邱金友 張 華 余曉明 祁影霞 王 襲 劉占杰
(1 上海理工大學(xué)制冷與低溫工程研究所 上?!?00093;2 海爾集團(tuán)技術(shù)研發(fā)中心 青島 266103)
?
R1234ze(E)在水平圓管內(nèi)流動(dòng)沸騰換熱過(guò)程中摩擦壓降特性實(shí)驗(yàn)研究
邱金友1張 華1余曉明1祁影霞1王 襲2劉占杰2
(1 上海理工大學(xué)制冷與低溫工程研究所上海200093;2 海爾集團(tuán)技術(shù)研發(fā)中心青島266103)
新型制冷劑R1234ze(E)(trans-1, 3, 3, 3-tetrafluoropropene)因較低的GWP而被廣泛關(guān)注,有望在熱泵中作為R134a的替代品。本文對(duì)R1234ze(E)在內(nèi)徑為8 mm水平管內(nèi)流動(dòng)沸騰過(guò)程中摩擦壓降特性進(jìn)行實(shí)驗(yàn)研究,并在相同實(shí)驗(yàn)工況下與R134a進(jìn)行對(duì)比。實(shí)驗(yàn)研究的流動(dòng)沸騰換熱的飽和溫度為10 ℃,熱流密度為5.0 kW/m2和10.0 kW/m2,質(zhì)流密度范圍為300~500 kg/(m2·s),并分析質(zhì)流密度、熱流密度對(duì)R1234ze(E)和R134a飽和流動(dòng)沸騰過(guò)程中摩擦壓降的影響。結(jié)果表明,在相同工況下R1234ze(E)的流動(dòng)沸騰過(guò)程的摩擦壓降略大于R134a,如質(zhì)流密度為500 kg/(m2·s)時(shí),R1234ze(E)的平均摩擦壓降值比R134a大8.4%左右。最后,將實(shí)驗(yàn)結(jié)果同四種摩擦壓降經(jīng)驗(yàn)關(guān)聯(lián)式進(jìn)行比較分析。
R1234ze(E);R134a;水平圓管;流動(dòng)沸騰;摩擦壓降
目前正在大量使用的氫氟烴類制冷劑(Hydrofluorocarbons,縮寫(xiě)HFCs)由于其溫室效應(yīng)潛值(global warming potential,GWP)較高,大量使用會(huì)引起全球氣候變暖[1-2]。全球變暖日益加劇,國(guó)際上已經(jīng)開(kāi)始對(duì)此類物質(zhì)加以管控。2014年歐盟對(duì)F-Gas法規(guī)進(jìn)行修訂[3],對(duì)HFCs的使用給出了消減的時(shí)間節(jié)點(diǎn),從2015年1月1日起,禁止包含HFCs且GWP大于150的家用冰箱和冷凍機(jī)進(jìn)入市場(chǎng);從2022年1月1日起,禁止包含HFCs且GWP大于150工質(zhì)在商用冷藏箱和冷凍箱中使用。這必然帶動(dòng)制冷工質(zhì)從高GWP向低GWP過(guò)渡。
近年來(lái),HFOs(Hydro-Fluoro-Olefins)類物質(zhì)因其優(yōu)越的環(huán)境友好性備受關(guān)注,其中R1234ze(E)可作為家用空調(diào)、熱泵的替代工質(zhì)已初步得到認(rèn)可[4-7]。最新的研究報(bào)告[8]表明R1234ze(E)的GWP小于1。表1列舉R1234ze(E)與R134a的基本熱物性。
已有文獻(xiàn)對(duì)R1234ze(E)的研究主要集中在熱物性[9-10]和直接替代實(shí)驗(yàn)研究[11-13],管內(nèi)流動(dòng)沸騰換熱過(guò)程中摩擦壓降的數(shù)據(jù)相對(duì)較為缺乏。Grauso S等[14]在水平光管中對(duì)R1234ze(E)的流動(dòng)換熱與壓降特性進(jìn)行了初步探索。Hossain M A等[15]在水平管中對(duì)R1234ze(E)、R32、R410A及R1234ze(E)和R32混合物的流動(dòng)沸騰傳熱與壓降特性進(jìn)行了實(shí)驗(yàn)研究和比較。本文在內(nèi)徑為8 mm的水平紫銅管內(nèi)研究R1234ze(E)和R134a飽和流動(dòng)沸騰換熱過(guò)程中摩擦壓降特性,分析質(zhì)流密度、熱流密度和干度對(duì)摩擦壓降的影響,并將實(shí)驗(yàn)數(shù)據(jù)同四種常見(jiàn)的摩擦壓降預(yù)估關(guān)聯(lián)式進(jìn)行比較,找出預(yù)測(cè)效果良好的關(guān)聯(lián)式。
表1R1234ze(E)與R134a的基本物性[16]
Tab.1Physical properties of R1234ze(E) and R134a
制冷劑沸點(diǎn)/K摩爾質(zhì)量/(kg/kmol)臨界溫度/K臨界壓力/MPaODPGWPR-134a247.1102.03374.214.059301430R-1234ze(E)254.2114.04382.523.63630<1
1葉片泵2過(guò)冷段3質(zhì)量流量計(jì)4預(yù)熱段5取樣裝置6實(shí)驗(yàn)段7穩(wěn)壓直流電8電量檢測(cè)儀9油充灌口10冷凝器11制冷機(jī)組12攪拌器13控制器14加熱器 15儲(chǔ)液罐16過(guò)冷循環(huán)泵圖1 實(shí)驗(yàn)裝置系統(tǒng)圖Fig.1 Schematic diagram of the experimental system
實(shí)驗(yàn)系統(tǒng)如圖1所示。儲(chǔ)液罐液態(tài)制冷劑經(jīng)溶液泵加壓分流,一部分通過(guò)實(shí)驗(yàn)循環(huán)回路,另一部分經(jīng)旁通管回到溶液泵,主回路上經(jīng)泵加壓后液態(tài)制冷劑經(jīng)過(guò)冷段以抵消經(jīng)過(guò)溶液泵后焓值的增加,確保進(jìn)入流量計(jì)的是純液態(tài)制冷劑,主回路上制冷劑流量采用科氏力質(zhì)量流量計(jì)測(cè)量。實(shí)驗(yàn)段前設(shè)有預(yù)熱段,控制預(yù)熱段的加熱量并可以控制實(shí)驗(yàn)段入口的干度。經(jīng)實(shí)驗(yàn)段后的制冷劑進(jìn)入恒溫槽中的冷凝盤(pán)管進(jìn)行冷凝,最后回儲(chǔ)液罐完成循環(huán)。實(shí)驗(yàn)段進(jìn)出口分別設(shè)有石英玻璃管,可觀察測(cè)試管段流型。實(shí)驗(yàn)段采用管內(nèi)徑為8 mm,外徑為9.52 mm的銅管。實(shí)驗(yàn)段的進(jìn)出口各安裝一個(gè)絕對(duì)壓力變送器,用于測(cè)量進(jìn)出口壓力。實(shí)驗(yàn)段銅管外纏有電加熱帶,為實(shí)驗(yàn)段提供所需熱量,電加熱帶外依次纏有玻璃纖維布、硅酸鋁保溫棉和隔氣帶,確保與環(huán)境的隔熱效果良好。
2.1 數(shù)據(jù)處理
實(shí)驗(yàn)段流動(dòng)沸騰換熱的總壓降由三部分組成:加速壓降Δpmom、重力壓降Δpstatic和摩擦壓降Δpfrict。本實(shí)驗(yàn)是在水平圓管內(nèi)進(jìn)行,可以忽略重力壓降,Δpstatic=0。
Δptotal=Δpstatic+Δpmom+Δpfrict
(1)
實(shí)驗(yàn)過(guò)程中,工質(zhì)的加速壓降Δpmom一般小于總壓降的5%,可由式(2)確定。
(2)
式中:G為實(shí)驗(yàn)段制冷劑質(zhì)流密度,kg/(m2·s);x為實(shí)驗(yàn)段平均制冷劑干度;ρl和ρv分別是實(shí)驗(yàn)段制冷劑液相和氣相密度,kg/m3;ε為空泡系數(shù),采用Rouhani and Axelsson的空泡系數(shù)計(jì)算方法[16],如式(3)所示。
(3)
式中:g為重力加速度,9.81 m/s2;σ為制冷劑表面張力,N/m。實(shí)驗(yàn)段平均干度的計(jì)算可通過(guò)預(yù)熱器熱平衡計(jì)算得到:
htest,in=xinhtest,v,in+(1-xin)htest,l,in
(4)
htest,out=xouthtest,v,out+(1-xout)htest,l,out
(5)
(6)
(7)
(8)
式中:m為質(zhì)量流量,kg/s;Qpreh為預(yù)熱段加熱量,kW;htest,in和htest,out分別為實(shí)驗(yàn)段進(jìn)出口焓值,kJ/kg;htest,v,in和htest,l,in分別為實(shí)驗(yàn)段進(jìn)口氣相和液相制冷劑焓值,kJ/kg;htest,v,out和htest,l,out分別為實(shí)驗(yàn)段出口氣相和液相制冷劑焓值,kJ/kg。以上數(shù)據(jù)計(jì)算中用到的流體熱物性通過(guò)NIST Refprop V9.0[17]查得。
2.2 測(cè)試工況與測(cè)試儀表
本次實(shí)驗(yàn)的測(cè)試工況如表1所示,質(zhì)流密度范圍為300~500 kg/(m2·s);熱流密度為5.0 kW/m2和10.0 kW/m2;沸騰換熱的飽和溫度為10±0.5 ℃;測(cè)試的制冷劑干度范圍為0.068~0.803。
表1實(shí)驗(yàn)工況
Tab.1Experimental operation conditions
質(zhì)流密度/(kg/(m2·s))熱流密度/(kW/m2)入口干度飽和溫度/℃3005.0、10.00.092~0.80310±0.54005.0、10.00.076~0.78210±0.55005.0、10.00.068~0.75910±0.5
測(cè)試儀表及不確定度如表2所示,溫度采用PT100鉑電阻測(cè)量;實(shí)驗(yàn)段進(jìn)出口壓力采用TMNS-I1壓力傳感器測(cè)量;壓差采用TMNS1151壓差傳感器測(cè)量;質(zhì)量流量采用科氏力質(zhì)量流量計(jì)測(cè)量;功率測(cè)量采用青智8967B綜合電量測(cè)量。
表2測(cè)量系統(tǒng)儀表及其不確定值
Tab.2Measurement instruments and their uncertainties
測(cè)量參數(shù)測(cè)量?jī)x器量程不確定度制冷劑溫度PT100鉑電阻-200~800℃±0.1℃壓力TMNS-I10~2MPa±0.05%FS壓差TMNS11510~40kPa±0.075%質(zhì)量流率科氏力質(zhì)量流量計(jì)0.1~5kg/min±1%RS電量測(cè)量青智8967B5~500V;0.01~40A±0.4%
3.1 實(shí)驗(yàn)結(jié)果
圖2 不同質(zhì)流密度R1234ze(E)摩擦壓降隨干度變化Fig.2 Frictional pressure dorps as a function of vapor quality with different flow fluxes for R1234ze(E)
圖3 不同質(zhì)流密度R134a摩擦壓降隨干度變化Fig.3 Frictional pressure dorps as a function of vapor quality with different flow fluxes for R134a
圖4 質(zhì)流密度G=300 kg/(m2·s)工況下,摩擦壓降實(shí)驗(yàn)數(shù)據(jù)與4種關(guān)聯(lián)式的比較Fig.4 Experimental frictional pressure drop data compared to prediction methods with mass flux of 300 kg/(m2·s)
圖2表示在熱流密度為5 kW/m2和10 kW/m2,質(zhì)流密度分別為300 kg/(m2·s)、400 kg/(m2·s)和500 kg/(m2·s)工況下,R1234ze(E)在水平光管內(nèi)流動(dòng)沸騰換熱過(guò)程中摩擦壓降隨干度的變化趨勢(shì)。由圖可知,隨干度和質(zhì)流密度的增加,R1234ze(E)的摩擦壓降逐漸增大。這是由于,在相同的質(zhì)流密度下,隨著干度的增大制冷劑在圓管內(nèi)的流型由單相流逐漸向泡狀流、塊狀流和環(huán)狀流轉(zhuǎn)變,氣相含量逐漸增加,流速增大,因此摩擦壓降不斷增大。當(dāng)質(zhì)流密度增大時(shí),制冷劑在管內(nèi)的流速增大,摩擦阻力顯然也增大。當(dāng)熱流密度增大時(shí),其對(duì)R1234ze(E)在管內(nèi)流動(dòng)沸騰換熱過(guò)程中的摩擦壓降的變化趨勢(shì)幾乎沒(méi)有明顯的影響,因?yàn)闊崃髅芏茸兓瘯r(shí),其對(duì)制冷劑的物性以及管內(nèi)的流速均沒(méi)有影響,因此對(duì)摩擦壓降的影響可以忽略。圖3表示在與R1234ze(E)相同的運(yùn)行工況下,R134a在水平光管內(nèi)流動(dòng)沸騰換熱過(guò)程中摩擦壓降隨干度的變化趨勢(shì)。由圖可知,R134a在流動(dòng)沸騰換熱過(guò)程中摩擦壓降與R1234ze(E)具有相似的變化規(guī)律,隨干度和質(zhì)流密度的增加,摩擦壓降逐漸增大。由圖3和圖4比較可知,質(zhì)量流量對(duì)R1234ze(E)的影響要大于R134a,如在質(zhì)流密度為500 kg/(m2·s)的工況下,R1234ze(E)的平均摩擦壓降值比R134a大8.4%左右,這是由于在此壓力下R1234ze(E)的氣液密度比(ρv/ρl=0.0114)小于R134a(ρv/ρl=0.0160),導(dǎo)致在相同質(zhì)流密度下,干度增大時(shí),R1234ze(E)的流速的增大值大于R134a,因此在相同質(zhì)流密度工況下,R1234ze(E)的摩擦壓降略大于R134a。
3.2 預(yù)估關(guān)聯(lián)式比較
在已有的文獻(xiàn)中,對(duì)流動(dòng)沸騰換熱過(guò)程中的摩擦壓降的研究,已提出大量理論預(yù)估經(jīng)驗(yàn)關(guān)聯(lián)式,本文選取4種經(jīng)典的關(guān)聯(lián)式進(jìn)行實(shí)驗(yàn)數(shù)據(jù)對(duì)比,分別是Friedel L[18]關(guān)聯(lián)式、Groennerud R[19]關(guān)聯(lián)式、Lockhart R W 等[20]關(guān)聯(lián)式和Mueller-Steinhagen H 等[21]關(guān)聯(lián)式。圖4表示在質(zhì)流密度為300 kg/(m2·s)工況下,R1234ze(E)和R134a的實(shí)驗(yàn)?zāi)Σ翂航禂?shù)據(jù)與4種預(yù)估關(guān)聯(lián)式的比較。由圖4(a)可知,在低質(zhì)流密度300 kg/(m2·s)工況下,Mueller-Steinhagen H等關(guān)聯(lián)式和Friedel L關(guān)聯(lián)式可以較好的預(yù)測(cè)R1234ze(E)摩擦壓降值,平均偏差分別為26.3%和32.4%。由圖4(b)可知,在低質(zhì)流密度300 kg/(m2·s)工況下,Mueller-Steinhagen H關(guān)聯(lián)式可以很好的預(yù)測(cè)R134a摩擦壓降值,平均偏差為6.8%。其它兩種關(guān)聯(lián)式在低質(zhì)流密度300 kg/(m2·s)工況下對(duì)R1234ze(E)和R134a摩擦壓降的預(yù)估值與實(shí)驗(yàn)值偏差較大。
圖5 質(zhì)流密度G=400 kg/(m2·s)工況下,摩擦壓降實(shí)驗(yàn)數(shù)據(jù)與4種關(guān)聯(lián)式的比較Fig.5 Experimental frictional pressure drop data compared to prediction methods with mass flux of 400 kg/(m2·s)
圖5表示在質(zhì)流密度為400 kg/(m2·s)工況下,R1234ze(E)和R134a的實(shí)驗(yàn)?zāi)Σ翂航禂?shù)據(jù)與4種預(yù)估關(guān)聯(lián)式的比較。由圖可知,當(dāng)質(zhì)流密度為400 kg/(m2·s)工況時(shí),Groennerud R關(guān)聯(lián)式和Mueller-Steinhagen H關(guān)聯(lián)式能夠較準(zhǔn)確預(yù)測(cè)R1234ze(E)和R134a摩擦壓降值。對(duì)于R1234ze(E),其預(yù)估值與實(shí)驗(yàn)值的平均偏差分別為28.2%和32.8%;對(duì)于R134a,其預(yù)估值與實(shí)驗(yàn)值的平均偏差分別為26.1%和38.5%。
圖6表示在質(zhì)流密度為500 kg/(m2·s)工況下, R1234ze(E)和R134a的實(shí)驗(yàn)?zāi)Σ翂航禂?shù)據(jù)與4種預(yù)估關(guān)聯(lián)式的比較。由圖可知,當(dāng)質(zhì)流密度為500 kg/(m2·s) 工況時(shí),Groennerud R關(guān)聯(lián)式能夠較準(zhǔn)確預(yù)測(cè)R1234ze(E)和R134a摩擦壓降值。對(duì)R1234ze(E)和R134a的預(yù)測(cè)值與實(shí)驗(yàn)值的平均偏差分別為22.0%和25.5%。
圖6 質(zhì)流密度G=500 kg/(m2·s)工況下,摩擦壓降實(shí)驗(yàn)數(shù)據(jù)與4種關(guān)聯(lián)式的比較Fig.6 Experimental frictional pressure drop data compared to prediction methods with mass flux of 500 kg/(m2·s)
綜上所述,在低質(zhì)流密度工況下,Mueller-Steinhagen H 等關(guān)聯(lián)式的預(yù)估值與實(shí)驗(yàn)值的總體吻合度較好。在中高質(zhì)流密度工況下,Greoennerud R關(guān)聯(lián)式的預(yù)估值與實(shí)驗(yàn)值的總體吻合度較好。其中,Greoennerud R關(guān)聯(lián)式可以較準(zhǔn)確預(yù)測(cè)出摩擦壓降隨干度變化的最大值,此時(shí)干度值為0.8左右,其流型逐漸從環(huán)狀流過(guò)渡到部分干涸流。
本文實(shí)驗(yàn)研究了新型制冷劑R1234ze(E)和R134a在內(nèi)徑為8 mm水平圓管內(nèi)飽和流動(dòng)沸騰換熱過(guò)程中摩擦壓降特性,并將實(shí)驗(yàn)數(shù)據(jù)同四種經(jīng)典摩擦壓降關(guān)聯(lián)式預(yù)估值進(jìn)行比較分析,得出以下結(jié)論:
1)質(zhì)流密度和熱流密度對(duì)R1234ze(E)和R134a流動(dòng)沸騰換熱過(guò)程中摩擦壓降的影響,表明隨著質(zhì)流密度的增加摩擦壓降明顯增強(qiáng);熱流密度的增強(qiáng)對(duì)摩擦壓降幾乎沒(méi)有影響;對(duì)比R1234ze(E)和R134a的摩擦壓降值,表明相同質(zhì)流密度下,R1234ze(E)的摩擦壓降略大于R134a,且隨干度的增大,R1234ze(E)的摩擦壓降增加值也略大于R134a,由于R1234ze(E)的氣液密度比略小于R134a,在干度增大時(shí),相應(yīng)R1234ze(E)的流速增加值大于R134a。
2)摩擦壓降實(shí)驗(yàn)值同預(yù)估關(guān)聯(lián)式比較,結(jié)果表明,在低質(zhì)流密度300 kg/(m2·s)工況下,Mueller-Steinhagen H 等關(guān)聯(lián)式的預(yù)估效果與實(shí)驗(yàn)值的總體吻合度較好。在中高質(zhì)流密度400 kg/(m2·s)和500 kg/(m2·s)工況下,Greoennerud R關(guān)聯(lián)式的預(yù)估效果與實(shí)驗(yàn)值的總體吻合度較好,且Greoennerud R關(guān)聯(lián)式可以較為準(zhǔn)確地預(yù)測(cè)出摩擦壓降隨干度變化的最大值。
本文受上海市研究生創(chuàng)新基金(JWCXSL1401)項(xiàng)目資助。(The project was supported by the Innovation Fund Project for Graduate Student of Shanghai (No. JWCXSL1401).)
[1]李連生.制冷劑替代技術(shù)研究進(jìn)展及發(fā)展趨勢(shì)[J].制冷學(xué)報(bào),2011,32(6):54-57.(LI Liansheng. Research progress on alternative refrigerants and their development trend[J]. Journal of Refrigeration,2011,32(6):54-57.)
[2]馬一太,王偉.制冷劑的替代與延續(xù)技術(shù)[J].制冷學(xué)報(bào),2010,31(5):12-17.(MA Yitai, WANG Wei. Substitution and postponable technology of refrigerants[J]. Journal of Refrigeration,2010,31(5):12-17.)
[3]Regulation(EU) No.517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation(EC) No 842/2006[EB/OL]. Official J. Eur. Union, http://eurlex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.150.01.0195.01.ENG.
[4]Calm J M. The next generation of refrigerants historical review consideration and outlook [J]. International Journal of Refrigeration,2008,31(2):1123-1133.
[5]邱金友,張華,祁影霞,等.新型制冷劑R1234ze(E)及其混合工質(zhì)研究進(jìn)展[J].制冷學(xué)報(bào),2015,36(3):9-16.(QIU Jinyou, ZHANG Hua, QI Yingxia, et al. A study on new refrigerant R1234ze(E) and its mixtures[J]. Journal of Refrigeration, 2015, 36(3):9-16.)
[6]楊昭,吳曦,尹海蛟,等.低溫室效應(yīng)HCFCs替代物性能分析[J].制冷學(xué)報(bào),2011,32(1):1-6.(YANG Zhao,WU Xi,YIN Haijiao,et al.Analysis on alternatives for HCFCs with low greenhouse effect[J]. Journal of Refrigeration,2011,32(1):1-6.)
[7]McLinden M O, Kazakov A F, Brown J S,et al. A thermodynamic analysis of refrigerants:Possibilities and tradeoffs for Low-GWP refrigerants[J]. International Journal of Refrigeration,2014,38(1):80-92.
[8]Wallington T J, Sulbaek Andersen M P ,Nielsen O J. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) main[J]. Chemosphere, 2014,129: 135-141.
[9]Akasaka R. Thermodynamic property models for the difluoromethane (R-32) + trans-1,3,3,3-tetra-fluoropropene (R-1234ze(E)) and difluoromethane +2,3,3,3-tetrafluoropropene (R-1234yf) mixtures[J]. Fluid Phase Equilibria,2013,35(8):98-104.
[10] Brown J S, Zilio C, Cavallini A. Thermodynamic properties of eight fluorinated olefins[J]. International Journal of Refrigeration,2010,33(2):235-241.
[11] Adrian M B,Joaquin N E,Angel B,et al. Theoretical comparison of low GWP alternatives for different refrigeration configurations taking R404A as baseline[J].International Journal of Refrigeration ,2014; 44(1): 81-90.
[12] Adrian M B, Joaquin N E, Angel B, et al. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements[J]. Applied Thermal Engineering, 2014,71(1): 259-265.
[13] Francisco M,Joaquin N E,Bernardo P,et al. Theoretical energy performance evaluation of different single stage vapor compression refrigeration configurations using R1234yf and R1234ze(E) as working fluids[J].International Journal of Refrigeration, 2014,44(1): 141-150.
[14] Grauso S,Mastrullo R,Mauro A W,et al. Flow pattern map,heat transfer and pressure drops during evaporation of R-1234ze(E) and R134a in a horizontal,circular smooth tube:experiments and assessment of predictive methods[J]. International Journal of Refrigeration,2013,36(2):478-491.
[15] Hossain M A,Onaka Y, Afron H M M,et al. Heat transfer during evaporateon of R1234ze(E),R32,R410A and a mixture of R1234ze(E) and R32 inside a horizontal smooth tube[J]. International Journal of Refrigeration,2013,36(2):465-477.
[16] Rouhani S Z, Axelsson E. Calculation of void volume fraction in the subcooled and quality boiling regions [J].International Journal of Heat & Mass Transfer,1970; 13(2): 383-393.
[17] Lemmon E W,Huber M L,McLinden M O. NIST Reference fluids thermodynamic and transport properties-REFPROP 9,standard reference database 23 [DB].National Institute of Standard and Technology,Gaithersburg,MD,USA,2009.
[18] Friedel L. Pressure drop during gas/vapor liquid flow in pipes[J]. International Chemical Engineering, 1980, 20: 352-367.
[19] Groennerud R. Investigation of liquid hold-up, flow resistance and heat transfer in circulation type evaporators, Part IV: two-phase flow resistance in boiling refrigerants[R]. Annexe 1972-1, Bulletin of Institute International du Froid, 1979.
[20] Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase, two component flow in pipes[J]. Chemical Engineering & Processing, 1949, 45: 39-48.
[21] Mueller-Steinhagen H, Heck K S. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering & Processing, 1980, 20(6): 297-308.
About the corresponding author
Qiu Jinyou, male, Ph.D. candidate, Institute of Refrigeration and Cryogenics, University of Shanghai for Science and Technology, +86 21-55275542, E-mail: junior51020@163.com. Research fields: environmental friendly refrigerants, flow boiling heat transfer.
Investigation of Frictional Pressure Drop During Flow Boiling of R1234ze(E) in Horizontal Tube
Qiu Jinyou1Zhang Hua1Yu Xiaoming1Qi Yingxia1Wang Xi2Liu Zhanjie2
(1.Institute of Refrigeration and Cryogenic Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; 2.Haier Group Technology Research Center, Qingdao, 266103, China)
Recently, more attention have been paid to the new refrigerant R1234ze(E), which is supposed to be the most promising alternative of R134a in heat pump system. In this paper, the saturated flow boiling frictional pressure drops characteristics of R1234ze(E) and R134a inside an 8 mm ID horizontal tube were investigated. The experiment were carried out at the saturation temperature of 10 ℃ with heat flux ranging from 5.0 kW/m2to 10.0 kW/m2and mass flux ranging from 300 kg/(m2·s) to 500 kg/(m2·s). The influence of mass flux and heat flux on the frictional pressure drops were examined and discussed. The results show that, the frictional pressure drops of R1234ze(E) are slightly greater than those of R134a. Meanwhile, the experimental data of the frictional pressure drops are compared with four well-known empirical correlations.
R1234ze(E); R134a; horizontal tube; flow boiling; frictional pressure drops
0253-4339(2016) 01-0032-06
10.3969/j.issn.0253-4339.2016.01.032
國(guó)家自然科學(xué)基金(51176124)、國(guó)際科技合作項(xiàng)目(2012DFR70430)資助項(xiàng)目。(The project was supported by the National Natural Science Foundation of China (No.5117612)&International Science and Technology Cooperation Projects(No.2012DFR70430).)
2015年7月3日
TB61+2;TK124
A
簡(jiǎn)介
邱金友,男,博士研究生,上海理工大學(xué)能源與動(dòng)力工程學(xué)院制冷與低溫工程研究所,(021)55275542,E-mail: junior51020@163.com。研究方向:環(huán)保制冷劑、制冷劑管內(nèi)流動(dòng)沸騰換熱。