武婷++++++賈昊++++++馬琴++++++趙建力
[摘要] 近年來(lái)七氟醚是臨床麻醉中應(yīng)用較廣泛的吸入麻醉藥,越來(lái)越多的研究證實(shí),臨床麻醉濃度的七氟醚對(duì)心肌具有保護(hù)作用,而其發(fā)揮心肌保護(hù)作用的機(jī)制可能與多種細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路相關(guān)。目前研究發(fā)現(xiàn),蛋白激酶C(PKC)通路、酪氨酸蛋白激酶(PTK)通路及絲裂原活化蛋白激酶(MAPK)通路參與七氟醚保護(hù)心肌的信息傳遞,而p38 MAPK作為MAPK的重要信號(hào)通路,在細(xì)胞增殖與分化、細(xì)胞凋亡、新陳代謝和應(yīng)激反應(yīng)等方面有著重要的作用,成為近年來(lái)發(fā)現(xiàn)的另一心肌保護(hù)信號(hào)通路。本文對(duì)p38 MAPK與七氟醚的心肌保護(hù)作用關(guān)系的研究進(jìn)展進(jìn)行綜述。
[關(guān)鍵詞] p38 絲裂原活化蛋白激酶;七氟醚;心肌保護(hù);研究進(jìn)展
[中圖分類號(hào)] R542.2 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1674-4721(2016)03(c)-0022-03
[Abstract] As a volatile anesthetic,sevoflurane has been available for clinical anesthesia in recent years,and it has been previously demonstrated that sevoflurane at the concentration of clinical anesthesia exerts cardioprotective effect against myocardial injury.And the myocardial protection mechanism of sevoflurane may be correlation with a variety of intracellular signal transduction pathways,including protein kinase C(PKC),protein tyrosine kinase(PTK) and mitogen-activated protein kinase(MAPK) pathway.p38 MAPK,as an important MAPK signaling pathway,plays an important role in cell proliferation and differentiation,apoptosis,metabolism and stress reaction,and has been another myocardial protection signal pathway.This review will summarize the relationship between p38 MAPK and myocardial protection of sevoflurane.
[Key words] p38 MAPK;Sevoflurane;Myocardial protection;Research progress
目前心血管疾病仍然是全球引發(fā)死亡的最大原因[1],因此,有關(guān)心肌保護(hù)作用的藥物及干預(yù)措施的研究已成為近年來(lái)研究的重點(diǎn),如阿片類藥物、亞致死性缺血及吸入麻醉藥[2]。七氟醚是目前臨床麻醉中應(yīng)用較廣泛的吸入麻醉藥,具有誘導(dǎo)迅速、蘇醒快、呼吸道刺激小、麻醉深度易于調(diào)節(jié)等優(yōu)點(diǎn)[3]。臨床麻醉濃度的七氟醚可優(yōu)先增加冠狀動(dòng)脈側(cè)支血管的血流量,增加冠狀動(dòng)脈儲(chǔ)備,能明顯改善缺血后心肌收縮力,減輕心肌缺血缺氧性損傷,具有確切的心肌保護(hù)作用。目前已經(jīng)證實(shí),七氟醚可通過(guò)多種細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路發(fā)揮保護(hù)心肌的作用,如蛋白激酶C(PKC)通路、酪氨酸蛋白激酶(PTK)通路及絲裂原活化蛋白激酶(MAPK)通路等均參與七氟醚保護(hù)心肌的信息傳遞[4]。p38 MAPK是MAPK重要的信號(hào)通路之一,可調(diào)控包括炎癥反應(yīng)、細(xì)胞應(yīng)激、細(xì)胞周期、細(xì)胞凋亡、分化和衰老等生理及病理過(guò)程中細(xì)胞內(nèi)應(yīng)答反應(yīng),從而對(duì)缺血再灌注心肌有保護(hù)作用。因此進(jìn)一步探索p38 MAPK在七氟醚心肌保護(hù)中的作用機(jī)制,為七氟醚更廣泛地應(yīng)用于臨床提供依據(jù)。
1 p38 MAPK概述
MAPK是廣泛分布于細(xì)胞內(nèi)的絲氨酸/蘇氨酸MARK,其活化可使下游分子磷酸化,如膜蛋白、胞漿蛋白及核蛋白[5-6],參與調(diào)控基因表達(dá),細(xì)胞分裂、存活、凋亡、代謝、分化和遷移等信號(hào)通路[7-8]。MAPK家族主要包含3種激酶:細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)、C-jun氨基末端激酶(JNK)、p38 MAPK。p38 MAPK在細(xì)胞應(yīng)激反應(yīng)中起關(guān)鍵作用,目前已發(fā)現(xiàn)p38 MAPK包含4種異構(gòu)體,p38α、p38β、p38γ、p38δ,不同亞型的p38 MAPKs在氨基酸序列水平上具有高度同源性(>60%)[9]。p38αMAPK廣泛分布在心、腦、腎等各種組織中;p38βMAPK在腦和肺組織中高度表達(dá);p38γMAPK主要在骨骼肌和神經(jīng)組織中;p38δMAPK在子宮和胰腺中分布豐富。所有亞型均有同樣的保守區(qū)域及調(diào)節(jié)p38 MAPK活化的“TGY”雙位點(diǎn)磷酸化模塊[10-11]。機(jī)體受到紫外線、氧化應(yīng)激、缺血缺氧等刺激時(shí)可使MAPK激酶(MAPKK或MKK)及MAPKK激酶(MAPKKK或MEKK)發(fā)生磷酸化,活化的MKK再通過(guò)雙位點(diǎn)磷酸化調(diào)控p38 MAPK的活性,進(jìn)一步活化轉(zhuǎn)錄因子2(ATF2)、C/EBP同源性蛋白10(CHOP10)、T細(xì)胞核因子(NFAT)及血管內(nèi)皮細(xì)胞生長(zhǎng)因子(VEGF)等,進(jìn)而特異性調(diào)節(jié)TNF、c-myc、Fas/FasL等多種基因的轉(zhuǎn)錄和表達(dá),從而調(diào)控細(xì)胞的分化和凋亡[12]?,F(xiàn)已證實(shí),p38 MAPK活化后在多種心血管疾病如心肌肥厚、心肌缺血再灌注、心肌重構(gòu)及動(dòng)脈粥樣硬化等的發(fā)生、發(fā)展過(guò)程中有著重要的作用[13]。
2 七氟醚的心肌保護(hù)作用
1986年Murry等[14]首先提出缺血預(yù)處理(IPC)的概念,在體心臟預(yù)先反復(fù)短暫缺血再灌注后,機(jī)體激發(fā)內(nèi)源性自我保護(hù)機(jī)制而產(chǎn)生一種提高心肌組織對(duì)隨后較長(zhǎng)時(shí)程缺血的耐受性,這一概念的提出為心肌缺血的保護(hù)及其機(jī)制探索開(kāi)辟了一條嶄新的領(lǐng)域。Toller等[15]在心肌梗死動(dòng)物模型中證實(shí),吸入麻醉藥預(yù)處理對(duì)心肌具有保護(hù)作用。七氟醚作為一種新型的吸入麻醉藥具有心肌保護(hù)作用[16],可增強(qiáng)心臟功能,促進(jìn)缺血后心肌功能的恢復(fù),減少心肌梗死面積及心肌細(xì)胞凋亡?,F(xiàn)已證明七氟醚的心肌保護(hù)機(jī)制有影響氧自由基(ROS)的產(chǎn)生、維持Ca2+穩(wěn)態(tài)和抑制心肌細(xì)胞凋亡,激活一些蛋白激酶途徑如PKC通道、PTK通路、MAPK通路,開(kāi)放離子通道即線粒體和細(xì)胞膜ATP敏感性鉀通道,激活腺苷受體,蛋白激酶的磷酸化、移位,抑制線粒體通透性轉(zhuǎn)換的作用[17]。此外,七氟醚還可通過(guò)逆轉(zhuǎn)長(zhǎng)時(shí)程增強(qiáng)(LTP)損傷,減輕心肌缺血再灌注時(shí)神經(jīng)損傷,從而保護(hù)心肌的神經(jīng)[18]。因此七氟醚在心肌缺血再灌注損傷中的保護(hù)效應(yīng)是明確的,但并非作用于某一環(huán)節(jié),而是多位點(diǎn)、多通路且相互影響的結(jié)果。
3 p38 MAPK在七氟醚心肌保護(hù)中的作用
3.1 ROS/p38 MAPK/核因子-κB(NF-κB)
ROS在機(jī)體維持正常生理代謝中至關(guān)重要,可介導(dǎo)多種細(xì)胞內(nèi)信號(hào)通路,但ROS過(guò)度表達(dá)可導(dǎo)致細(xì)胞功能紊亂[19-20]。心肌在再灌注期間可產(chǎn)生大量ROS,ROS使硫氧蛋白(Trx1)從ASK1解離,引起ASK1活化,從而激活MKK3/6-p38 MAPK通路,而p38 MAPK可激活NF-κB[21],進(jìn)而使NF-κB游離并發(fā)生核轉(zhuǎn)錄,其轉(zhuǎn)錄后可促進(jìn)致炎因子的表達(dá),從而加重心肌損傷。有報(bào)道[22]顯示,0.7%異氟醚可抑制ROS的產(chǎn)生,進(jìn)一步減弱由ROS介導(dǎo)的p38 MAPK與NF-κB DNA的親和力以及酵母多糖引發(fā)的炎癥反應(yīng)中促炎因子、趨化因子及COX-2表達(dá)轉(zhuǎn)錄活性,從而破壞炎癥級(jí)聯(lián)反應(yīng),達(dá)到保護(hù)心肌的作用。后來(lái)人們陸續(xù)發(fā)現(xiàn)p38 MAPK在七氟醚的心肌保護(hù)中也有重要作用。Lee等[23]在人類單核細(xì)胞的THP-1細(xì)胞水平上發(fā)現(xiàn),1MAC七氟醚也可減弱炎癥級(jí)聯(lián)反應(yīng)而抑制炎癥反應(yīng)的發(fā)生。有研究發(fā)現(xiàn),七氟醚可抑制p38 MAPK信號(hào)轉(zhuǎn)導(dǎo)通路的激活,減弱NF-κB的活化,從而阻斷下游的炎癥級(jí)聯(lián)反應(yīng)[24-25],減少冠狀動(dòng)脈內(nèi)血小板黏附,從而發(fā)揮心肌保護(hù)作用。此外還有研究發(fā)現(xiàn),七氟醚預(yù)處理時(shí)可釋放大量?jī)?nèi)源性觸發(fā)物質(zhì),如腺苷、ROS等,與相應(yīng)受體結(jié)合后引起細(xì)胞內(nèi)的信號(hào)通路激活,尤其是p38 MAPK信號(hào)轉(zhuǎn)導(dǎo)作用,產(chǎn)生內(nèi)源性保護(hù)性的物質(zhì),從而發(fā)揮心肌保護(hù)作用。
3.2 MKK/p38 MAPK/ Bcl-2
研究發(fā)現(xiàn),持續(xù)的缺血和再灌注期也會(huì)導(dǎo)致心肌細(xì)胞的凋亡,而調(diào)控心肌細(xì)胞凋亡的基因有Bcl-2、Fas、熱休克蛋白(HSP)和Caspase家族蛋白酶等[26],其中Bcl-2是目前研究的熱點(diǎn)。有文獻(xiàn)證實(shí),p38 MAPK經(jīng)MAPK激酶激活,磷酸化的p38 MAPK可通過(guò)Bcl-2/Bax信號(hào)通路調(diào)控細(xì)胞凋亡,且在不同的生理、病理?xiàng)l件下會(huì)出現(xiàn)不同的p38 MAPK活化機(jī)制,即p38 MAPK不同的異構(gòu)體可激活不同的信號(hào)通路,持續(xù)的心肌缺血可增加p38αMAPK活性,并非p38βMAPK,促進(jìn)心肌細(xì)胞凋亡,心肌收縮功能發(fā)生障礙,增加心肌梗死面積,使p38 MAPK負(fù)性調(diào)節(jié)心肌收縮性[27]。Yu等[28]發(fā)現(xiàn)七氟醚后處理再灌注早期通過(guò)MAPK信號(hào)通路(p38 MAPK、ERK1/2、c-JNK)上調(diào)細(xì)胞凋亡基因Bcl-2基因的表達(dá),且下調(diào)抗凋亡基因Bax的表達(dá),從而抑制心肌細(xì)胞凋亡。Liu等[29]發(fā)現(xiàn)聯(lián)合應(yīng)用七氟醚和丙泊酚可抑制MAPK激酶的激活,降低p38 MAPK的磷酸化,從而抑制Bcl-2/Bax通路介導(dǎo)的細(xì)胞凋亡,達(dá)到保護(hù)心肌的作用。
4 小結(jié)
p38 MAPK信號(hào)通路參與多種胞內(nèi)應(yīng)答反應(yīng)過(guò)程,在炎癥、細(xì)胞應(yīng)激和細(xì)胞周期等生理和病理過(guò)程中起著重要作用,雖然p38 MAPK具有廣泛的作用途徑,但其在七氟醚的心肌保護(hù)作用中機(jī)制非常復(fù)雜,因而探討p38 MAPK在七氟醚的心肌保護(hù)的作用將對(duì)圍術(shù)期缺血再灌注性心肌損傷的預(yù)防和保護(hù)的傳統(tǒng)領(lǐng)域進(jìn)行拓展和觀念的更新不僅具有重要理論意義,而且具有顯著的臨床實(shí)踐指導(dǎo)意義,為臨床麻醉提供新的契機(jī)。
[參考文獻(xiàn)]
[1] Hoyert DL.75 years of mortality in the United States,1935-2010[J].NCHS Data Brief,2012,110(88):1-8.
[2] Horikawa YT,Tsutsumi YM,Patel HH,et al.Signaling epicenters:the role of caveolae and caveolins in volatile anesthetic induced cardiac protection[J].Curr Pharm Des,2014,20(36):5681-5689.
[3] 鄧小明,姚尚龍,于布為,等.《現(xiàn)代麻醉學(xué)》再版發(fā)行[J].中國(guó)衛(wèi)生人才,2014,(9):94.
[4] Wang C,Hu SM,Xie H,et al.Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-epsilon in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats[J].Braz J Med Biol Res,2015,48(6):528-536.
[5] Boutros T,Chevet E,Metrakos P.Mitogen-activated protein(MAP) kinase/MAP kinase phosphatase:roles in cell growth,death,and cancer[J].Pharmacol Rev,2008,60(3):261-310.
[6] Li MW,Mruk DD,Cheng CY.Mitogen-activated protein kinases in male reproductive function[J].Trends Mol Med,2009,15(4):159-168.
[7] Kostenko S,Dumitriu G,Laegreid KJ,et al.Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase[J].World J Biol Chem,2011,2(5):73-89.
[8] 何丹,任朋亮,范雪嬌,等.p38MAPK與疾病關(guān)系的研究進(jìn)展[J].西部醫(yī)學(xué),2014,26(2):259-262.
[9] Horman S,Beauloye C,Vanoverschelde JL,et al.Amp-activated protein kinase in the control of cardiac metabolism and remodeling[J].Curr Heart Fail Rep,2012,9(3):164-173.
[10] Marber MS,Rose B,Wang Y.The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction,hypertrophy,and heart failure[J].J Mol Cell Cardiol,2011,51(4):485-490.
[11] 劉曉晨,梁貴友.p38MAPK與缺血/再灌注心肌損傷的研究進(jìn)展[J].醫(yī)學(xué)綜述,2013,19(12):2136-2138.
[12] Yang Y,Kim SC,Yu T,et al.Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses[J].Mediators Inflamm,2014,2014(6):352371.
[13] Yokota T,Wang Y.p38 MAP kinases in the heart[J].Gene,2016,575(2 Pt 2):369-376.
[14] Murry CE,Jennings RB,Reimer KA.Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J].Circulation,1986,74(5):1124-1136.
[15] Toller WG,Kersten JR,Pagel PS,et al.Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs[J].Anesthesiology,1999,91(5):1437-1446.
[16] Zhao J,Wang F,Zhang Y,et al.Sevoflurane preconditioning attenuates myocardial ischemia/reperfusion injury via caveolin-3-dependent cyclooxygenase-2 inhibition[J].Circulation,2013,128(11 Suppl 1):S121-S129.
[17] 周萬(wàn)華,薄玉龍.七氟烷預(yù)處理心肌保護(hù)作用機(jī)制的研究現(xiàn)狀[J].疑難病雜志,2013,12(4):327-330.
[18] Zhu J,Jiang X,Shi E,et al.Sevoflurane preconditioning reverses impairment of hippocampal long-term potentiation induced by myocardial ischaemia-reperfusion injury[J].Eur J Anaesthesiol,2009,26(11):961-968.
[19] Reuter S,Gupta SC,Chaturvedi MM,et al.Oxidative stress,inflammation,and cancer:how are they linked?[J].Free Radic Biol Med,2010,49(11):1603-1616.
[20] Vincent HK,Taylor AG.Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans[J].Int J Obes(Lond),2006,30(3):400-418.
[21] 李向東,覃數(shù).p38 MAPK在心肌肥厚中的作用機(jī)制[J].重慶醫(yī)學(xué),2007,36(14):1438-1440.
[22] Wang H,Wang L,Li NL,et al.Subanesthetic isoflurane reduces zymosan-induced inflammation in murine Kupffer cells by inhibiting ROS-activated p38 MAPK/NF-kappa-B signaling[J].Oxid Med Cell Longev,2014,2014(11):851692.
[23] Lee YM,Song BC,Yeum KJ.Impact of volatile anesthetics on oxidative stress and inflammation[J].Biomed Res Int,2015,2015(36):242709.
[24] Wang H,Lu S,Yu Q,et al.Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects[J].Front Biosci(Elite Ed),2011,3(2):604-615.
[25] 王丹,田國(guó)剛.七氟烷預(yù)處理對(duì)肺缺血再灌注損傷的保護(hù)機(jī)制[J].海南醫(yī)學(xué),2014,25(14):2114-2116.
[26] 黃秋蘭,陳序.七氟醚對(duì)心臟缺血再灌注的保護(hù)作用及機(jī)制研究進(jìn)展[J].山東醫(yī)藥,2012,52(3):114-116.
[27] Vassalli G,Milano G,Moccetti T.Role of mitogen-activated protein kinases in myocardial ischemia-reperfusion injury during heart transplantation[J].J Transplant,2012, 2012(8):928954.
[28] Yu LN,Yu J,Zhang FJ,et al.Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins[J].J Zhejiang Univ Sci B,2010, 11(9):661-672.
[29] Liu Y,Shi L,Liu C,et al.Effect of combination therapy of propofol and sevoflurane on MAP2K3 level and myocardial apoptosis induced by ischemia-reperfusion in rats[J].Int J Clin Exp Med,2015,8(4):6427-6435.
(收稿日期:2015-12-08 本文編輯:王紅雙)