馬藝杰,盧成志,李超,張瑾,王麗,宋立君
?
去腎交感神經(jīng)術(shù)對心肌梗死犬下丘腦血管緊張素Ⅱ及氧化應(yīng)激水平的影響
馬藝杰1,盧成志2,李超2,張瑾2,王麗2,宋立君3
摘要:目的探討去腎交感神經(jīng)術(shù)對心肌梗死(MI)犬下丘腦血管緊張素Ⅱ(AngⅡ)及氧化應(yīng)激水平的影響。方法18只犬隨機均分為MI組、MI+去腎交感神經(jīng)術(shù)組(RDN組)和假手術(shù)組。前2組通過明膠海綿栓塞法建立MI模型,假手術(shù)組只行冠脈造影檢查。MI后1周對RDN組行去腎交感神經(jīng)術(shù),余2組只行腎動脈造影檢查。MI后4周檢測AngⅡ、丙二醛(MDA)、超氧化物歧化酶(SOD)的含量及尼克酰胺腺嘌呤二核苷磷酸(NADPH)氧化酶亞基gp91phox蛋白的表達。結(jié)果與假手術(shù)組相比,MI組下丘腦AngⅡ、MDA含量增加,gp91phox蛋白表達增加,SOD活性降低(P<0.01)。MI組AngⅡ與SOD活性呈負相關(guān),與gp91phox蛋白表達量呈正相關(guān)(r分別為-0.849和0.950,P<0.01)。RDN組較MI組AngⅡ、MDA含量降低,gp91phox蛋白表達降低,SOD活性增加(P<0.01)。結(jié)論去腎交感神經(jīng)術(shù)可以降低下丘腦AngⅡ含量,抑制NADPH氧化酶表達,降低氧化應(yīng)激水平,改善MI后心功能。
關(guān)鍵詞:心肌梗死;下丘腦;血管緊張素Ⅱ;氧化性應(yīng)激;疾病模型,動物;去腎交感神經(jīng)術(shù)
作者單位:1天津醫(yī)科大學(xué)一中心臨床學(xué)院(郵編300192);2天津市第一中心醫(yī)院心內(nèi)科,3消化科
心肌梗死(MI)時,交感神經(jīng)的過度激活會促進MI后心肌、交感神經(jīng)重構(gòu),導(dǎo)致心力衰竭(心衰)、惡性心律失常等的發(fā)生,影響遠期預(yù)后[1-2]。因此,抑制增強的交感神經(jīng)活性是MI治療的重要靶點。下丘腦是神經(jīng)內(nèi)分泌活動的重要調(diào)節(jié)中樞,通過多種機制主動參與交感神經(jīng)活性的調(diào)節(jié)[3],其中腎素-血管緊張素系統(tǒng)(RAS)、活性氧簇(ROS)等體液機制起重要作用[4]。去腎交感神經(jīng)術(shù)(renal denervation, RDN)通過選擇性阻斷腎交感神經(jīng),除可用于頑固性高血壓的治療[5]外,還可用于左室肥厚、惡性心律失常、心功能不全等其他高交感神經(jīng)活性疾病的治療[6-7]。然而,目前有關(guān)RDN治療MI的中樞機制尚未明確。Yu等[4]在MI大鼠下丘腦內(nèi)發(fā)現(xiàn),尼克酰胺腺嘌呤二核苷磷酸(NADPH)氧化酶活性增加,予以血管緊張素(Ang)Ⅱ受體拮抗劑可以降低NADPH氧化酶活性,抑制ROS生成,降低交感神經(jīng)活性,改善心功能。因此,筆者推測抑制中樞及外周AngⅡ、氧化應(yīng)激水平可以作為高交感神經(jīng)活性MI的治療靶點之一。本研究旨在觀察RDN對MI犬下丘腦AngⅡ及NADPH氧化酶的影響,以探討RDN治療MI的可能中樞機制。
1.1主要試劑和儀器AngⅡ酶聯(lián)免疫試劑盒購自上海博谷生物科技有限公司;超氧化物歧化酶(SOD)、丙二醛(MDA)檢測試劑盒購于南京建成生物工程研究所;羊抗gp91phox一抗購于美國Santa Cruz公司;辣根過氧化物酶標(biāo)記的抗羊抗體購于北京中杉金橋;-80℃冰箱購于日本SANYO公司;Ep?pendorf離心機購于德國Eppendorf公司;GSM-Ⅱ麻醉呼吸機購于北京宏潤達科技發(fā)展有限公司;Allura Xper FD10心血管X線系統(tǒng)購于荷蘭Philips公司;IBI-1500T射頻消融儀購于美國IBI公司;6F冷鹽水消融導(dǎo)管購于北京心諾普醫(yī)療。
1.2實驗動物及分組18只健康雜種犬,10~12月齡,雄性8只,雌性10只,購于天津春樂實驗動物中心。采用簡單隨機化分組分為3組:假手術(shù)組6只,只行冠狀動脈(冠脈)造影,1周后行腎動脈造影;MI組6只,MI造模后1周行腎動脈造影;RDN組6只,MI造模后1周行RDN。
1.3 MI模型構(gòu)建及RDN模型構(gòu)建參照文獻[8],6%戊巴比妥鈉30 mg/kg靜脈麻醉后,犬仰臥位固定,氣管插管機械通氣,穿刺股動脈行冠脈造影,于前降支第一對角支遠端微導(dǎo)管注射自制直徑約1 mm的明膠海綿顆粒。栓塞后10 min再次行冠脈造影,以靶血管呈“殘根樣”改變,確認血流阻斷,作為判斷構(gòu)建MI模型成功的標(biāo)準(zhǔn)。造模后假手術(shù)組犬無死亡,MI組和RDN組各有1只犬分別于MI后1 d、3 d死亡。MI后1周對RDN組行RDN,連接IBI-1500T射頻消融儀,設(shè)定溫度43℃,功率10 W,穿刺股動脈和腎動脈造影定位后,于腎動脈主干近端約1/2處開始,由遠及近行環(huán)形4點消融,每點持續(xù)90 s,對側(cè)腎動脈重復(fù)此操作。MI組及假手術(shù)組只行腎動脈造影。
1.4下丘腦AngⅡ、gp91phox蛋白測定MI后4周處死各組犬,開顱,于灰結(jié)節(jié)和視交叉之間留取下丘腦,-80℃冰箱保存。(1)AngⅡ蛋白表達水平測定。酶聯(lián)免疫吸附試驗(ELISA)法測定AngⅡ含量:嚴格按照ELISA試劑盒說明書操作,450 nm波長下測光密度(OD)值并繪制標(biāo)準(zhǔn)曲線圖。在標(biāo)準(zhǔn)曲線圖上根據(jù)每個待測樣品的OD值查找出其相對應(yīng)的濃度。(2)Western blot檢測gp91phox蛋白表達水平。按BCA蛋白定量試劑盒說明書測定各樣品總蛋白濃度。上樣
電泳后移至PVDF膜上,封閉,加gp91phox一抗(1∶500)4℃孵育過夜,加辣根過氧化物酶標(biāo)記二抗,ECL顯影并定影后Image J 1.48u軟件分析蛋白條帶,用目的蛋白與內(nèi)參β-actin灰度值的比值作為目的蛋白的相對表達量。
1.5下丘腦SOD、MDA測定采用黃嘌呤氧化酶法檢測SOD,硫代巴比妥酸法檢測MDA,按照試劑盒說明書操作,根據(jù)標(biāo)準(zhǔn)曲線計算公式計算MDA、SOD含量。MDA含量(μmol/g)=(測定OD值-對照OD值)/(標(biāo)準(zhǔn)OD值-空白OD值)×標(biāo)準(zhǔn)品濃度÷待測樣本蛋白濃度。SOD(U/mg)活力=(對照OD值-測定OD值)/對照OD值÷50%×反應(yīng)液總體積/取樣量÷待測樣本蛋白濃度。
1.6統(tǒng)計學(xué)方法采用SPSS 20.0軟件進行分析。符合正態(tài)分布的計量資料以均數(shù)±標(biāo)準(zhǔn)差(x ±s)表示,多組間比較采用單因素方差分析,組間多重比較用LSD-t檢驗,相關(guān)性采用Pearson相關(guān)分析。以P<0.05為差異有統(tǒng)計學(xué)意義。
2.1各組犬下丘腦AngⅡ和gp91phox蛋白表達(1)AngⅡ。MI后4周,假手術(shù)組、MI組、RDN組的AngⅡ含量(μg/L)分別為1.81±0.08、2.54±0.06及2.10± 0.09(F=120.75, P<0.01),其中MI組、RDN組高于假手術(shù)組,RDN組低于MI組(均P<0.01)。(2)gp91phox。假手術(shù)組、MI組、RDN組下丘腦gp91phox蛋白相對表達量分別為0.54±0.15、1.36± 0.05及0.93±0.10(F=70.39,P<0.01)。其中MI組、RDN高于假手術(shù)組,RDN組低于MI組(均P<0.01)。見圖1。
Fig. 1 The expression of gp91phox protein in hypothalamus of three groups圖1各組犬下丘腦gp91phox蛋白表達
2.2各組犬下丘腦MDA、SOD含量與假手術(shù)組比較,MI組MDA含量明顯升高、SOD含量降低(P<0.01);與MI組比較,RDN組MDA含量降低、SOD含量升高(P<0.01),見表1。
Tab. 1 The levels of MDA and SOD in hypothalamus of three groups表1各組犬下丘腦MDA、SOD含量(x ±s)
2.3 AngⅡ與gp91phox、SOD表達水平的相關(guān)性分析MI組AngⅡ與SOD呈負相關(guān),與gp91phox蛋白表達量呈正相關(guān)(r分別為-0.849和0.950, P<0.01)。
各種原因引起ROS生成與抗氧化系統(tǒng)失衡時,即可產(chǎn)生氧化應(yīng)激[9]。ROS主要由NADPH氧化酶催化生成,其中g(shù)p91phox是其重要的功能亞基[10]。Sun等[11]在下丘腦神經(jīng)元細胞中發(fā)現(xiàn),AngⅡ可以增加gp91phox活性,促進ROS的生成,增加神經(jīng)元活性。Su等[10]在大鼠高血壓模型中證實,AngⅡ通過激活NADPH氧化酶促進ROS生成,進而參與對外周交感神經(jīng)活性的調(diào)節(jié)。研究證實,RDN可以降低循環(huán)RAS,改善MI后心肌重構(gòu)治療MI;且效果優(yōu)于單一血管緊張素轉(zhuǎn)化酶抑制劑、AngⅡ受體拮抗劑或美托洛爾藥物治療[12]。筆者前期研究表明,RDN可以降低心臟氧化應(yīng)激水平,抑制MI后心臟交感神經(jīng)重構(gòu),改善心功能[13]。然而RDN對MI后中樞AngⅡ、氧化應(yīng)激影響的研究甚少。本實驗采用明膠海綿栓塞法構(gòu)建MI模型,觀察RDN對MI犬下丘腦AngⅡ、gp91phox的影響,探討RDN治療MI的可能中樞機制。與Yu等[4]研究結(jié)果一致,本實驗發(fā)現(xiàn),MI組較假手術(shù)組下丘腦局部AngⅡ含量增多,gp91phox表達增加,且下丘腦AngⅡ含量與gp91phox蛋白表達量呈正相關(guān);行RDN后下丘腦內(nèi)增加的AngⅡ及gp91phox顯著降低,表明RDN可以降低MI犬中樞AngⅡ含量、抑制gp91phox表達,改善心功能。
MDA是脂質(zhì)過氧化產(chǎn)物,代表機體氧化水平;SOD是抗氧化酶,能清除氧自由基,代表機體抗氧化水平[14]。Jing等[15]研究發(fā)現(xiàn),MI大鼠血清及心肌MDA含量升高,SOD活性下降,抗氧化劑可以降低MDA含量,升高SOD活性,縮小MI面積,改善心功能。Siddiqui等[16]在臨床中亦發(fā)現(xiàn),MI患者血清MDA含量升高,SOD活性下降。本研究顯示,MI組犬下丘腦MDA含量、gp91phox蛋白表達均較假手術(shù)組增多,同時SOD活力降低,表明下丘腦處于氧化應(yīng)激狀態(tài);行RDN后MDA含量、gp91phox蛋白表達減少,SOD活力增加,表明下丘腦氧化應(yīng)激水平降低,提示RDN可能通過抑制下丘腦NADPH氧化酶亞基gp91phox表達,減少ROS生成,從而降低下丘腦氧化應(yīng)激水平。研究證實,中樞ROS作為AngⅡ的下游信號分子,可通過影響K+、Ca2+通道的通透性[17]、核轉(zhuǎn)錄因子活性[18]以及神經(jīng)遞質(zhì)等的釋放,進而介導(dǎo)對交感神經(jīng)活性的調(diào)節(jié)。因此,RDN可能通過選擇性阻斷交感神經(jīng)、降低下丘腦AngⅡ水平,從而降低氧化應(yīng)激水平。
綜上所述,RDN可以降低下丘腦AngⅡ含量、抑制NADPH氧化酶表達,進而降低氧化應(yīng)激水平,改善MI后心功能。
參考文獻
[1] Ajijola OA, Yagishita D, Patel KJ, et al. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context[J]. Am J Physiol Heart Circ Physiol, 2013, 305(7): H1031-1040. doi: 10. 1152/ ajpheart. 00434. 2013.
[2] Wang HJ, Wang W, Cornish KG, et al. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovas?cular dysfunction in rats with heart failure[J]. Hypertension, 2014, 64(4): 745-755. doi: 10. 1161/ HYPERTENSIONAHA.114.03699.
[3] Kang YM, Zhang DM, Yu XJ, et al. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin Ⅱ-induced hypertension and cardiac hypertrophy by restoring neu?rotransmitters and cytokines[J]. Toxicol Appl Pharmacol, 2014, 274 (3):436-444. doi: 10. 1016/ j. taap. 2013. 12. 001.
[4] Yu XJ, Suo YP, Qi J, et al. Interaction between AT1 receptor and NF-κB in hypothalamic paraventricular nucleus contributes to oxi?dative stress and sympathoexcitation by modulating neurotransmit?ters in heart failure[J]. Cardiovasc Toxicol, 2013, 13(4): 381-390. doi: 10. 1007/s12012- 013- 9219- x.
[5] Esler MD, B?hm M, Sievert H, et al. Catheter-based renal denerva?tion for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clini?cal trial[J]. Eur Heart J, 2014, 35(26): 1752-1759. doi: 10. 1093/ eurheartj/ ehu209.
[6] Schirmer SH, Sayed MM, Reil JC, et al. Improvements in left ven?tricular hypertrophy and diastolic function following renal denerva?tion: effects beyond blood pressure and heart rate reduction[J]. J Am Coll Cardiol, 2014, 63(18): 1916-1923. doi: 10. 1016/ j. jacc. 2013. 10. 073.
[7] Hoffmann BA, Steven D, Willems S, et al. Renal sympathetic dener?vation as an adjunct to catheter ablation for the treatment of ventric?ular electrical storm in the setting of acute myocardial infarction[J]. J Cardiovasc Electrophysiol, 2013, 24(10): 1175- 1178. doi: 10. 1111/ jce. 12207.
[8] Wen X, Li R, Yang P, et al. Optimizing a canine model of myocardi?al infarction using a minimally invasive interventional method[J]. Exp Clin Cardiol, 2014, 20(1):338-365.
[9] Lassègue B, San Martín A, Griendling KK. Biochemistry, physiolo?gy, and pathophysiology of NADPH oxidases in the cardiovascular system[J]. Circ Res, 2012, 110(10):1364-1390. doi: 10. 1161/ CIR?CRESAHA. 111. 243972.
[10] Su Q, Qin DN, Wang FX, et al. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angio?tensin system and proinflammatory cytokines in hypertension[J]. Toxicol Appli Pharmacol, 2014, 276 (2):115-120. doi: 10. 1016/j.taap. 2014.02.002.
[11] Sun C, Sellers KW, Sumners C, et al. NAD(P)H oxidase inhibition attenuates neuronal chronotropic actions of angiotensinⅡ[J].Cir?cRes, 2005, 95(4):659-666.
[12] Jialu H, Yuemei H, Junbo G. A comparison of the efficacy of renal denervation and pharmacologic therapies in post-myocardial infarc?tion heart failure[J]. J Am Coll Cardiol, 2014, 64(16):C81-C82. doi: 10. 1371/ journal. pone. 0096996.
[13] Song LJ, Lu CZ, Li C, et al. Effect of renal denervation on cardiac oxidative stress and sympathetic nerve remodeling after myocardial infarction in canine[J]. Tianjin Med J, 2015,43(8):864-867.[宋立君,盧成志,李超,等.去腎交感神經(jīng)術(shù)對心肌梗死后犬心臟氧化應(yīng)激和交感神經(jīng)重構(gòu)的影響[J].天津醫(yī)藥, 2015, 43(8):864-867]. doi:10.11958/j.issn.0253-9896.2015.08.009.
[14] Niizuma K, Yoshioka H, Chen H, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia[J]. Biochim Biophys Acta, 2010, 1802(1):92-99. doi: 10.1016/j.bbadis.2009.09. 002.
[15] Jing L, Wang Y, Zhao XM, et al. Cardioprotective effect of hydrogenrich saline on isoproterenol-induced myocardial infarction in rats [J]. Heart LungCirc, 2015, 24(6):602-610. doi: 10.1016/j.hlc.2014.11. 018. [16] Siddiqui AH, Gulati R, Tauheed N, et al. Correlation of waist-tohip ratio (whr) and oxidative stress in patients of acute myocardial infarction (AMI) [J]. J Clin Diagn Res, 2014,8(1):4- 7. doi: 10. 7860/ JCDR/ 2014/ 6446. 3912.
[17] Yin JX, Yang RF, Li S, et al. Mitochondria-produced superoxide mediates angiotensinⅡ-induced inhibition of neuronal potassium current[J].Am J Physiol Cell Physiol, 2010,298(4):C857-865. doi: 10. 1152/ ajpcell. 00313. 2009.
[18] Young CN, Li A, Dong FN, et al. Endoplasmic reticulum and oxidant stress mediate nuclear factor-κB activation in the subfornical organ during angiotensinⅡhypertension[J].Am J Physiol Cell Physiol, 2015, 308(10):C803-812. doi: 10.1152/ajpcell.00223. 2014.
(2015-07-20收稿2015-10-03修回)
(本文編輯陸榮展)
The effects of renal denervation on hypothalamus angiotensinⅡand oxidative stress in myocardial infarction dogs
MA Yijie1, LU Chengzhi2, LI Chao2, ZHANG Jin2, WANG Li2, SONG Lijun3
1 First Center of Clinical College, Tianjin Medical University,Tianjin 300192, China; 2 Department of Cardiology, 3 Department of Gastroenterology, Tianjin First Center Hospital Corresponding Author E-mail:lucz8@126.com
Abstract:Objective To explore the effects of renal denervation (RDN) on hypothalamus angiotensinⅡ(AngⅡ) and oxidative stress in myocardial infarction (MI) dogs. Methods Eighteen mongrel dogs were randomly divided into MI group (n=6), RDN group (n=6) and sham operation group (n=6). Myocardial infarction model was made in the former two groups by gelatin sponge embolization of the left anterior descending artery. One week after MI, RDN was given to dogs in RDN group. Levels of AngⅡ, malondialdehyde (MDA), superoxide dismutase (SOD) and expression of gp91phox protein were detected four weeks after MI. Results Compared with control group, hypothalamus AngⅡ, MDA and expression of gp91phox protein were increased in MI group (P<0.01), but SOD was decreased (P<0.01). There was a negative correlation between AngⅡand SOD activity in MI group (r=-0.849, P<0.01). There was a positive correlation between AngⅡand expression of gp91phox protein in MI group (r=0.950, P<0.01). Compared with MI group, hypothalamus AngⅡ, MDA and expression of gp91phox protein were decreased in RDN group (P<0.01), but SOD was increased (P<0.01). Conclusion RDN can de?crease the level of hypothalamus AngⅡand the level of hypothalamus oxidative stress, and improve heart function of MI dogs.
Key words:myocardial infarction;hypothalamus;angiotensinⅡ;oxidative stress;disease models, animal;renal dener?vation surgery
中圖分類號:R542.22
文獻標(biāo)志碼:A
DOI:10.11958/20150032
基金項目:天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計劃項目(14JCYBJC26100);天津市衛(wèi)生局科技基金項目(2014KY11)
作者簡介:馬藝杰(1990),女,碩士在讀,主要從事高血壓、冠心病研究
通訊作者E-mail:lucz8@126.com