轉錄因子,特異上調(diào)MDP40的表達。MDP40的表達使得BR缺失突變體de-etiolated-2幼苗下胚軸短的表型部分消除,更接近野生型的表型。然而,RNA干擾MDP40的轉基因突變體的細胞周質(zhì)微管對BR不敏感。表明在下胚軸生長過程中,MDP40是BR調(diào)控周質(zhì)微管列陣的關鍵調(diào)節(jié)因子[58-59]。此外,最近的研究表明,BR還參與調(diào)控有絲分裂的終止,但是否與微管相互作用有待進一步研究[60]。
脫落酸(ABA)是含有15個碳原子的倍半萜烯化合物,參與調(diào)節(jié)植物的抗逆性應答[61-62]和生長發(fā)育[63]。ABA信號轉導研究過程中發(fā)現(xiàn)了許多ABA的受體,其中目前研究較為詳細的2個受體是PYR/PYL/RCAR和ABAR/CHLH。在以PYR/PYL/RCAR為受體的ABA信號通路中,當植物體內(nèi)ABA不存在時,由于ABA受體PYR/PYL/RCAR的存在形式為二聚體,不能與蛋白磷酸激酶PP2Cs結合,植物生長發(fā)育正常。相反,當植物體內(nèi)存在ABA,ABA與PYR/PYL/RCAR結合,使其結合PP2Cs,進一步激活下游的信號流,抗逆基因表達[64-65],植物表現(xiàn)抗逆性生長。在以ABAR/CHLH為受體的ABA信號通路中,ABAR/CHLH與ABA結合,轉錄因子WRKY40從細胞核中轉移出來,影響其轉錄表達,解除ABI5、MYB2和ABI4等ABA下游因子的抑制,植物表現(xiàn)ABA應答[66]。
微管和ABA共同參與調(diào)控氣孔的開閉。目前已知鈣離子、細胞骨架和磷脂酸等參與調(diào)節(jié)氣孔開度。磷脂酶衍生出來的磷脂酸與ABA信號通路中下游的磷酸酶ABI1結合,抑制其活性[67-69]。野生型擬南芥中ABA誘導微管解聚,氣孔關閉,而磷脂酶突變體pldα1中這一過程被打斷。對野生型和突變體pldα1施加微管破壞藥物氨璜樂靈或者炔苯酰草胺(propyzamide),導致二者微管都解聚但是不影響ABA誘導的氣孔關閉。相反,對野生型和pldα1突變體施加微管穩(wěn)定藥物紫杉醇(paclitaxel) ,二者微管都解聚,并且抑制了ABA誘導的氣孔關閉。在pldα1突變體中,ABA誘導的細胞質(zhì)鈣離子濃度升高被部分抑制,外源鈣離子誘導的微管解聚和氣孔關閉也被抑制,說明ABA信號通路中磷脂酶PLDα1和磷脂酸調(diào)節(jié)微管動態(tài)變化和鈣離子濃度[10]。
除上述激素之外,乙烯(ETH)具有促進果實成熟的作用。有研究表明其在表皮毛的發(fā)育過程中參與調(diào)控微管骨架,但是具體的分子機制尚未明確[70-71]。NO與周質(zhì)微管存在互作,低濃度的NO2-Tyr處理下,發(fā)現(xiàn)在擬南芥根的伸長區(qū)微管呈現(xiàn)無序分布,并且伴隨著細胞的非極性化擴張[72]。此外,NO參與調(diào)節(jié)植物的紫外脅迫應答和大麗輪枝菌誘導的微管重排[73-74],這也進一步證明了NO和微管的相關性。
生長素、赤霉素和油菜素內(nèi)酯都有促進植物生長的作用,微管骨架都參與這些激素對植物的調(diào)節(jié)作用[19,39,58]。生長素通過生長素結合蛋白ABP1、KATANIN 1[20-21]、XTHs和細胞壁修飾蛋白[19]等作用于微管。赤霉素通過類激酶蛋白BC12/GDD1作用于微管[41]。油菜素內(nèi)酯通過影響微管去穩(wěn)定蛋白MDP40的表達作用于微管。下一步的研究重點將集中在繼續(xù)尋找參與微管與植物激素互作的潛在蛋白,分析激素對該類蛋白活性和表達的影響,篩選出目標蛋白,構建靶蛋白的缺失及過表達突變體,進一步分析與激素的關系。
目前對脫落酸的研究主要集中在脅迫應答和氣孔的開閉運動[67-69],而脫落酸在低濃度下也有促進植物生長的作用[62],與生長素、赤霉素和油菜素內(nèi)酯的功能類似。聊城大學生命科學學院侍福梅實驗室發(fā)現(xiàn)低濃度脫落酸與微管骨架在調(diào)節(jié)植物的生長發(fā)育中存在互作(待發(fā)表)。此外,除了氣孔運動、種子萌發(fā)、根生長及脅迫應答之外的生長過程中,成熟和衰老器官中不涉及到細胞定向生長的生理活動中是否有微管骨架的參與有待進一步研究。
除了傳統(tǒng)的植物激素外,一些其他的分子,如茉莉酮酸及其酯、水楊酸、獨腳金內(nèi)酯等[75-80],在調(diào)控植物的生長發(fā)育等生理活動中也具有重要的作用,它們與微管骨架潛在的互作關聯(lián)問題可以借鑒已知的研究線索展開調(diào)查,有望尋求突破。
隨著遺傳學和分子生物學的發(fā)展,大量模式植物突變體的構建也為研究激素與微管骨架之間的關系提供了良好的材料。對于微管骨架與植物激素的對話及潛在核心信號蛋白的研究有助于進一步完善植物激素的信號轉導網(wǎng)絡,進而為深入解析植物的生長發(fā)育調(diào)控提供參考。
[1] Wasteneys G O.Microtubule organization in the green kingdom:Chaos or self-order[J].Journal of Cell Science,2002,115(7):1345-1354.
[2] Hamada T.Microtubule organization and microtubule-associated proteins in plant cells[J].International Review of Cell and Molecular Biology,2014,312(1):1-52.
[3] Wymer C,Lloyd C.Dynamic microtubules:Implications for cell wall patterns[J].Trends in Plant Science,1996,1(7):222-228.
[4] Hashimoto T,Kato T.Cortical control of plant microtubules[J].Current Opinion in Plant Biology,2006,9(1):5-11.
[5] 黃善金,任海云.無微管穩(wěn)定劑條件下植物微管蛋白的體外聚合[J].科學通報,2000,45(11):1158-1163.
[6] Bashline L,Lei L,Li S,etal.Cell wall,cytoskeleton,and cell expansion in higher plants[J].Molecular Plant,2014,7(4):586-600.
[7] Ruan Y,Wasteneys G O.Clasp:A microtubule-based integrator of the hormone-mediated transitions from cell division to elongation[J].Current Opinion in Plant Biology,2014,22(1):149-158.
[8] Vineyard L,Elliott A,Dhingra S,etal.Progressive transverse microtubule array organization in hormone-inducedArabidopsishypocotyl cells[J].Plant Cell,2013,25(2):662-676.
[9] Li J,Jin H.Regulation of brassinosteroid signaling[J].Trends in Plant Science,2007,12(1):37-41.
[10] Jiang Y,Wu K,Lin F,etal.Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure inArabidopsis[J].Planta,2014,239(3):565-575.
[11] Zhang C,Raikhel N V,Hicks G R.Clasping microtubules and auxin transport[J].Developmental Cell,2013,24(6):569-571.
[12] 陳海生.外源IAA對雜交稻生育后期葉片生理特性的影響[J].河南農(nóng)業(yè)科學,2012,41(5):31-32.
[13] Wright R C,Nemhauser J L.New tangles in the auxin signaling web[J].F1000prime Reports,2015,7(1):19-27.
[14] Zhang Y,Behrens I V,Zimmermann R,etal.LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the AUX/IAA gene rootless with undetectable meristem 1[J].Journal of Experimental Botany,2015,66(13):3855-3863.
[15] He X J,Mu R L,Cao W H,etal.AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J].The Plant Journal,2005,44(6):903-916.
[16] Kong H,Leebens-Mack J,Ni W,etal.Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals:Functional and evolutionary implications[J].Molecular Biology and Evolution,2004,21(1):117-128.
[17] Gray W M,Kepinski S,Rouse D,etal.Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins[J].Nature,2001,414(6861):271-276.
[18] Kieffer M,Neve J,Kepinski S.Defining auxin response contexts in plant development[J].Current Opinion in Plant Biology,2010,13(1):12-20.
[19] Sasidharan R,Keuskamp D H,Kooke R,etal.Interactions between auxin,microtubules and XTHs mediate green shade-induced petiole elongation inArabidopsis[J].PLoS One,2014,9(3):e90587.
[20] Sassi M,Ali O,Boudon F,etal.An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem inArabidopsis[J].Current Biology,2014,24(19):2335-2342.
[21] Chen X,Grandont L,Li H,etal.Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules[J].Nature,2014,516(7529):90-93.
[22] Miyawaki K N,Yang Z.Extracellular signals and receptor-like kinases regulating ROP GTPases in plants[J].Frontiers in Plant Science,2014,5(5):449.
[23] Lin D,Cao L,Zhou Z,etal.Rho GTPase signaling activates microtubule severing to promote microtubule ordering inArabidopsis[J].Current Biology,2013,23(4):290-297.
[24] 萬磊.水稻劍蛋白亞基OsKTN80a參與微管動態(tài)的功能分析[D].武漢:武漢大學,2014.
[25] Zabka A,Trzaskoma P,Winnicki K,etal.The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems ofAlliumcepa[J].Journal of Plant Physiology,2015,174(1):62-70.
[26] Tian C,Muto H,Higuchi K,etal.Disruption and overexpression ofauxinresponsefactor8 gene ofArabidopsisaffect hypocotyl elongation and root growth habit,indicating its possible involvement in auxin homeostasis in light condition[J].The Plant Journal,2004,40(3):333-343.
[27] Sun T P,Gubler F.Molecular mechanism of gibberellin signaling in plants[J].Annu Rev Plant Biol,2004,55(4):197-223.
[28] Fleet C M,Sun T.A dellacate balance:The role of gibberellin in plant morphogenesis[J].Current Opinion in Plant Biology,2005,8(1):77-85.
[29] Peng J,Carol P,Richards D E,etal.TheArabidopsisGAI gene defines a signaling pathway that negatively regulates gibberellin responses[J].Genes & Development,1997,11(23):3194-3205.
[30] Silverstone A L,Ciampaglio C N,Sun T.TheArabidopsisRGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J].The Plant Cell Online,1998,10(2):155-169.
[31] Ueguchi-Tanaka M,Ashikari M,Nakajima M,etal.GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J].Nature,2005,437(7059):693-698.
[32] Sasaki A,Itoh H,Gomi K,etal.Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant[J].Science,2003,299(5614):1896-1898.
[33] McGinnis K M,Thomas S G,Soule J D,etal.TheArabidopsisSLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J].The Plant Cell Online,2003,15(5):1120-1130.
[34] Griffiths J,Murase K,Rieu I,etal.Genetic characterization and functional analysis of the GID1 gibberellin receptors inArabidopsis[J].The Plant Cell Online,2006,18(12):3399-3414.
[35] Willige B C,Ghosh S,Nill C,etal.The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor ofArabidopsis[J].The Plant Cell Online,2007,19(4):1209-1220.
[36] Dill A,Thomas S G,Hu J,etal.TheArabidopsisF-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation[J].The Plant Cell Online,2004,16(6):1392-1405.
[37] Fu X,Richards D E,Fleck B,etal.TheArabidopsismutant sleepy1(gar2-1) protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates[J].The Plant Cell Online,2004,16(6):1406-1418.
[38] Sun T.Gibberellin-Gid1-Della:A pivotal regulatory module for plant growth and development[J].Plant Physiology,2010,154(2):567-570.
[39] Hartl F U,Hayer-Hartl M.Molecular chaperones in the cytosol:From nascent chain to folded protein[J].Science,2002,295(5561):1852-1858.
[40] Locascio A,Blázquez M A,Alabadí D.Dynamic regulation of cortical microtubule organization through Prefoldin-DELLA interaction[J].Current Biology,2013,23(9):804-809.
[41] Li J,Jiang J,Qian Q,etal.Mutation of rice BC12/GDD1,which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter,leads to dwarfism with impaired cell elongation[J].Plant Cell,2011,23(2):628-640.
[42] Zhang L,Li L,Wu J,etal.Cell expansion and microtubule behavior in ray floret petals ofGerberahybrida:Responses to light and gibberellic acid[J].Photochemical & Photobiological Sciences,2012,11(2):279-288.
[43] Sambade A,Pratap A,Buschmann H,etal.The influence of light on microtubule dynamics and alignment in theArabidopsishypocotyl[J].Plant Cell,2012,24(1):192-201.
[44] 孟祥春.非洲菊花生長,花色素苷積累及CHS、DFR基因表達的光調(diào)控研究[D].廣州:華南師范大學,2004.
[45] Saleh A,Lumbreras V,Lopez C,etal.Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses[J].The Plant Journal,2006,46(5):747-757.
[46] Altmann T.Recent advances in brassinosteroid molecular genetics[J].Current Opinion in Plant Biology,1998,1(5):378-383.
[47] Clouse S D,Sasse J M.Brassinosteroids:Essential regulators of plant growth and development[J].Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:427-451.
[48] Shimada Y,Goda H,Nakamura A,etal.Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids inArabidopsis[J].Plant Physiology,2003,131(1):287-297.
[49] Zurek D M,Clouse S D.Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (GlycinemaxL.) epicotyls[J].Plant Physiology,1994,104(1):161-170.
[50] Ullah H,Chen J,Wang S,etal.Role of a heterotrimeric G protein in regulation ofArabidopsisseed germination[J].Plant Physiology,2002,129(2):897-907.
[51] Ephritikhine G,Fellner M,Vannini C,etal.Thesax1 dwarf mutant ofArabidopsisthalianashows altered sensitivity of growth responses to abscisic acid,auxin,gibberellins and ethylene and is partially rescued by exogenous brassinosteroid[J].The Plant Journal,1999,18(3):303-314.
[52] Vardhini B V,Anuradha S,Sujatha E,etal.Role of brassinosteroids in alleviating various abiotic and biotic stresses—A review[J].Plant Stress,2010,4:55-61.
[53] Mori M,Nomura T,Ooka H,etal.Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis[J].Plant Physiol,2002,130(3):1152-1161.
[54] 錢文靜,劉靜,宋丹,等.水稻油菜素內(nèi)酯相關基因及其功能研究進展[J].河南農(nóng)業(yè)科學,2013,42(9):1-5.
[55] Nagata N,Min Y,Nakano T,etal.Treatment of dark-grownArabidopsisthalianawith a brassinosteroid-biosynthesis inhibitor,brassinazole,induces some characteristics of light-grown plants[J].Planta,2000,211(6):781-790.
[56] Wang X,Chory J.Brassinosteroids regulate dissociation of BKI1,a negative regulator of BRI1 signaling,from the plasma membrane[J].Science,2006,313(5790):1118-1122.
[57] 鄭潔,王磊.油菜素內(nèi)酯在植物生長發(fā)育中的作用機制研究進展[J].中國農(nóng)業(yè)科技導報,2014,16(1):52-58.
[58] Wang X,Zhang J,Yuan M,etal.ArabidopsisMICROTUBULE DESTABILIZING PROTEIN40 is involved in brassinosteroid regulation of hypocotyl elongation[J].Plant Cell,2012,24(10):4012-4025.
[59] 張瑾.BRI1 受體激酶磷酸化 MDP40 參與擬南芥下胚軸生長調(diào)控的分子機理[D].北京:中國農(nóng)業(yè)大學,2014.
[60] Zhiponova M K,Vanhoutte I,Boudolf V,etal.Brassinosteroid production and signaling differentially control cell division and expansion in the leaf[J].New Phytologist,2013,197(2):490-502.
[61] Danquah A,de Zelicourt A,Colcombet J,etal.The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J].Biotechnology Advances,2014,32(1):40-52.
[62] Finkelstein R R,Gampala S S,Rock C D.Abscisic acid signaling in seeds and seedlings[J].The Plant Cell Online,2002,14(1):15-45.
[63] Yoshida T,Mogami J,Yamaguchi-Shinozaki K.ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J].Current Opinion in Plant Biology,2014,21(1):133-139.
[64] Fujita Y,Nakashima K,Yoshida T,etal.Three SNRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress inArabidopsis[J].Plant and Cell Physiology,2009,50(12):2123-2132.
[65] Sirichandra C,Davanture M,Turk B E,etal.TheArabidopsisABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover[J].PLoS One,2010,5(11):e13935.
[66] Shang Y,Yan L,Liu Z,etal.The Mg-chelatase H subunit ofArabidopsisantagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J].The Plant Cell Online,2010,22(6):1909-1935.
[67] Zhang W H,Qin C B,Zhao J,etal.Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling[J].Proc Natl Acad Sci USA,2004,101(25):9508-9513.
[68] Gardiner J C,Harper A J,Weerakoon A,etal.A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane[J].Plant Cell,2001,13(9):2143-2158.
[69] Dhonukshe P,Laxalt A M,Goedhart J,etal.Phospholipase D activation correlates with microtubule reorganization in living plant cells[J].Plant Cell,2003,15(11):2666-2679.
[70] Plett J M,Mathur J,Regan S.Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly inArabidopsisthaliana[J].Journal of Experimental Botany,2009,60(13):3923-3933.
[71] Bouquin T,Mattsson O,Naested H,etal.TheArabidopsislue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth[J].J Cell Sci,2003,116(5):791-801.
[72] Lipka E,Muller S.Nitrosative stress triggers microtubule reorganization inArabidopsisthaliana[J].Journal of Experimental Botany,2014,65(15):4177-4189.
[73] Krasylenko Y A,Yemets A I,Sheremet Y A,etal.Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules inArabidopsis[J].Physiologia Plantarum,2012,145(4):505-515.
[74] Shi F M,Yao L L,Pei B L,etal.Cortical microtubule as a sensor and target of nitric oxide signal during the defence responses to verticillium dahliae toxins inArabidopsis[J].Plant,Cell & Environment,2009,32(4):428-438.
[75] Umehara M,Hanada A,Yoshida S,etal.Inhibition of shoot branching by new terpenoid plant hormones[J].Nature,2008,455(7210):195-200.
[76] Gomez-Roldan V,Fermas S,Brewer P B,etal.Strigolactone inhibition of shoot branching[J].Nature,2008,455(7210):189-194.
[77] Loake G,Grant M.Salicylic acid in plant defence—The players and protagonists[J].Current Opinion in Plant Biology,2007,10(5):466-472.
[78] Grün S,Lindermayr C,Sell S,etal.Nitric oxide and gene regulation in plants[J].Journal of Experimental Botany,2006,57(3):507-516.
[79] Vert G,Nemhauser J L,Geldner N,etal.Molecular mechanisms of steroid hormone signaling in plants[J].Annu Rev Cell Dev Biol,2005,21(1):177-201.
[80] Browse J.Jasmonate:An oxylipin signal with many roles in plants[J].Vitamins & Hormones,2005,72(1):431-456.
Progresses on Involvement of Microtubule in Plant Hormone Signal Transduction
CHEN Bingyou,LIU Guangzhi,SHI Fumei*
(School of Life Science,Liaocheng University,Liaocheng 252059,China)
Both microtubule and phytohormone are reported to involve many important growth and development regulation and kinds of stresses response in plants.Here we summarized the potential link between microtubules and vital hormones including auxin(AUX),gibberellin(GA),brassinosteroid(BR) and abscisic acid(ABA),so as to screen key components,especially the common characters,concerning microtubule functions as well as the hormone signal transduction,and further provide references for improving the hormones network and microtubule functions.
phytohormone; microtubule; signal transduction; cortical microtubule
2015-07-13
國家自然科學基金項目(31240035);山東省自然科學基金項目 (ZR2010CQ002)
陳炳佑(1991-),男,內(nèi)蒙古包頭人,在讀碩士研究生,研究方向:細胞生物學。
*通訊作者:侍福梅(1978-),女,遼寧沈陽人,副教授,博士,主要從事植物分子細胞生物學研究。 E-mail: shifumei@lcu.edu.cn
Q257
A
1004-3268(2016)02-0001-06