• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Further research of the eigenvalues of the M/GB/1 operator

      2016-09-15 03:21:04EHMETAblet
      關(guān)鍵詞:排隊(duì)模型重?cái)?shù)財(cái)經(jīng)大學(xué)

      EHMET Ablet

      (College of Application Mathematics, Xinjiang University of Finance and Economics,Urumqi,Xinjiang 830012,China)

      ?

      Further research of the eigenvalues of theM/GB/1 operator

      EHMET Ablet

      (College of Application Mathematics, Xinjiang University of Finance and Economics,Urumqi,Xinjiang 830012,China)

      M/GB/1queueing model; eigenvalue; geometric multiplicity

      1 Introduction

      The following M/GB/1 model is commonly used in queueing theory which can be expressed as (see[1]):

      (1)

      η(x))p0,1(x,t),

      (2)

      η(x))pn,1(x,t)+λpn-1,1(x,t), n≥1,

      (3)

      (4)

      (5)

      p0,0(0)=1, pn,1(x,0)=0, n≥0,

      (6)

      where p0,0(t) represents the probability that at time t the system is empty, pn,1(x,t)dx(n≥1) represents the probability that at time t there are n customers in the system with elapsed service time of the customer undergoing service lying between x and x+dx, B represents the maximum capacity of the service station, and η(x) is the conditional service rate and satisfies

      We will use notations in [2] (see also [5]). For simplicity,we introduce

      Choose the state space X as follows:

      It is obvious that X is a Banach space. Let

      pn,1(x)(n≥0) are absolutely continuous function,

      For p∈D(A),we define

      For p∈X,we define Up=Λp and

      then the above system of equations (1)-(6) can be written as an abstract ordinary differential equation in the Banach space X:

      (7)

      p(0)=(1,0,0,0,…).

      (8)

      papers [2-6] obtained the following results:

      Theorem 1A-U+E generates a C0-semigroup T(t).

      Theorem 20 is an eigenvalue of A-U+E,

      belongs to resolvent set of A-U+E when η(x)=η.Particularly all points on the imaginary axis except for zero belongs to the resolvent set of A-U+E.

      2 Main Results

      (9)

      (10)

      λpn-1,1(x), n≥1

      (11)

      (12)

      (13)

      Solving equation (10) and (11), we can obtain

      p0,1(x)=a0e-(γ+λ+η)x,

      (14)

      pn-1,1(τ)dτ, n≥1.

      (15)

      From (15), we can obtain the following by Fubini theorem

      (16)

      Substituting (14) into (9) yields

      (17)

      Substituting (14), (15) and (16) into (12) and (13) yields

      (18)

      (19)

      From (17), (18) and (19), we can derive

      |a0|<∞,|a1|<∞,|a2|<∞,|a3|<∞.

      Upon making use of (15) and (16) in (13), we can also derive

      ?

      ?

      (20)

      (21)

      (21) can be rewritten as:

      ?

      ?

      (22)

      If we let

      (23)

      then

      (24)

      comparing (22) with (24), we can derive

      ?

      (25)

      ?

      ?

      ?

      (26)

      From (26) and(see Remark)

      we can obtain the following estimation

      (27)

      From (14), (15), (16), (27) and Fubini theorem by noting that

      we can estimate ‖p‖, i.e.,

      (28)

      ?

      Acknowledgments

      The author is grateful to professor Geni Gupur for his constructive criticisms, encouraging comments and helpful suggestions.

      References:

      [1] CHAUDHRY M L,TEMPLETON J G C.A First Course in Bulk Queues[M].New York:John Wiley Sons,1983.

      [2] GUPUR G,LI X Z,ZHU G T.Existence and Uniqueness of Nonnegative Solution of M/GB/1 Queueing Model[J].Computers and Mathematics with Applications,2000(39):199-209.

      [3] GENI G.Resolvent Set of the M/Mk,B/1 Operator[J].Acta Analysis Functionalis Applicata,2004(6):106-121.

      [4] ABDUKERIM H J,AGNES R.Asymptotic Stability of the Solution of the M/MB/1 Queueing Model[J].Computers and Mathematics with Applications,2007(53):1411-1420.

      [5] JIA H,SERIKBOL B.Another Eigenvalue of the M/M2/1 Operator[J].Journal of Xinjiang University(Natural Science Edition),2009(1):60-68.

      [6] ZHANG L,GENI G.Another Eigenvalue of the M/M/1 Operator[J].Acta Analysis Functionalis Applicata,2008(10):81-91.

      1004—5570(2016)04-0045-06

      M/GB/1 算子的特征值的進(jìn)一步研究

      艾合買提·阿不來提

      (新疆財(cái)經(jīng)大學(xué) 應(yīng)用數(shù)學(xué)學(xué)院,新疆 烏魯木齊830012)

      M/GB/1 排隊(duì)模型;特征值;幾何重?cái)?shù)

      O177.92

      A

      2016-04-20

      艾合買提·阿不來提(1981-),男,講師,在讀博士,研究方向: 泛函分析及應(yīng)用,E-mail:ehmetablet@163.com.

      date:2016-04-20

      Supported by the scientific research foundation of Xinjiang University Of Finance and Economics (No: 2015XYB009)

      Biography:Ehmet Ablet(1981-), male, lecture,PHD student, Research direction: Functional analysis and applications,E-mail: ehmetablet@163.com.

      猜你喜歡
      排隊(duì)模型重?cái)?shù)財(cái)經(jīng)大學(xué)
      C3型李代數(shù)的張量積分解
      微分在代數(shù)證明中的兩個(gè)應(yīng)用
      A3型李代數(shù)的張量積分解
      具有備用服務(wù)員和不耐煩顧客的排隊(duì)模型及其仿真
      以較低截?cái)嘀財(cái)?shù)分擔(dān)超平面的亞純映射的唯一性問題
      尋找最美校園 吉林財(cái)經(jīng)大學(xué)
      文苑(2018年19期)2018-11-09 01:30:14
      Research on financing strategy for Small and Medium Enterprises
      基于排隊(duì)模型的封閉小區(qū)道路開放管理可行性研究
      一種收費(fèi)站排隊(duì)模型的模擬實(shí)現(xiàn)
      一類重試率為常數(shù)的M[X]/G/1重試排隊(duì)模型的適定性
      远安县| 雷州市| 弋阳县| 额敏县| 宜州市| 宜章县| 平武县| 日照市| 蛟河市| 民和| 盐山县| 长武县| 新和县| 白山市| 大新县| 吉木乃县| 新野县| 连州市| 仲巴县| 南靖县| 历史| 武隆县| 桓台县| 德钦县| 通榆县| 扎囊县| 清水县| 嘉黎县| 遵义县| 舒城县| 洛扎县| 始兴县| 泸州市| 北宁市| 商水县| 县级市| 洞口县| 中山市| 合山市| 五大连池市| 深州市|