周 瑞 趙生國(guó) 劉立山 王 川 吳建平*
(1.甘肅農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,蘭州730070;2.甘肅農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,蘭州730070)
飼糧中燕麥干草含量對(duì)綿羊瘤胃液pH及微生物區(qū)系的影響
周瑞1趙生國(guó)1劉立山1王川2吳建平1*
(1.甘肅農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,蘭州730070;2.甘肅農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,蘭州730070)
摘要:本試驗(yàn)旨在研究飼糧燕麥干草含量對(duì)綿羊瘤胃液pH及微生物區(qū)系的影響。選取9只體況和體重[(70.32±2.14) kg]相近、裝有永久性瘺管的德國(guó)美利奴與蒙古羊雜種公羊,采用3×3拉丁方設(shè)計(jì),隨機(jī)分為3組,每組3只,各組分別采用全株玉米青貯、全株玉米青貯+燕麥干草(1∶1)(混合組)、燕麥干草為粗飼料。飼糧精粗比34.50∶65.50。進(jìn)行3期飼養(yǎng)試驗(yàn),每期20 d,15 d預(yù)試期,5 d采樣期。采集飼喂前(0 h)和飼喂后1、3、5和7 h的瘤胃液,測(cè)定pH,采用實(shí)時(shí)定量PCR方法測(cè)定微生物相對(duì)含量。結(jié)果表明:1)全株玉米青貯組的瘤胃液pH在1、5 h均顯著低于燕麥干草組(P<0.05),在3 h極顯著低于混合組(P<0.01);2)混合組和燕麥干草組瘤胃液真菌的相對(duì)含量在0 h均極顯著高于全株玉米青貯組(P<0.01),燕麥干草組在5 h真菌相對(duì)含量顯著高于全株玉米青貯組(P<0.05);3)混合組原蟲(chóng)的相對(duì)含量在1、5 h顯著低于全株玉米青貯組(P<0.05);4)飼喂后5 h,混合組和燕麥干草組的纖維分解菌相對(duì)含量均較高,其中燕麥干草組黃色瘤胃球菌相對(duì)含量顯著高于全株玉米青貯組(P<0.05),白色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌的相對(duì)含量極顯著高于全株玉米青貯組(P<0.01)。綜上所述,在精粗比為34.50∶65.50的飼糧中采用全株玉米青貯+燕麥干草(1∶1)的粗飼料,有利于維持綿羊瘤胃內(nèi)環(huán)境的穩(wěn)態(tài)及瘤胃微生物的生長(zhǎng),白色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌為優(yōu)勢(shì)菌。
關(guān)鍵詞:綿羊;粗飼料;瘤胃;微生物區(qū)系;實(shí)時(shí)定量PCR
反芻動(dòng)物可以消化利用粗飼料,是由于其瘤胃內(nèi)棲息著大量的微生物,這些微生物包括細(xì)菌、原蟲(chóng)、古菌和真菌[1]。這些微生物可以將植物纖維轉(zhuǎn)化為易消化的化合物,然后被宿主進(jìn)一步吸收利用[2]。經(jīng)過(guò)長(zhǎng)期的選擇和進(jìn)化,微生物與宿主間已經(jīng)形成了相互制約相互依賴的關(guān)系,這種關(guān)系對(duì)于維持反芻動(dòng)物健康、提高生產(chǎn)性能等起到至關(guān)重要的作用[3-5]。其中瘤胃細(xì)菌起著重要的作用[6],種類(lèi)(50多個(gè)種屬)和數(shù)量(1010~1011個(gè)/mL)也最多[7]。目前,白色瘤胃球菌(Ruminococcusalbus,R.albus)、黃色瘤胃球菌(Ruminococcusflavefaciens,R.flavefaciens)和產(chǎn)琥珀酸絲狀桿菌(Fibrobactersuccinogenes,F.succinogenes)是研究飼糧纖維降解過(guò)程中研究最多的菌,也是被公認(rèn)的瘤胃三大優(yōu)勢(shì)纖維分解菌[8]。研究表明絕大部分的瘤胃厭氧真菌都能分解纖維素,都具有高活性的降解植物細(xì)胞壁的纖維素酶、木聚糖酶、果膠酶和酯酶[9]。原蟲(chóng)約占到瘤胃內(nèi)容物總生物量的1/2[10],部分纖毛原蟲(chóng)在消化纖維物質(zhì)的同時(shí)還可以使甲烷的產(chǎn)量增加[11]。大量研究表明,瘤胃微生物的組成及豐度受很多因素的影響,如動(dòng)物個(gè)體差異[12]、精粗比[13]和飼糧組成,且飼糧因素最為關(guān)鍵[14-15]。目前,國(guó)內(nèi)已經(jīng)普遍將玉米青貯和燕麥干草作為反芻動(dòng)物飼糧中粗纖維的主要來(lái)源[16],但是其在瘤胃內(nèi)的消化機(jī)理及對(duì)微生物區(qū)系的影響研究報(bào)道較少。本試驗(yàn)通過(guò)給綿羊飼喂不同燕麥干草含量的粗飼料,采用實(shí)時(shí)定量PCR技術(shù)對(duì)瘤胃中真菌、原蟲(chóng)和3種纖維分解菌進(jìn)行定量研究,為進(jìn)一步研究飼糧結(jié)構(gòu)對(duì)瘤胃微生物區(qū)系的影響及提高綿羊?qū)Υ诛暳侠寐侍峁├碚撘罁?jù)。
1材料與方法
1.1試驗(yàn)設(shè)計(jì)及飼養(yǎng)管理
選取9只體況和體重[(70.32±2.14) kg]相近,裝有永久性瘺管的德國(guó)美利奴與蒙古羊雜種公羊?yàn)樵囼?yàn)動(dòng)物。粗飼料為全株玉米青貯和燕麥干草,燕麥干草由鍘草機(jī)鍘成3~5 cm長(zhǎng),精飼料由玉米、棉籽粕、菜籽粕、預(yù)混料等組成。
采用3×3拉丁方設(shè)計(jì),9只羊隨機(jī)分為3組,每組3只,各組分別采用全株玉米青貯、全株玉米青貯+燕麥干草(1∶1)(混合組)、燕麥干草為粗飼料。飼糧精粗比34.50∶65.50。試驗(yàn)飼糧組成及營(yíng)養(yǎng)水平見(jiàn)表1。進(jìn)行3期飼養(yǎng)試驗(yàn),每期20 d,15 d預(yù)試期,5 d采樣期。
試驗(yàn)羊單欄飼養(yǎng),每天分別于08:00和18:00分2次等量飼喂,自由飲水。
表1 試驗(yàn)飼糧組成及營(yíng)養(yǎng)水平(干物質(zhì)基礎(chǔ))
1)預(yù)混料為每千克飼糧提供 The premix provided the following per kg of diets:VA 220 000 IU,VD372 000 IU,VE 2 000 IU,D-生物素D-biotin 40 mg,煙酰胺 nicotinic acid amide 2 000 mg,Mn (as manganese sulfate) 710 mg,Zn (as zinc sulfate) 2 005 mg,F(xiàn)e (as ferrous sulfate) 830 mg,Cu (as copper sulfate) 680 mg,Co (as Cobalt sulfate) 12 mg。
2)實(shí)測(cè)值 Measured values。
1.2樣品采集
分別于每期試驗(yàn)最后1 d飼喂前(0 h)、飼喂后1、3、5和7 h采集瘤胃液,立即用HI98103型筆式酸度計(jì)(北京泰亞賽福有限公司)測(cè)定瘤胃液pH,經(jīng)4層滅菌紗布過(guò)濾,濾液裝于經(jīng)高壓滅菌的采樣管內(nèi),-70 ℃保存。
1.3引物設(shè)計(jì)與合成
根據(jù)GenBank上白色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌的16S rRNA序列,真菌、原蟲(chóng)的18S rRNA序列,利用Primer Premier 3.0(http://bioinfo.ut.ee/primer3-0.4.0/primer3/)分別設(shè)計(jì)特異性引物,結(jié)果見(jiàn)表2。引物由上海生物工程有限公司合成。
表2 瘤胃微生物實(shí)時(shí)定量PCR的引物序列
*:細(xì)菌16S rDNA為管家基因,引物參考Muyzer等[17];**:黃色瘤胃球菌引物參考王海榮[18]。
*: bacterial 16S rDNA was the reference gene, and the primer was cited from Muyzer, et al[17]; **: the primer ofR.flavefacienswas cited from Wang[18].
1.4瘤胃微生物總DNA的提取與樣品測(cè)定
瘤胃微生物總DNA的提取利用天根生化科技(北京)有限公司糞樣DNA提取試劑盒(DP328)進(jìn)行。瘤胃微生物定量采用實(shí)時(shí)定量PCR比較閾值法,目的菌相對(duì)含量計(jì)算采用2-△△Ct法。PCR反應(yīng)體系及反應(yīng)參數(shù)參照Roche試劑盒(Gat.No.06402712001)說(shuō)明書(shū)進(jìn)行。反應(yīng)體系(20 μL)為:Master Mix 10 μL,模板2 μL(20 ng),上、下游引物各0.6 μL,ddH2O 6.8 μL。反應(yīng)參數(shù)為:95 ℃預(yù)變性10 min;95 ℃變性10 s,60 ℃退火10 s,72 ℃延伸15 s,40個(gè)循環(huán)。在延伸期收集熒光信號(hào)。
1.5數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)用Excel 2010建立數(shù)據(jù)庫(kù),通過(guò)SPSS 19.0軟件中的單因素方差分析對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和顯著性檢驗(yàn),運(yùn)用LSD法進(jìn)行多重比較,結(jié)果用平均值±標(biāo)準(zhǔn)誤表示,P<0.05為差異顯著,P<0.01為差異極顯著。
2結(jié)果
2.1飼糧中燕麥干草含量對(duì)綿羊瘤胃液pH的影響
由表3可知,3組瘤胃液pH隨時(shí)間的推移都呈先降低再升高的趨勢(shì),且晨飼前(0 h)3組瘤胃液pH都最高,晨飼后開(kāi)始下降,3 h下降至最低后開(kāi)始上升。晨飼前全株玉米青貯組瘤胃液pH最高,且顯著高于燕麥干草組(P<0.05)。飼喂后1和5 h,全株玉米青貯組顯著低于燕麥干草組(P<0.05),且飼喂后3 h全株玉米青貯組極顯著低于混合組(P<0.01)。
2.2飼糧中燕麥干草含量對(duì)綿羊瘤胃液真菌、原蟲(chóng)及纖維分解菌相對(duì)含量的影響
由表4可知,以全株玉米青貯組作為為對(duì)照分析燕麥干草含量對(duì)綿羊瘤胃液真菌相對(duì)含量的影響,混合組、燕麥干草組真菌相對(duì)含量隨時(shí)間的變化有所不同。混合組、燕麥干草組均在0 h真菌的相對(duì)含量最高,飼喂后3 h降至最低。晨飼前混合組和燕麥干草組的真菌相對(duì)含量極顯著高于全株玉米青貯組(P<0.01),喂后1 h這2組真菌相對(duì)含量下降,混合組顯著低于全株玉米青貯組(P<0.05)。喂后3 h混合組和燕麥干草組分別極顯著(P<0.01)、顯著(P<0.05)低于全株玉米青貯組。喂后5 h燕麥干草組真菌相對(duì)含量顯著高于全株玉米青貯組(P<0.05)。喂后7 h燕麥干草組、混合組與全株玉米青貯組差異不顯著(P>0.05)。
表3 飼糧中燕麥干草含量對(duì)綿羊瘤液pH的影響
同行數(shù)據(jù)肩標(biāo)無(wú)字母或相同字母表示差異不顯著(P>0.05),不同小寫(xiě)字母表示差異顯著(P<0.05),不同大寫(xiě)字母表示差異極顯著(P>0.01)。下表同。
In the same row, values with no letter or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05), and with different capital letter superscripts mean significant difference (P>0.01). The same as below.
表4 飼糧中燕麥干草含量對(duì)綿羊瘤胃液真菌相對(duì)含量的影響
由表5可知,以全株玉米青貯組作為對(duì)照分析燕麥干草含量對(duì)綿羊瘤胃液原蟲(chóng)相對(duì)含量的影響,隨時(shí)間的延長(zhǎng)瘤胃液原蟲(chóng)的相對(duì)含量變化趨勢(shì)不同,但混合組和燕麥干草組原蟲(chóng)相對(duì)含量都在飼喂后3 h最高?;旌辖M在飼喂后1和5 h顯著
低于青貯組(P<0.05)。而燕麥干草組原蟲(chóng)相對(duì)含量在喂后0和3 h分別等于、高于全株玉米青貯組外,其他時(shí)間點(diǎn)均低于全株玉米青貯組,且7 h降至最低。
表5 飼糧中燕麥干草含量對(duì)綿羊瘤胃液原蟲(chóng)相對(duì)含量的影響
由表6可知,以全株玉米青貯組作為對(duì)照分析燕麥干草含量對(duì)綿羊瘤胃液黃色瘤胃球菌相對(duì)含量的影響,隨時(shí)間的延長(zhǎng)瘤胃液黃色瘤胃球菌的相對(duì)含量呈降低升高再降低的趨勢(shì)。燕麥干草組在喂后1h極顯著低于全株玉米青貯組(P<0.01),喂后3和7 h顯著或極顯著低于其他2組(P<0.05或P<0.01)。喂后5 h混合組和燕麥干草組黃色瘤胃球菌相對(duì)含量均高于全株玉米青貯組,且燕麥干草組顯著高于其他2組(P<0.05)。
表6 飼糧中燕麥干草含量對(duì)綿羊瘤胃液黃色瘤胃球菌相對(duì)含量的影響
由表7可知,以全株玉米青貯組作為對(duì)照分析燕麥干草含量對(duì)綿羊瘤胃液白色瘤胃球菌相對(duì)含量的影響,混合組和燕麥干草組白色瘤胃球菌相對(duì)含量在0~7 h均高于全株玉米青貯組,且隨時(shí)間延長(zhǎng)呈先降低后升高再降低的趨勢(shì)。除喂后1 h混合組和燕麥干草組顯著高于全株玉米青貯組(P<0.05)外,其他時(shí)間均極顯著高于全株玉米青貯組(P<0.01)。而且,喂后5和7 h燕麥干草組分別顯著(P<0.05)、極顯著(P<0.01)高于混合組。
表7 飼糧中燕麥干草含量對(duì)綿羊瘤胃液白色瘤胃球菌相對(duì)含量的影響
由表8可知,以全株玉米青貯組作為對(duì)照分析燕麥干草含量對(duì)綿羊瘤胃液產(chǎn)琥珀酸絲狀桿菌相對(duì)含量的影響,隨時(shí)間延長(zhǎng)產(chǎn)琥珀酸絲狀桿菌的相對(duì)含量變化不一致。混合組在1 h極顯著高于全株玉米青貯組和燕麥干草組(P<0.01)。全株玉米青貯組在5 h極顯著低于混合組和燕麥干草組(P<0.01)?;旌辖M在5 h顯著高于燕麥干草組(P<0.05)。燕麥干草組在7 h時(shí)顯著高于混合組(P<0.05)。
3討論
3.1飼糧中燕麥干草含量對(duì)瘤胃液pH的影響
瘤胃液pH是綜合反映反芻動(dòng)物瘤胃發(fā)酵水平和內(nèi)環(huán)境的重要指標(biāo),可以通過(guò)測(cè)定瘤胃液pH評(píng)定瘤胃發(fā)酵[19]。通常瘤胃液pH維持在6.0~7.0的范圍內(nèi)[20]。本試驗(yàn)中,瘤胃液pH維持在5.8~6.7之間,3組瘤胃液pH隨時(shí)間的延長(zhǎng)均呈先降低后升高的變化趨勢(shì),0 h pH最高,飼喂后逐漸下降至3 h pH達(dá)到最低,該結(jié)果與其他研究結(jié)果基本一致。王洪亮等[21]研究顯示,在對(duì)肉牛飼喂不同粗飼料后,各組瘤胃液pH均降低,且在2~4 h降至最低,采食后8~10 h又回升至采食前水平,但組間pH無(wú)顯著差異。郭勇慶等[22]研究表明,瘤胃發(fā)酵生理過(guò)程的最適pH各不相同,消化纖維素時(shí)pH最適范圍為6.0~6.8,合成蛋白質(zhì)時(shí)pH的最適范圍為5.8~7.4,產(chǎn)生揮發(fā)性脂肪酸(VFA)時(shí)pH最適范圍為4.2~6.6,氨產(chǎn)生最適pH為6.2。瘤胃液pH是食糜中VFA與唾液中緩沖液相互作用以及瘤胃上皮對(duì)VFA吸收及隨食糜流出等因素綜合作用的結(jié)果[24]。本試驗(yàn)中,全株玉米青貯組瘤胃液pH在1~3 h內(nèi)略低于6.0,這可能是由于瘤胃微生物消化分解飼糧中碳水化合物產(chǎn)生大量了VFA所致[24]。隨著飼糧被消化,唾液等緩沖性物質(zhì)的增加,使得瘤胃液pH開(kāi)始緩慢回升。3組瘤胃液pH差異不顯著,說(shuō)明精料水平在30%~50%時(shí)對(duì)瘤胃液pH影響較小[25-26]。但是,混合組和燕麥干草組的瘤胃液pH高于全株玉米青貯組,可能是由于燕麥干草的結(jié)構(gòu)性碳水化合物含量高于全株玉米青貯,適口性較低,采食速度慢,導(dǎo)致其在瘤胃內(nèi)降解率、外排速度低,滯留時(shí)間長(zhǎng)[24]。
表8 飼糧中燕麥干草含量對(duì)綿羊瘤胃液產(chǎn)琥珀酸絲狀桿菌相對(duì)含量的影響
3.2飼糧中燕麥干草含量對(duì)綿羊瘤胃液真菌、原蟲(chóng)及纖維分解菌相對(duì)含量的影響
本試驗(yàn)中,混合組和燕麥干草組瘤胃液真菌相對(duì)含量在0 h極顯著高于全株玉米青貯組,飼喂后0~3 h隨著3種瘤胃液細(xì)菌相對(duì)含量的增加,真菌的含量急劇下降。導(dǎo)致此現(xiàn)象出現(xiàn)的原因可能是真菌更偏向于利用飼糧中的木質(zhì)素而非纖維素類(lèi)物質(zhì)[27]。同時(shí),由于其在瘤胃總微生物所占比例較低,所以對(duì)纖維降解的總體貢獻(xiàn)要小于瘤胃細(xì)菌[28]。早期的研究表明,白色瘤胃球菌和黃色瘤胃球菌能抑制厭氧真菌對(duì)玉米莖和纖維素的降解能力[29-30]。本試驗(yàn)中,燕麥干草組在飼喂后5 h時(shí)真菌和3種纖維分解菌的相對(duì)含量均較高,但3種纖維分解菌的相對(duì)含量高于真菌,說(shuō)明瘤胃真菌與細(xì)菌存在拮抗作用[31]。Atasoglu等[32]研究認(rèn)為,不同飼糧類(lèi)型對(duì)瘤胃真菌種群有明顯的影響,當(dāng)飼喂纖維素含量較高的飼糧時(shí),動(dòng)物瘤胃中的真菌數(shù)量要比飼喂低纖維素飼糧動(dòng)物多。這與本試驗(yàn)中混合組與燕麥干草組真菌在0 h的相對(duì)含量高于全株玉米青貯組的結(jié)果一致。
Jounay等[10]研究表明,原蟲(chóng)的主要發(fā)酵底物是淀粉和可溶性糖類(lèi)。本試驗(yàn)中,混合組和燕麥干草組原蟲(chóng)的相對(duì)含量除在3 h高于全株玉米青貯組外,其他時(shí)間點(diǎn)均接近或低于全株玉米青貯組,而且低于同水平下3種纖維分解菌和真菌的相對(duì)含量。NRC(2001)指出,燕麥干草的非結(jié)構(gòu)性碳水化合物(non structure carbohydrates,NSC)含量為13.6%(干物質(zhì)基礎(chǔ)),低于全株玉米青貯(34.7%)。這表明給綿羊飼喂燕麥干草時(shí),真菌和纖維分解菌起主要作用。
產(chǎn)琥珀酸絲狀桿菌、黃色瘤胃球菌和白色瘤胃球菌是瘤胃中最主要的纖維分解細(xì)菌,它們消化纖維素的能力要強(qiáng)于其他纖維分解菌,在牛瘤胃的總纖維分解菌中所占比例分別為33.0%、2.6%和46.0%[33]。本試驗(yàn)中,混合組和燕麥干草組產(chǎn)琥珀酸絲狀桿菌和白色瘤胃球菌的相對(duì)含量顯著高于全株玉米青貯組,表明給綿羊飼喂燕麥干草時(shí),白色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌為優(yōu)勢(shì)菌群。這可能是因?yàn)榘咨鑫盖蚓赛S色瘤胃球菌更具有親和力,附著纖維的能力遠(yuǎn)高于黃色瘤胃球菌,它們?cè)谖竭^(guò)程中存在相同的吸附位點(diǎn)和屏障,白色瘤胃球菌可以搶占黃色瘤胃球菌的吸附位點(diǎn)。而黃色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌由于吸附位點(diǎn)不一致,幾乎不存在競(jìng)爭(zhēng)關(guān)系,但是,當(dāng)黃色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌完全定植后,白色瘤胃球菌的吸附會(huì)增加黃色瘤胃球菌的脫落[34]。
4結(jié)論
① 在精粗比為34.50∶65.50的飼糧中采用全株玉米青貯+燕麥干草(1∶1)的粗飼料,可以使綿羊瘤胃液pH維持在正常范圍內(nèi),有利于維持瘤胃內(nèi)環(huán)境穩(wěn)態(tài)和瘤胃微生物的生長(zhǎng)。
② 在精粗比為34.50∶65.50的飼糧中采用全株玉米青貯+燕麥干草(1∶1)的粗飼料,綿羊瘤胃內(nèi)原蟲(chóng)數(shù)量下降,而3種主要的纖維分解菌數(shù)量升高,且白色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌為優(yōu)勢(shì)菌群。
參考文獻(xiàn):
[1]HESPELL R B,AKIN D E,DEHORITY B A.Bacteria,fungi and protozoa of the rumen[M]//MACKIE R I,WHITE B A,ISAACSON R E.Gastrointestinal microbiology.New York:Chapman and Hall Press,1997:59-186.
[2]MACKIE R I.Mutualistic fermentative digestion in the gastrointestinal tract:diversity and evolution[J].Integrative and Comparative Biology,2002,42(2):319-326.
[3]LEY R E,HAMADY M,LOZUPONE C,et al.Evolution of mammals and their gut microbes[J].Science,2008,320(5883):1647-1651.
[4]ZILBER-ROSENBERG I,ROSENBERG E.Role of microorganisms in the evolution of animals and plants:the hologenome theory of evolution[J].FEMS Microbiology Reviews,2008,32(5):723-735.
[5]RAWLS J F,SAMUEL B S,GORDON J I.Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(13):4596-4601.
[6]祁茹,林英庭,程明,等.瘤胃微生物區(qū)系及其相互關(guān)系的研究進(jìn)展[J].飼料博覽,2011(8):9-13.
[7]薛豐,王洪榮,劉大程,等.瘤胃微生物區(qū)系的研究進(jìn)展[J].畜牧與飼料科學(xué),2007,28(2):31-33.
[8]FORSBERG C W,CHENG K J,WHITE B A.Polysaccharide degradation in the rumen and large intestine[M]//MACKIE R I,WHITE B A,ISAACSON R E.Gastrointestinal microbiology.New York:Chapman and Hall Press,1997:319-379.
[9]ORPIN C G,JOBLIN K N.The rumen anaerobic fungi[M]//HOBSON P N,STEWART C S.The rumen microbial ecosystem.London:Blackie Academic&Professional,1997,140-196.
[10]JOUNAY J P,USHIDA K.The role of protozoa in feed digestion-review[J].Asian-Australasian Journal of Animal Science,1999,12(1):113-128.
[11]付琦,侯先志,高愛(ài)武.瘤胃微生物區(qū)系及相互關(guān)系的研究進(jìn)展[J].中國(guó)奶牛,2009(5):18-21.
[12]YANG S L,MA S C,CHEN J,et al.Bacterial diversity in the rumen of Gayals(Bosfrontalis),Swamp buffaloes (Bubalusbubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences[J].Molecular Biology Reports,2010,37(4):2063-2073.
[13]SADET-BOURGETEAU S,MARTIN C,MORGAVI D P.Bacterial diversity dynamics in rumen epithelium of wethers fed forage and mixed concentrate forage diets[J].Veterinary Microbiology,2010,146(1/2):98-104.
[14]PITTA D W,PINCHAK W E,DOWD S E,et al.Rumen bacterial diversity dynamics associated with changing fromBermudagrasshay to grazed winter wheat diets[J].Microbial Ecology,2010,59(3):511-522.
[15]BELANCHE A,DOREAU M,EDWARDS J E,et al.Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation[J].The Journal of Nutrition,2012,142(9):1684-1692.
[16]XU J,HOU Y J,YANG H B,et al.Effects of forage sources on rumen fermentation characteristics,performance,and microbial protein synthesis in midlactation cows[J].Asian-Australasian Journal of Animal Sciences,2014,27(5):667-673.
[17]MUYZER G,DE WAAL E C,UITTERLINDEN A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied and Environmental Microbiology,1993,59(3):695-700.
[18]王海榮.不同日糧精粗比及氮源對(duì)綿羊瘤胃纖維降解菌群和纖維物質(zhì)降解的影響[D].博士學(xué)位論文.呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2006.
[19]KUMAR S,DAGAR S S,SIROHI S K,et al.Microbial profiles,invitrogas production and dry matter digestibility based on various ratios of roughage to concentrate[J].Annals of Microbiology,2013,63(2):541-545.
[20]郝正里,劉世民,孟憲政.反芻動(dòng)物營(yíng)養(yǎng)學(xué)[M].蘭州:甘肅民族出版社,1999.
[21]王洪亮,孫曉玉,趙福忠.黑龍江省常用粗飼料對(duì)肉牛瘤胃內(nèi)環(huán)境的影響研究[J].中國(guó)牛業(yè)科學(xué),2013,39(2):6-10.
[22]郭勇慶,張英杰.瘤胃內(nèi)環(huán)境優(yōu)化技術(shù)及其應(yīng)用[C]//第四屆中國(guó)牛業(yè)發(fā)展大會(huì)論文集.南陽(yáng):中國(guó)畜牧業(yè)協(xié)會(huì),2009:274-277.
[23]馮仰廉.反芻動(dòng)物營(yíng)養(yǎng)學(xué)[M].北京:科學(xué)出版社,2004.
[24]張瑛,周建偉,劉浩,等.藏羊瘤胃發(fā)酵參數(shù)對(duì)燕麥干草為飼糧限飼的響應(yīng)及其氮維持需要量估測(cè)[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2014,26(2):371-379.
[25]米歇爾·瓦提歐.營(yíng)養(yǎng)與飼喂[M].石燕,施福順,譯.北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2004.
[26]BARGO F,MULLER L D,DELAHOY J E,et al.Milk response to concentrate supplementation of high producing dairy cows grazing at two pasture allowances[J].Journal of Dairy Science,2002,85(7):1777-1792.
[27]TUYEN V D,CONE J W,BAARS J J P,et al.Fungal strain and incubation period affect chemical composition and nutrient availability of w heat straw for rumen fermentation[J].Bioresource Technology,2012,111:336-342.
[28]AKIN D E.Histological and physical factors affecting digestibility of forages[J].Agronomy Journal,1989,81(1):17-25.
[29]ROGER V,GRENET E,JAMOT J,et al.Degradation of maize stem by two rumen fungal species,PiromycescommunisandCaecomycescommunis,in pure cultures or in association with cellulolytic bacteria[J].Reproduction Nutrition Development,1992,32(4):321-329.
[30]BERNALIER A,FONTY G,BONNEMOY F,et al.Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic cultures or in association with cellulolytic bacteria[J].Current Microbiology,1992,25(3):143-148.
[31]DEHORITY B A,TIRABASSO P A.Antibiosis between ruminal bacteria and ruminal fungi[J].Applied and Environmental Microbiology,2000,66(7):2921-2927.
[32]ATASOGLU C,WALLACE R J.De novo synthesis of amino acids by the ruminal anaerobic fungi,PiromycescommunisandNeocallimastixfrontalis[J].FEMS Microbiology Letters,2002,212(2):243-247.
[33]KOIKE S,KOBAYASHI Y.Fibrolytic rumen bacteria:their ecology and functions[J].Asian-Australasian Journal of Animal Sciences,2009,22(1):131-138.
[34]MOSONI P,FONTY G,GOUET P.Competition between ruminal cellulolytic bacteria for adhesion to cellulose[J].Current Microbiology,1997,35(1):44-47.
(責(zé)任編輯王智航)
Effects of Dried Oat Hay Content in Diet on Rumen Fluid pH and Microflora of Sheep
ZHOU Rui1ZHAO Shengguo1LIU Lishan1WANG Chuan2WU Jianping1*
(1. College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, China; 2. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China)
Abstract:In order to investigate the effects of dried oat hay content in diet on rumen fluid pH and microflora of sheep. Nine German merino sheep×Ongolian sheep cross breed rams with similar body condition and body weight [(70.32±2.14) kg] were used in a replicated 3×3 Latin square design, and randomly divided into 3 groups with 3 rams per group. Sheep were fed whole corn silage, whole corn silage+dried oat hay (1∶1) (mixed group) and dried oat hay as roughages, and the dietary concentrate to roughage ratio was 34.50∶65.50. The experimental consisted of 3 periods with 20 d per period, and each period had 15 d for pre-test and 5 d for sampling. Rumen fluid was collected before feeding (0 h) and 1, 3, 5 and 7 h after feeding to measure pH, meanwhile, the relative contents of microorganisms with real-time quantitative PCR method. The results showed as follows: 1) ruminal pH of whole corn silage group was significantly lower than that of dried oat hay group at 1 and 5 h (P<0.05), extremely significantly lower than that of mixed group at 3 h (P<0.01); 2) the relative content of fungus in rumen fluid of mixed group and dried oat hay group was extremely significantly greater than that of whole corn silage at 0 h (P<0.01), and dried oat hay group was also significantly higher than whole corn silage group (P<0.05); 3) the relative content of protozoa in rumen fluid of mixed group was significantly lower than that of whole corn silage group at 1 and 5 h (P<0.05); 4) after 5 h of feeding, the relative contents of cellulolytic bacteria of mixed group and dried oat hay group were relatively high, among which the relative content of Ruminococcus flavefaciens was significantly higher than that of whole corn silage group (P<0.05), the relative contents of Ruminococcus albus and Fibrobacter succinogenes were extremely significantly higher than those of whole corn silage group (P<0.01). In conclusion, it is benefit for maintain stable ecosystem of rumen and growth of microorganisms that using whole corn silage+dried oat hay (1∶1) as roughage in diet with concentrate to roughage ratio of 34.50∶65.50, and Ruminococcus albus and Fibrobacter succinogenes are dominant bacteria.[Chinese Journal of Animal Nutrition, 2016, 28(5):1589-1597]
Key words:sheep; roughage; rumen; microflora; RT-qPCR
doi:10.3969/j.issn.1006-267x.2016.05.037
收稿日期:2015-11-23
基金項(xiàng)目:地區(qū)科學(xué)基金項(xiàng)目(31460592);農(nóng)業(yè)部“絨毛用羊產(chǎn)業(yè)技術(shù)體系放牧生態(tài)崗位科學(xué)家”(CARS-40-09B);公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201503134);公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201303059);甘肅省高等學(xué)??蒲许?xiàng)目(2013A-064)
作者簡(jiǎn)介:周瑞(1991—),女,寧夏中衛(wèi)人,碩士研究生,動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)專(zhuān)業(yè)。E-mail: zhour1222@163.com *通信作者:吳建平,教授,博士生導(dǎo)師,E-mail: wujp@gsau.edu.cn
中圖分類(lèi)號(hào):S826
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-267X(2016)05-1589-09
*Corresponding author, professor, E-mail: Wujp@gsau.edu.cn
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2016年5期