• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      移植型和基因工程型乳腺癌動物模型研究進(jìn)展

      2016-08-04 09:03:04程宇凌敖竹君
      關(guān)鍵詞:動物模型乳腺癌

      程宇凌,敖竹君,2,陳 偉

      (1.遵義醫(yī)學(xué)院 組織胚胎學(xué)教研室,貴州 遵義 563099;2.曼尼托巴大學(xué)醫(yī)學(xué)院 微生物系人類逆轉(zhuǎn)錄病毒實驗室,曼尼托巴 溫尼伯 R3T 2N2,加拿大)

      ?

      綜述

      移植型和基因工程型乳腺癌動物模型研究進(jìn)展

      程宇凌1,敖竹君1,2,陳偉1

      (1.遵義醫(yī)學(xué)院 組織胚胎學(xué)教研室,貴州 遵義563099;2.曼尼托巴大學(xué)醫(yī)學(xué)院 微生物系人類逆轉(zhuǎn)錄病毒實驗室,曼尼托巴 溫尼伯R3T 2N2,加拿大)

      [摘要]乳腺癌是導(dǎo)致女性死亡的重要原因,其死亡率占女性惡性腫瘤死亡率的第2位,僅次于肺癌。因此尋求新的、有效的治療方法以防止腫瘤細(xì)胞的增殖及轉(zhuǎn)移,并闡明其潛在的分之機(jī)制,有助于降低癌癥患者的死亡率。乳腺癌小鼠模型是乳腺腫瘤學(xué)研究的基礎(chǔ)。乳腺癌動物模型對研究乳腺癌的發(fā)生、發(fā)展及治療等方面具有重要作用。本文將介紹關(guān)于移植型和基因工程型小鼠乳腺癌模型在人類乳腺癌的應(yīng)用,并著重討論該兩種動物模型系統(tǒng)的局限性和新的攻克方法。

      [關(guān)鍵詞]乳腺癌;動物模型;移植型;基因工程型

      在世界范圍內(nèi),乳腺癌是最常見且嚴(yán)重危害女性身心健康的一種惡性腫瘤。其死亡率位居第二,僅次于肺癌,每年新發(fā)病例近1.4億[1-4]。近年來,我國乳腺癌的發(fā)病率呈明顯上升趨勢[5]。每年我國女性乳腺癌發(fā)病例數(shù)達(dá)到16.9萬,占全球總發(fā)病數(shù)的12.25%,位列全球第二[6]。

      動物模型是腫瘤學(xué)研究的基礎(chǔ),目前體外實驗研究乳腺癌的生物學(xué)特性或探討新的治療方法,主要借助于已建立的乳腺癌傳代細(xì)胞株、移植型乳腺癌模型及基因工程小鼠[7]。在研究乳腺癌的輔助治療方法等方面,動物模型比細(xì)胞株更具優(yōu)勢,能更真實地反映體內(nèi)治療效果,對外推到臨床應(yīng)用更有參考價值。因此建立適當(dāng)?shù)娜橄侔﹦游锬P?,是研究乳腺癌的生物學(xué)特性及臨床治療所必需。

      1乳腺癌動物模型概述

      一個理想的動物模型,首先應(yīng)與人體內(nèi)腫瘤病理生理過程相似,還要便于生產(chǎn)、觀察及對各種處理方法進(jìn)行監(jiān)測和優(yōu)選。根據(jù)制備方法和研究目的的不同,乳腺癌實驗動物模型可分為移植型、誘發(fā)型、自發(fā)型、基因敲除型及乳腺癌遠(yuǎn)處轉(zhuǎn)移等5大類。早期的腫瘤模型一般通過自發(fā)或誘發(fā)建立鼠源性腫瘤。自發(fā)型和誘發(fā)型動物模型的主要局限性在于過程較長,成功率不高,個體差異性較大,不易同時獲得病程或腫塊大小均一的動物模型,且與人瘤的生物學(xué)特性有較大差別,漸趨少用。相對而言,移植型動物模型較好地克服了上述缺點。

      移植型模型因其周期短、成本低、個體差異小、成瘤率高、腫瘤生長速度較為一致、易飼養(yǎng)等優(yōu)點,已成為臨床應(yīng)用最廣的一種模型[8]。移植性模型是指將乳腺癌細(xì)胞或組織移植于實驗動物而培養(yǎng)出的模型,移植方式包括細(xì)胞懸液注射、組織塊懸液注射、腫瘤組織塊接種等。目前,常用的腫瘤種植方法是細(xì)胞懸液法和組織塊埋植法。組織塊埋植的實驗周期更短,但細(xì)胞懸液法具有腫瘤形態(tài)規(guī)則、血管豐富,腫瘤內(nèi)壞死和表面潰瘍出現(xiàn)晚、性質(zhì)穩(wěn)定等優(yōu)點,因此細(xì)胞懸液法更常用[9]。根據(jù)移植部位不同可分為原位移植和異位移植。原位移植即乳腺脂肪墊接種,異位移植常用的有皮下和尾部靜脈[7]。原位移植即在乳腺原位形成的腫瘤,并能通過轉(zhuǎn)移形成轉(zhuǎn)移瘤。尾部靜脈注射主要導(dǎo)致肺轉(zhuǎn)移[10]。此外,尾部靜脈注射還會引發(fā)肝轉(zhuǎn)移,且能借助循環(huán)系統(tǒng)傳達(dá)到更多的靶器官,例如骨[11]。

      由于動物模型的供者和受者種屬和基因的不同,移植型模型可分為同基因型移植或異種移植。將一只小鼠身上的癌細(xì)胞移植到另一只小鼠身上時,進(jìn)行的是同基因型移植,這樣就避免了因物種差異所造成的免疫排斥反應(yīng),并且同種移植的受體能為惡性腫瘤的增殖提供相同的免疫系統(tǒng)[12-13]。例如:4T1細(xì)胞來源于一只BALB/C的乳腺自發(fā)性腫瘤,當(dāng)在同基因型小鼠接種該細(xì)胞后,乳腺原位會迅速成瘤,隨后會向肺、肝、骨以及腦發(fā)生轉(zhuǎn)移[14-15]。

      為了更好地研究人乳腺癌細(xì)胞系體內(nèi)的增殖及轉(zhuǎn)移過程,我們可以進(jìn)行異種移植(Xenograft tumor model),即將人源的乳腺癌細(xì)胞系移植到免疫缺陷的小鼠體內(nèi),從而建立小鼠乳腺癌動物模型[16]。例如:MDA-MB-231細(xì)胞系,該細(xì)胞系來源于一位乳腺癌病人的胸腔積液,雌激素受體陽性,該細(xì)胞經(jīng)靜脈注射后,能轉(zhuǎn)移到骨、肝、肺、腎上腺、卵巢和腦[17]。接種已建立的乳腺癌細(xì)胞系相對簡單。然而,異種移植同樣有缺點,近年來,基因工程小鼠(Genetically engineered mice)開始發(fā)展起來。該技術(shù)通過運用基因敲除技術(shù),敲除某些腫瘤抑制因子,或通過轉(zhuǎn)基因插入某些已證實的癌基因來建立與人類腫瘤非常接近的小鼠乳腺癌動物模型。

      乳腺癌不是單一的疾病,而是一組有不同組織類型、不同分子分型及不同預(yù)后的疾病,不能用單一動物模型來研究此疾病[7]。接下來本文將對同種移植、異種移植及基因工程小鼠這3類乳腺癌模型的應(yīng)用做一綜述,為建立合適的乳腺癌動物模型奠定基礎(chǔ)。

      2移植型乳腺癌動物模型

      2.1同種移植目前已建立的鼠類乳腺癌細(xì)胞株有C127、4T1、TM40等,其中4T1和TM40兩種細(xì)胞株來源于近交系Balb/c小鼠。與TM40細(xì)胞株相比,4T1細(xì)胞株移植模型是目前臨床藥物篩選使用最多的1種乳腺癌模型。鼠源的4T1細(xì)胞來源于1983年1只小鼠的乳腺腫瘤[18-19],且雌激素表達(dá)陰性[14,20]。4T1細(xì)胞屬于三陰性乳腺癌[21],三陰性乳腺癌占全部乳腺癌的20%[22]。三陰性乳腺癌是乳腺癌治療中極具挑戰(zhàn)的一種亞型,與乳腺癌的其它亞型相比,三陰性乳腺癌缺乏與其它乳腺癌亞型共同的治療靶點,且對細(xì)胞周期抑制藥阿霉素和紫杉醇存在抵抗作用[23-24]。女性三陰性乳腺癌的惡性程度較高,5年內(nèi)就伴有遠(yuǎn)處轉(zhuǎn)移結(jié)節(jié)[25]。三陰性乳腺癌的預(yù)后極差,其中的一個原因是目前還沒有找到能特異性抑制三陰性乳腺癌靶向轉(zhuǎn)移的治療方法[21]。

      4T1細(xì)胞移植模型的生長和遠(yuǎn)處轉(zhuǎn)移與人類乳腺癌第四期非常相似[26]。4T1成瘤的一個優(yōu)點是使用免疫功能正常的小鼠。Balb/c小鼠共有5對乳腺[27],將1.0×106個/100 μL 4T1接種到6~8周齡的BALB/c小鼠乳腺脂肪墊處[28],4 d后在接種處便出現(xiàn)了腫瘤[29]。乳腺脂肪墊注射較乳頭及皮下注射的成瘤體積差異小,是一種非??煽康囊浦渤闪龇椒ǎ业?對乳腺脂肪墊移植優(yōu)于第4對乳腺脂肪墊移植,因小鼠第2對乳腺與人乳腺有著相同的解剖部位,更能模仿人乳腺癌的發(fā)生和發(fā)展[30]。

      轉(zhuǎn)移癌即乳腺癌IV期是導(dǎo)致乳腺癌病人死亡的重要原因[31]。4T1細(xì)胞系有很強(qiáng)的遠(yuǎn)處轉(zhuǎn)移能力,類似人類自然發(fā)生的腫瘤,當(dāng)4T1細(xì)胞注射到小鼠體內(nèi)后能轉(zhuǎn)移到淋巴和肺等其他器官[32-33]。且當(dāng)Babl/c小鼠被誘發(fā)炎癥后,通過尾部靜脈注射4T1細(xì)胞,能使乳腺癌的肺轉(zhuǎn)移率增高[34]。該動物模型和其它同種移植瘤模型一樣,已被成功運用到了惡性腫瘤治療藥物的研究中[13,15,35-36]。

      2.2異種移植異種移植的方式很多,包括靜脈、腹腔內(nèi)、皮下以及原位接種,且這些接種方式能夠很好地監(jiān)測腫瘤成瘤及轉(zhuǎn)移過程,以及涉及人類有關(guān)基因的監(jiān)測。當(dāng)向免疫缺陷的小鼠接種人乳腺癌細(xì)胞后,原位能成瘤并能向遠(yuǎn)處靶器官轉(zhuǎn)移,這和乳腺癌病人的病程發(fā)展相似。人源的乳腺癌細(xì)胞系有很多,接下來將例舉幾種常見的乳腺癌細(xì)胞系(見表1)。

      表1幾種常見的異種移植乳腺癌細(xì)胞系

      細(xì)胞系腫瘤類型基因型移植部位細(xì)胞數(shù)轉(zhuǎn)移部位潛伏期(周)文獻(xiàn)MDA-MB-231腺癌基底樣型尾部靜脈2×105肺8~15[37]乳腺脂肪墊5×105~1×106肺、肝、腦5~9[37-38]心內(nèi)1×104~1×105腦、骨4[38]MCF-7浸潤性導(dǎo)管癌管樣型乳腺脂肪墊1×106淋巴結(jié)、淋巴管1[39]MDA-MB-435侵入性導(dǎo)管癌基底樣型乳腺脂肪墊2×106肺9[40]MDA-MB-453腺癌管樣型乳腺脂肪墊1×105骨4[41]BT-474浸潤性導(dǎo)管癌管樣癌心內(nèi)1×106骨4[42]

      2.2.1MCF-7乳腺癌移植型動物模型MCF-7乳腺癌細(xì)胞系來源于1970年一位69歲患乳腺癌的白人婦女,該乳腺癌細(xì)胞系的ER陽性[43],HER陽性。據(jù)統(tǒng)計,雌激素受體陽性的乳腺癌占乳腺癌的70%[44]。歷時45年,該細(xì)胞系仍能穩(wěn)定傳代及表達(dá),因此常被運用到乳腺癌體內(nèi)及體外的研究[45]。受某些生物學(xué)特性的影響,很多乳腺癌細(xì)胞株在小鼠模型上的成瘤率往往較低。一些研究在體外實驗向體內(nèi)實驗的過渡中,往往因此而增加工作量,甚至受到阻礙[46-47]。由于小鼠體內(nèi)的雌激素水平遠(yuǎn)低于人類,由此需向?qū)嶒炇篌w內(nèi)植入雌激素[48]。外源的雌激素能增加ER陽性腫瘤的移植率[49],但高劑量雌激素植入裸鼠和SD大鼠會導(dǎo)致腎臟疾病,以及膀胱結(jié)石的形成[50]。低成本、低劑量的雌二醇能避免上述問題的發(fā)生,并能協(xié)助MCF-7在免疫缺陷小鼠生長到第6周[51]。此外,基質(zhì)膠(Matrigel)可以有效幫助哺乳動物上皮細(xì)胞等各類細(xì)胞的附著和分化,因此,接種時加入基質(zhì)膠也能增加乳腺癌的成瘤率[52]。

      MCF-7建立裸小鼠乳腺癌原位移植瘤模型時,自腫瘤細(xì)胞移植裸鼠腋下后,荷瘤裸小鼠在層流罩中存活、生長良好,易于飼養(yǎng)。10 d左右肉眼可見成瘤,移植瘤成功率高,達(dá)到了100%,在接種后第20天,此時裸鼠開始消瘦,膚色變暗,出現(xiàn)晚期癌癥患者的惡質(zhì)化現(xiàn)象[53]。MCF-7細(xì)胞移植瘤鏡下癌細(xì)胞排列巢狀、團(tuán)索狀,癌細(xì)胞大小形態(tài)各異,胞漿豐富,細(xì)胞核大深染,核分裂象多見,腫瘤中央可見局灶壞死,符合乳腺癌組織細(xì)胞特征[54]。腫塊切除后行病理學(xué)切片檢查擬診為浸潤性導(dǎo)管癌,ER檢測為陽性表達(dá),說明移植的腫瘤細(xì)胞保持了人乳腺癌腫瘤細(xì)胞的部分病理學(xué)特點[53]。

      2.2.2 MDA-MB-231乳腺癌移植型動物模型人源乳腺癌細(xì)胞系MDA-MB-231雌激素受體陰性,且PR、HER均陰性,屬三陰性乳腺癌。MDA-MB-231細(xì)胞移植后,荷瘤裸小鼠在層流罩中存活、生長良好,易于飼養(yǎng)。移植瘤成功率高,達(dá)到了100%,接種后14 d左右成瘤,移植瘤基本保持了人乳腺癌細(xì)胞的組織學(xué)特性,ER檢測為陰性表達(dá),說明移植的腫瘤細(xì)胞保持了人乳腺癌腫瘤細(xì)胞的部分病理學(xué)特點[53]。然而,異種移植卻有著顯而易見的缺點,首先,免疫反應(yīng)在腫瘤發(fā)展中具有關(guān)鍵作用,而所選的受體應(yīng)為免疫缺陷的小鼠[55];其次,人乳腺癌細(xì)胞系并非體內(nèi)真正的腫瘤,其僅僅是培養(yǎng)出來的細(xì)胞;再者,人的細(xì)胞顯然不能很好地適應(yīng)小鼠體內(nèi)的生長環(huán)境。雖然許多腫瘤治療的方法已經(jīng)被運用到小鼠動物模型的研究當(dāng)中,然而仍然存在諸多未解決的副作用[56]。此外,還存在相當(dāng)大的技術(shù)問題,由于細(xì)胞系的原因或接種方法的原因,將會導(dǎo)致轉(zhuǎn)移部位的變化[57]。這些差異就是導(dǎo)致為什么移植瘤不能在受體動物體內(nèi)很好地展現(xiàn)腫瘤復(fù)雜過程的重要原因。

      3基因工程型乳腺癌動物模型

      通過運用基因敲除技術(shù),敲除某些腫瘤抑制因子,或通過轉(zhuǎn)基因插入某些已證實的癌基因來建立與人類腫瘤非常接近的小鼠乳腺癌動物模型。許多啟動子被運用于驅(qū)使癌基因在乳腺的表達(dá),例如:小鼠乳腺腫瘤病毒(MMTV-LTR)、乳清酸性蛋白(WAP)等。許多已知的癌基因在啟動子的作用或調(diào)節(jié)下,已在小鼠乳腺中得以表達(dá),形成乳腺癌并在晚期轉(zhuǎn)移到其他部位。這些癌基因包括表皮生長因子受體2(ErbB2/Neu)、瘤中間T抗原(PyMT)、猿猴病毒40(SV40)T抗原、Harvery鼠肉瘤病毒ras基因(Ha-Ras)、Wnt-1蛋白因子、TGF-α和c-Myc?;蚬こ绦∈笥挚煞譃橐韵聨追N類型。

      單一的轉(zhuǎn)基因小鼠:是小鼠在MMTV-LTR、WAP的控制下表達(dá)癌基因,從而引發(fā)乳腺原位癌,并在腫瘤的后期引發(fā)其它遠(yuǎn)處靶器官的轉(zhuǎn)移,如肺、淋巴結(jié)[58](見表2)。例如,MMTV-PyMT小鼠,轉(zhuǎn)基因小鼠短時間內(nèi)即在乳腺原位成瘤,且肺轉(zhuǎn)移率較高[59]。

      復(fù)合轉(zhuǎn)基因小鼠:將轉(zhuǎn)基因小鼠與其它基因工程小鼠聯(lián)合起來,復(fù)合轉(zhuǎn)基因小鼠可用于腫瘤相關(guān)基因及其在腫瘤發(fā)生中的作用和轉(zhuǎn)移的研究(見表2)。例如MMTV-PyMT轉(zhuǎn)基因小鼠在合并CD44陰性(MMTV-PyMT;CD44-/-)時能促進(jìn)腫瘤轉(zhuǎn)移。因為CD44是細(xì)胞附著力的受體,CD44能增加上皮基質(zhì)的相互作用,從而參與轉(zhuǎn)移抑制[60]。腫瘤相關(guān)免疫細(xì)胞,特別是巨噬細(xì)胞,在腫瘤細(xì)胞中占很大一部分,并且與腫瘤的不良預(yù)后密切相關(guān)。當(dāng)在致癌小鼠基因組中刪除集落刺激因子-1(MMTV-PyMT/ CSF-1-/-),腫瘤的增殖及轉(zhuǎn)移將明顯延遲。相反,過表達(dá)集落刺激因子-1將逆轉(zhuǎn)上述現(xiàn)象[61-63]。此外,通過刪除乳腺表皮的某些細(xì)胞,例如Trp53Brca1或Pten,能產(chǎn)生自發(fā)性腫瘤,并能轉(zhuǎn)移到骨以及導(dǎo)致ER的丟失,例如:MMTV-Cre;bRCALCO/CO;Trp53+/-復(fù)合轉(zhuǎn)基因小鼠[64-65]。

      誘導(dǎo)小鼠模型:控制癌基因的表達(dá)可以用類似于開-關(guān)的系統(tǒng)(Tet-On/Tet-Off system)來控制,而四環(huán)素在這個系統(tǒng)中起重要的誘導(dǎo)作用[66](見表2)。一種先進(jìn)的誘導(dǎo)系統(tǒng)對于研究癌基因之間的相互作用是非常有用的。轉(zhuǎn)基因小鼠MMTV-rtTA及tetO-myc的成瘤依賴四環(huán)素,當(dāng)成瘤后,去除四環(huán)素能降低myc的表達(dá),從而抑制腫瘤的生長[67]。上述結(jié)果表明,已建立的誘導(dǎo)型小鼠模型能夠用于研究多種癌基因的突變、腫瘤的發(fā)生及轉(zhuǎn)移過程。

      然而,這些基因工程小鼠卻不能完全代替人類乳腺癌。首先,因方法的不同可能會導(dǎo)致產(chǎn)生不同的乳腺癌模型。其次,雖然基因工程小鼠的乳腺癌分子學(xué)類型與某些人乳腺癌類型相似(Luminal A、Luminal B、ERBB+、Basal-like和Normal breast-like),但單一的模型并不能代表人類乳腺癌的類型和特征[68]。

      表2幾種常見的基因工程小鼠

      基因工程小鼠原位癌成瘤率(%)潛伏期(周)轉(zhuǎn)移癌成瘤率(%)潛伏期(周)靶器官文獻(xiàn)MMTV-PyMT1004~885~10014肺、淋巴結(jié)[59]MMTV-Neu10028~337532肺[69]MMTV-NeuN10012~207514肺[70]MMTV-Wnt16032肺、淋巴結(jié)[71]WAP-Ras1002414肺[71]MMTV-PyMT;CD44-/100146614肺[60]MMTV-Cre;bRCALCO/CO;Trp53+/-10020~25肺、淋巴結(jié)[72]MMTV-rtTA;TetO-MYC8622[67]

      4展望

      動物模型作為探索人類癌細(xì)胞特性及機(jī)制的重要工具,已被運用到了各種各樣的癌基因以及抑癌基因的研究中,并在進(jìn)一步掌握腫瘤的發(fā)生及發(fā)展機(jī)制,以及對新的治療方法的研究有重要作用。但是,小鼠模型的運用仍然存在缺陷。人和鼠腫瘤的發(fā)生是截然不同的,包括癌變動力學(xué)和腫瘤增長速度以及細(xì)胞的內(nèi)在特性,例如細(xì)胞增殖的微環(huán)境,以及免疫排斥反應(yīng)等。因此,目前很難將這些動物模型直接運用到病人的治療以及藥物的研究中。然而,我們相信,更先進(jìn)的小鼠模型的發(fā)展及建立將使人類更好地掌握腫瘤增殖及其轉(zhuǎn)移機(jī)制,從而研究出更有靶向性的抗癌藥物。

      [參考文獻(xiàn)]

      [1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA: A Cancer Journal for Clinicians, 2013, 63(1): 11-30.

      [2] Wiebe J P, Zhang G, Welch I, et al. Progesterone metabolites regulate induction, growth, and suppression of estrogen- and progesterone receptor-negative human breast cell tumors[J]. Breast Cancer Research, 2013, 15(3): 1-15.

      [3] Howell A, Anderson A S, Clarke R B, et al. Risk determination and prevention of breast cancer[J]. Breast Cancer Research, 2014,16(5): 446.

      [4] Siegel R L, Miller K D, Ahmedin Jemal DVMP. Cancer statistics, 2015[J]. CA: A Cancer Journal for Clinicians, 2015, 65(1): 5-29.

      [5] Kang H B, Zhang Y F, Yang J D, et al. Study on soy isoflavone consumption and risk of breast cancer and survival[J]. Asian Pacific Journal of Cancer Prevention, 2012, 13(3): 995-998.

      [6] 鄭瑩, 吳春曉,張敏璐.乳腺癌在中國的流行狀況和疾病特征[J]. 中國癌癥雜志, 2013, 23(8): 561-569.

      [7] Vargo-Gogola T, Rosen J M. Modelling breast cancer: one size does not fit all[J]. Nature Reviews Cancer, 2007, 7(9): 659-672.

      [8] Akla B, Monteil J, Paraf F, et al. A new orthotopic model of human breast cancer in immunocompetent rats[J]. Anticancer Research, 2003, 23(5A): 3761-3766.

      [9] 龔英, 汪登斌. 兩種MDA-MB-231乳腺癌細(xì)胞原位移植型裸鼠模型制作比較[J]. 上海交通大學(xué)學(xué)報:醫(yī)學(xué)版, 2007, 27(7): 818-821.

      [10] Khanna C, Hunter K. Modeling metastasis in vivo[J]. Carcinogenesis, 2005, 26(3): 513-523.

      [11] Fantozzi A, Christofori G. Mouse models of breast cancer metastasis[J]. Breast Cancer Research, 2006, 8(4): 212.

      [12] Gravekamp C, Sypniewska R, Gauntt S, et al. Behavior of metastatic and nonmetastatic breast tumors in old mice[J]. Experimental Biology and Medicine, 2004, 229(7): 665-675.

      [13] Ottewell P D, Coleman R E, Holen I. From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies[J]. Breast Cancer Research and treatment, 2006, 96(2): 101-113.

      [14] Aslakson C J, Miller F R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor[J]. Cancer Research, 1992, 52(6): 1399-1405.

      [15] Yang J, Mani S A, Donaher J L, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell, 2004, 117(7): 927-939.

      [16] Hurst J, Maniar N, Tombarkiewicz J, et al. A novel model of a metastatic human breast tumour xenograft line[J]. British Journal of Cancer, 1993, 68(2): 274.

      [17] Yoneda T, Michigami T, Yi B, et al. Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma[J]. Cancer, 2000, 88(S12): 2979-2988.

      [18] Miller F R. Tumor subpopulation interactions in metastasis[J]. Invasion & Metastasis, 1983, 3(1): 234-242.

      [19] Miller F R, Miller B E, Heppner G H. Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability[J]. Invasion & Metastasis, 1983, 3(1): 22-31.

      [20] Banka C L, Lund C V, Mai T N N, et al. Estrogen induces lung metastasis through a host compartment-specific response[J]. Cancer Research, 2006, 66(7): 3667-3672.

      [21] Singh M, Ramos I, Asafu-Adjei D, et al. Curcumin improves the therapeutic efficacy of Listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1[J]. Cancer Medicine, 2013, 2(4): 571-582.

      [22] Stead L A, Lash T L, Sobieraj J E, et al. Triple-negative breast cancers are increased in black women regardless of age or body mass index[J]. Breast Cancer Research, 2009, 11(2): R18.

      [23] Cobleigh M A. Other options in the treatment of advanced breast cancer[J]. Seminars in Oncology, 2011, 38(3): S11-S16.

      [24] Li J, Sharkey C C, King M R. Piperlongumine and immune cytokine TRAIL synergize to promote tumor death[J]. Sci Rep, 2015, 5: 9987.

      [25] Dillon R L, Brown S T, Ling C, et al. An EGR2/CITED1 transcription factor complex and the 14-3-3sigma tumor suppressor are involved in regulating ErbB2 expression in a transgenic-mouse model of human breast cancer[J]. Molecular and Cellular Biology, 2007, 27(24): 8648-8657.

      [26] Yang S, Zhang J J, Huang X Y. Mouse models for tumor metastasis[J]. Methods in Molecular Biology, 2012, 928: 221-228.

      [27] Rashid O M, Nagahashi M, Ramachandran S, et al. Resection of the primary tumor improves survival in metastatic breast cancer by reducing overall tumor burden[J]. Surgery, 2013, 153(6): 771-778.

      [28] Alibolandi M, Sadeghi F, Abnous K, et al. The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94: 521-531.

      [29] Yang F, Hu M, Lei Q, et al. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model[J]. Cell Death & Disease, 2015, 6(3): e1701.

      [30] Rashid O M, Nagahashi M, Ramachandran S, et al. An improved syngeneic orthotopic murine model of human breast cancer progression[J]. Breast Cancer Research and Treatment, 2014, 147(3): 501-512.

      [31] Hagemeister F B, Buzdar A U, Luna M A, et al. Causes of death in breast cancer: a clinicopathologic study[J]. Cancer, 1980, 46(1): 162-167.

      [32] Weigelt B, Peterse J L, van L J. Breast cancer metastasis: markers and models[J]. Nature Reviews Cancer, 2005, 5(8): 591-602.

      [33] Ye T, Xiong Y, Yan Y, et al. The anthelmintic drug niclosamide induces apoptosis, impairs metastasis and reduces immunosuppressive cells in breast cancer model[J]. Plos One, 2014, 9(1): e85887.

      [34] Jiang M, Xu X, Bi Y, et al. Systemic inflammation promotes lung metastasis via E-selectin upregulation in mouse breast cancer model[J]. Cancer Biology & Therapy, 2014, 15(6): 789-796.

      [35] Aslakson C J, Miller F R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor[J]. Cancer Research, 1992, 52(6): 1399-1405.

      [36] Torrero M N, Henk W G, Li S. Regression of high-grade malignancy in mice by bleomycin and interleukin-12 electrochemogenetherapy[J]. Clinical Cancer Research, 2006, 12(1): 257-263.

      [37] Minn A J, Gupta G P, Siegel P M, et al. Genes that mediate breast cancer metastasis to lung[J]. Nature, 2005, 436(7050): 518-524.

      [38] Bos P D, Zhang X H, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain[J]. Nature, 2009, 459(7249):1005-1009.

      [39] Harrell J C, Dye W W, Allred D C, et al. Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes[J]. Cancer Research, 2006, 66(18): 9308-9315.

      [40] Qi Q, Gu H, Yang Y, et al. Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis[J]. Journal of Molecular Medicine, 2008, 86(12): 1367-1377.

      [41] Charafe-Jauffret E, Ginestier C, Iovino F, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature[J]. Cancer Research, 2009, 69(4): 1302-1313.

      [42] Lu X, Wang Q, Hu G, et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis[J]. Genes & Development, 2009, 23(16): 1882-1894.

      [43] Soule H D, Vazguez J, Long A, et al. A human cell line from a pleural effusion derived from a breast carcinoma[J]. Journal of the National Cancer Institute, 1973, 51(5): 1409-1416.

      [44] Masood S. Estrogen and progesterone receptors in cytology: a comprehensive review[J]. Diagnostic Cytopathology, 1992, 8(5): 475-491.

      [45] Lee A V, Oesterreich S, Davidson N E. MCF-7 cells--changing the course of breast cancer research and care for 45 years[J]. Journal of the National Cancer Institute, 2015, 107(7): 73.

      [46] Kerbel R S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved[J]. Cancer Biology & Therapy, 2003, 2(4 Suppl 1): 133-138.

      [47] Sausville E A, Burger A M. Contributions of human tumor xenografts to anticancer drug development[J]. Cancer Research, 2006, 66(7): 3351-3354.

      [48] Virginia N, Roskelley C D, Bissell M J. Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells[J]. Journal of Cell Science, 2003, 116(Pt 14): 2975-2986.

      [49] Zhang X, Claerhout S, Prat A, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models[J]. Cancer Research, 2013, 73(15): 4885-4897.

      [50] Jong Soon K, Moo Rim K, Sang-Bae H, et al. Low dose estrogen supplementation reduces mortality of mice in estrogen-dependent human tumor xenograft model[J]. Biological & Pharmaceutical Bulletin, 2009, 32(1): 150-152.

      [51] Dall G, Vieusseux J, Unsworth A, et al. Low dose, low cost estradiol pellets can support MCF-7 tumour growth in nude mice without bladder symptoms[J]. Journal of Cancer, 2015, 6(12): 1331-1336.

      [52] Andrade J E, Ju Y H, Baker C, et al. Long-term exposure to dietary sources of genistein induces estrogen-independence in the human breast cancer (MCF-7) xenograft model[J]. Molecular Nutrition & Food Research, 2015, 59(3): 413-423.

      [53] 齊殿君, 劉冰, 張清富, 等. BALB/C小鼠MCF-7和MDA-MB-231乳腺癌移植模型的建立和評價[J]. 中國慢性病預(yù)防與控制, 2014, 22(1): 84-85.

      [54] Zhang H, Zheng G, Zhang J, et al. Establishment of a nude mouse model of in vivo bioluminescence imaging generated by luciferase-labeled cancer cells[J]. Chinese Journal of Stereology & Image Analysis, 2013,1:18.

      [55] Kaplan R N, Riba R D, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature, 2005, 438(7069): 820-827.

      [56] Radiloff D R, Rinella E S, Threadgill D W. Modeling cancer patient populations in mice: Complex genetic and environmental factors[J]. Drug Discovery Today Disease Models, 2008, 4(2): 83-88.

      [57] Kuperwasser C, Dessain S, Bierbaum B E, et al. A mouse model of human breast cancer metastasis to human bone[J]. Cancer Research, 2005, 65(14): 6130-6138.

      [58] Jonkers J, Derksen P W B. Modeling metastatic breast cancer in mice[J]. Journal of Mammary Gland Biology and Neoplasia, 2007, 12(2-3): 191-203.

      [59] Maglione J E, Moghanaki D, Young L J T, et al. Transgenic Polyoma middle-T mice model premalignant mammary disease[J]. Cancer Research, 2001, 61(22): 8298-8305.

      [60] Lopez J I, Camenisch T D, Stevens M V, et al. CD44 attenuates metastatic invasion during breast cancer progression[J]. Cancer Research, 2005, 65(15): 6755-6763.

      [61] Gouon-Evans V, Rothenberg M E, Pollard J W. Postnatal mammary gland development requires macrophages and eosinophils[J]. Development, 2000, 127(11): 2269-2282.

      [62] Andrade F, Bull H G, Thornberry N A, et al. Adenovirus L4-100K assembly protein is a granzyme B substrate that potently inhibits granzyme B-mediated cell death[J]. Immunity, 2001, 14(6): 751-761.

      [63] Lin E Y, Nguyen A V, Russell R G, et al. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy[J]. The Journal of Experimental Medicine, 2001, 193(6): 727-740.

      [64] Blackburn A C, Jerry D J. Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer? [J]. Breast Cancer Research, 2002, 4(3): 101-112.

      [65] Ye Y, Qiu T H, Kavanaugh C, et al. Molecular mechanisms of breast cancer progression: lessons from mouse mammary cancer models and gene expression profiling[J]. Breast Disease, 2004, 19(1): 69-82.

      [66] Gunther E J, Belka G K, Wertheim G B, et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology[J]. The FASEB Journal, 2002, 16(3): 283-292.

      [67] D'Cruz C M, Gunther E J, Boxer R B, et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations[J]. Nature Medicine, 2001, 7(2): 235-239.

      [68] Kim I S, Baek S H. Mouse models for breast cancer metastasis[J]. Biochemical and Biophysical Research Communications, 2010, 394(3): 443-447.

      [69] Bouchard L, Lamarre L, Tremblay P J, et al. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene[J]. Cell, 1989, 57(6):931-936.

      [70] Siegel P M, Dankort D L, Hardy W R, et al. Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors[J]. Molecular and Cellular Biology, 1994, 14(11):7068-7077.

      [71] Gao Y D, Feng D, Sheridan R P, et al. Modeling assisted rational design of novel, potent, and selective pyrrolopyrimidine DPP-4 inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2007, 17(14):3877-3879.

      [72] Brodie S G, Xu X, Qiao W, et al. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice[J]. Oncogene, 2001, 20(51):7514-7523.

      [收稿2016-04-28;修回2016-05-18]

      (編輯:王福軍)

      [基金項目]國家自然科學(xué)基金資助項目(NO:81460466)。

      [通信作者]陳偉,女,教授,碩士生導(dǎo)師,研究方向:生殖毒理與發(fā)育,E-mail:847428847@qq.com;敖竹君,女,博士,教授,研究方向:艾滋病致病機(jī)理、抗HIV-1 感染及治療策略方面研究,E-mail:ao_zhujun@hotmail.com。

      [中圖法分類號]R737.9

      [文獻(xiàn)標(biāo)志碼]A

      [文章編號]1000-2715(2016)03-0319-07

      Research progress of transplantation and gene engineering type animal models of breast cancer

      ChengYuling1,AoZhujun1,2,ChenWei1

      (1.Department of Histology and Embryology, Zunyi Medical University, Zunyi Guizhou 563099, China; 2.Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg Manitoba R3T 2N2, Canada)

      [Abstract]Breast cancer is the second leading cause of cancer death in women, exceeded only by lung cancer. Development of novel and effectual approaches to prevent tumor regression and metastasis and elucidation of their underlying molecular mechanisms help to reduce the death rates of cancer patients. Breast cancer mouse model is the basis of the study of oncology and allow us to investigate the occurrence, development and treatment of breast cancer. This article will introduce the application of transplantation and gene engineering-type animal models of mouse breast cancer in human breast cancer research, and focus on the limitations of the two animal models system and new methods to overcome the limitations.

      [Key words]breast cancer; animal model; transplantation type;gene engineering type

      猜你喜歡
      動物模型乳腺癌
      肥胖中醫(yī)證候動物模型研究進(jìn)展
      絕經(jīng)了,是否就離乳腺癌越來越遠(yuǎn)呢?
      中老年保健(2022年6期)2022-08-19 01:41:48
      中醫(yī)治療乳腺癌的研究進(jìn)展
      胃癌前病變動物模型復(fù)制實驗進(jìn)展
      潰瘍性結(jié)腸炎動物模型研究進(jìn)展
      乳腺癌是吃出來的嗎
      胸大更容易得乳腺癌嗎
      別逗了,乳腺癌可不分男女老少!
      祝您健康(2018年5期)2018-05-16 17:10:16
      糖尿病性視網(wǎng)膜病變動物模型研究進(jìn)展
      吃錯了 小心得乳腺癌!
      母子健康(2015年1期)2015-02-28 11:22:02
      黔西| 高青县| 磴口县| 衢州市| 韶山市| 雅江县| 眉山市| 通河县| 湖州市| 新乡县| 水富县| 渭源县| 岐山县| 安西县| 陕西省| 青河县| 宁晋县| 华阴市| 若尔盖县| 高唐县| 团风县| 科尔| 阜新市| 马龙县| 偏关县| 宜宾县| 孙吴县| 法库县| 隆子县| 光泽县| 信阳市| 台中县| 阜阳市| 淮安市| 霞浦县| 大兴区| 柞水县| 昌都县| 永德县| 商城县| 大丰市|