SHEN Wenguo
(Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050, China)
?
Unilateral global bifurcation for fourth-order boundaryvalue problem with non-asymptotic nonlinearity at 0
SHEN Wenguo
(Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050, China)
fourth-orderproblems;unilateralglobalbifurcation;nodalsolutions;non-asymptoticnon-linearityat0
浙江大學學報(理學版),2016,43(5):525-531
LetEbearealBanachspacewiththenorm‖·‖.Considertheoperatorequation
u=λBu+H(λ, u),
(1)
whereBisacompactlinearoperatorandH:R×E→EiscompactwithH=o(‖u‖)atu=0uniformlyonboundedλintervals.
Rabinowitz’sglobalbifurcationtheorem[1]hasshownthatifthecharacteristicvalueμofBisofoddmultiplicityand
thenthereexistsacomponentCμofSthatcontains(μ, 0),whichsatisfies:
Recently,SHEN[3-4]studiedtheexistenceofnodalsolutionsofthefollowingboundaryvalueproblem:
(2)
whereris a positive parameter, under the assumptions:
(A1) One of the following conditions holds:
(A2) h(t) ∈C([0, 1], [0, ∞))withh(t)?0onanysubintervalof[0, 1].
Lemma3[3-4](i)Thelineareigenvalueproblem
(3)
hasauniqueinfinitenumberofpositiveeigenvalues
0<λ1<λ2<…<λk<…→∞,ask→∞,
andtheeigenfunctionψkcorrespondingtoλkhasexactlyk-1zerosin(0, 1).
(ii)Foreachk∈N,thealgebraicmultiplicityofλkis1.
Meanwhile,RABINOWITZ[1]establishedunilateralglobalbifurcationtheory(theorem1.27andtheorem1.40of[1]).However,aspointedoutbyDANCER[2,5]andLPEZ-GMEZ[6],theproofsofthesetheoremscontaingaps.Fortunately,DANCER[2]gaveacorrectedversionoftheunilateralglobalbifurcationtheoremfortheproblem(1)whichhasbeenextendedtotheone-dimensionalp-LaplacianproblembyDAIetal.[7].In2013,DAIetal.[8]establishedaDancer-typeunilateralglobalbifurcationresultforfourth-orderproblemsofthedeformationsofanelasticbeaminequilibriumstatewhichbothendsaresimplysupported.
Motivatedbytheabovepapers,weshallestablishaDancer-typeunilateralglobalbifurcationresultaboutthecontinuumofsolutionsforthedeformationsofanelasticbeaminequilibriumstatewithfixedbothendpointswhichcanbedescribedbythefourth-orderproblems:
x′?+kx″+lx=λh(t)x+g(t,x,λ), 0
x(0)=x(1)=x′(0)=x′(1)=0,
(4)
wherehsatisfies (A2), andg:(0, 1)×R2→Rsatisfies the Carathéodory condition in the first two variables, such that
(5)
uniformly fort∈ (0, 1) andλon bounded sets.
Remark 1Since the problem (2) cannot transform into a system of second-order equation, the treatment method of second-order system does not apply to study the problem (2). Thus, existing literature on the problem (2) by bifurcation theory is limited[3-4,9].
Remark 2For other results on the existence and multiplicity of positive solutions and nodal solutions for other boundary value problems of fourth-order ordinary differential equations based on bifurcation techniques[10-11].
The rest of this paper is arranged as follows. In section 1, we establish the Dancer-type unilateral global bifurcation theory for problem (4). In section 2, we prove the existence of nodal solutions for the problem (2) under the linear growth condition onf.
WedefinethelinearoperatorL:D(L)?E→Y,
Lx=x′?+kx″+lx, x∈ D(L)
withD(L)= {x∈C4[0, 1]|x(0)=x(1)=x′(0)=x′(1)=0}.ThenLisaclosedoperatorandL-1:Y→Eiscompletelycontinuous.
Define the operatorH:R×E→Eby
H(λ,x)(t):=λL-1(hx)+L-1(g(t,x,λ))=
Tλ(x)+L-1(g(t,x,λ)).
It is easy to show thatI-Tλis a nonlinear compact perturbation of the identity. Thus the Leray-Schauder degree deg(I-Tλ,Br(0),0) is well-defined for arbitraryr-ballBr(0) andλ≠λk.
Lemma 4For anyr>0, we have
deg(I-Tλ,Br(0),0)=
ProofSinceTλis compact and linear, by theorem 8.10 of [12],
deg(I-Tλ,Br(0), 0)=(-1)m(λ),
wherem(λ) is the sum of algebraic multiplicity of the eigenvaluesλof (3),satisfyλ-1λk<1.
Ifλ∈ [0,λ1), by lemma 3, then there are no suchλat all, then
deg(I-Tλ,Br(0), 0)=(-1)0=1.
Ifλ∈(λk,λk+1) for somek∈N, then
(λj)-1>1,j∈{1, 2,…,k}.
By lemma 3, we obtain
deg(I-Tλ,Br(0), 0)=(-1)k.
Furthermore, it is clear that problem (4) can be equivalently written as
x=H(λ,x)(t).
Clearly,His completely continuous fromR×E→EandH(λ, 0)=0, ?λ∈R.
Let
(6)
(7)
uniformlyfort∈ (0, 1)andλonboundedsets.
Theorem1Assume(A1), (A2)and(5)hold.Then
(i) (λk, 0)isabifurcationpointoftheproblem(4).
Proof(i)Supposethat(λk, 0)isnotabifurcationpointofproblem(4).Thenthereexistε> 0,ρ0>0suchthatfor|λ-λk|≤εand0<ρ<ρ0thereisnonontrivialsolutionoftheequation
x-H(λ, x)=0
with‖x‖=ρ.Fromtheinvarianceofthedegreeunderacompacthomo-topology,weobtainthat
deg(I-H(λ, ·),Bρ(0), 0)≡constant
(8)
forλ∈[λk-ε,λk+ε].
By takingεsmaller if necessary, we can assume that there is no eigenvalue of (3) inλ∈(λk,λk+ε]. Fixλ∈(λk,λk+ε]. We claim that the equation
x-(λL-1(hx)+τL-1(g(t,x,λ)))=0
(9)hasnosolutionxwith‖x‖=ρforeveryτ∈[0, 1]andρsufficientlysmall.Supposeonthecontrary,let{xn}bethesolutionof(9)with‖xn‖→0asn →+∞.
(10)
By(7), (10)andthecompactnessofL-1,choosingasubsequenceandrelabelingifnecessary,itfollowsthatyn→y0asn→∞.Thus
Ly0=λhy0and‖y0‖E=1.
Thisimpliesthatλisaneigenvalueof(3).Thisisacontradiction.Fromtheinvarianceofthedegreeunderhomo-topologyandlemma4,thenobtain
deg(I- H(λ, ·),Bρ(0), 0)=
deg(Ψλ,Bρ(0), 0)=(-1)k.
(11)
Similarly, forλ∈[λk-ε,λk), we find that
deg(I-H(λ, ·),Bρ(0), 0)=(-1)k-1.
(12)
Relations (11) and (12) contradicts (8) and hence (λk, 0) is a bifurcation point of problem (4).
(ii) By (7), we have that
(13)
uniformlyt∈(0, 1) andλon bounded sets. Furthermore, by (ii) of lemma 3, applying lemma 2, we can obtain the result.
(14)
By(7), (14)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequenceym→y0asm→+∞.Nowy0verifiestheequation
Ly0=λjhy0and‖y0‖E=1.
Hencey0∈SjwhichisanopensetinE,andasaconsequenceforsomemlargeenough, ym∈Sj,andthisisacontradiction.
Lemma6If(λ, u)isasolutionof(4)andx∈?Sk,thenx≡0.
ProofBytheproofoftheorem3.1in[13] (seecorollary1.12andtheproofoftheorem2.3togetherwiththeremarkfollowingthatproofin[1]),weeasilyobtaintheresult.
Bytheorem1andlemma5,wecaneasilydeducethefollowingDancer-typeunilateralglobalbifurcationresult.
(15)
(16)
By(7), (16)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequencezm→z0asm→+∞.Nowz0verifiestheequation
Lz0=λjhz0and‖z0‖E=1.
(17)
By(7), (17)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequenceyn→y0≠0asn→+∞.Nowy0verifiestheequation
Ly0=λ*h(t)y0(t), t∈(0,1)and‖y0‖E=1.
Inordertotreatthecasef0=∞,weshallneedthefollowinglemma.
Definition1[14]LetXbeaBanachspaceand{Cn|n=1,2,…}beafamilyofsubsetsofX.ThenthesuperiorlimitDof{Cn}isdefinedby
suchthatxni→x}.
(18)
Lemma 7[14]Each connected subset of metric spaceXis contained in a component, and each connected component ofXis closed.
Lemma 8[15]LetXbe a Banach space and let {Cn|n=1, 2,…} be a family of closed connected subsets ofX. Assume that
(i) there existszn∈Cn,n=1, 2,… andz*∈X, such thatzn→z*;
(ii)rn=sup{‖x‖|x∈Cn}=∞;
BR={x∈X|‖x‖≤R}.
ThenthereexistsanunboundedconnectedcomponentCinDandz*∈C.
Inordertoprovethemainresults,theconditions(A1), (A2)andthefollowingconditionsaresatisfiedinthefollowingpart:
(H1) f∈C(R, R)satisfiesf(s)s>0fors≠0.
Theorem3Let(A1), (A2), (H1), (H2)and(H3)hold.Assumefollowingconditionholdsforsomek∈N:
Theorem4Let(A1), (A2), (H1), (H2)and(H3)hold.Assumefollowingconditionholdsforsomek, n∈Nwithk≤n:
Proofoftheorem3Firstly,westudythebifurcationphenomenaforthefollowingeigenvalueproblem:
(19)
whereλ>0isaparameter.Itisclearthatanysolutionof(19)oftheform(1,x)yieldssolutionsxof(2).
Foreachn∈N,definef[n](s):R→Rby
Clearly,by(H2),wehave
Nowconsidertheauxiliaryfamilyoftheequations
(20)
Letζ[n]∈C(R, R)suchthat
(21)
Then
(22)
Letusconsider
(23)asabifurcationproblemfromthetrivialsolutionx≡0.
Equation(23)canbeconvertedtotheequivalentequation
x:=λL-1[a[n](·)x(·)](t)+
λL-1[ζ[n](·x(·))](t).
(24)
Clearly, ‖L-1[ζ[n](·,x(·))]‖E=o(‖x‖E),as‖x‖E→0.
Since
λn+‖xn‖→∞.
If
then
andmoreover,
AssumethatthereexistsaconstantnumberM>0suchthatforalln∈N,
λn∈ (0,M],
Inthiscase,itfollowsthat‖xn‖E→∞.
Letξ∈C(R, R)suchthat
f(x)= f∞x+ξ(x).
Then
Let
(25)
Wedividetheequation
(26)
since
Thus
y′?+ky″+ly=λra(t)f∞y.
Weclaimthat
Proofofthetheorem4Usingthesimilarproofwiththatoftheorem3,wecanobtaintheresult.
[1]RABINOWITZPH.Someglobalresultsfornonlineareigenvalueproblems[J].JFunctAnal,1971(7):487-513.
[2]DANCER E N. On the structure of solutions of non-linear eigenvalue problems[J]. Indiana University Math J,1974,23:1069-1076.
[3]SHEN W G. Global structure of nodal solutions for a fourth-order two-point boundary value problem[J]. Applied Mathematics and Computation,2012,219(1):88-98.
[4]SHEN W G. Existence of nodal solutions of a nonlinear fourth-order two-point boundary value problem[J]. Boundary Value Problems,2012,2012(1):1-18.doi:10.1186/1687-2770-2012-31.
[5]DANCER E N. Bifurcation from simple eigenvaluses and eigenvalues of geometric multiplicity one[J]. Bull Lond Math Soc,2002, 34:533-538.
Hall,2001.
[7]DAI G W, MA R Y. Unilateral global bifurcation phenomena and nodal solutions forp-Laplacian[J]. J Differ Equ,2012,252:2448-2468.
[8]DAI G W, HAN X L. Global bifurcation and nodal solutions for fourth-order problems with sign-changing weight[J]. Applied Mathematics and Computation,2013,219:9399-9407.
[9]KORMAN P. Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems[J]. Proceedings of the Royal Society of Edinburgh A,2004,134(1):179-190.
[10]MA R Y, GAO C H, HAN X L. On linear and nonlinear fourth-order eigenvalue problems with indefinite weight[J]. Nonlinear Anal Theory Methods Appl,2011,74(18):6965-6969.
[11]MA R Y, GAO C H. Nodal solutions of a nonlinear eigenvalue problem of the Euler-Bernoulli equation[J]. Math Anal Appl,2012,387(2):1160-1166.
[12]DEIMLING K. Nonlinear Functional Analysis[M]. New York: Springer-Verlag,1987.
[13]RYNNE B P. Global bifurcation for 2mth-order boundary value problems and infinitely many solu-tions of superlinear problems[J]. J Differential Equations,2003,188:461-472.
[14]WHYBURN G T. Topological Analysis, Princeton Mathematical Series No.23[M]. New Jersey: Princeton University Press,1958.
[15]MA R Y, AN Y L. Global structure of positive for superlinear second-orderm-point boundary value problems[J]. Topological Methods in Nonlinear Analysis,2009,34(2):279-290.
10.3785/j.issn.1008-9497.2016.05.005
非線性項在零點非漸進增長的四階邊值問題單側(cè)全局分歧.
沈文國
(蘭州工業(yè)學院, 基礎(chǔ)學科部, 甘肅 蘭州 730050)
四階問題;單側(cè)全局分歧;結(jié)點解;非線性項在零點非漸進增長
O175.8
A
1008-9497(2016)05-525-07
date:August 1,2015.
Supported by the National Natural Science Foundation of China (11561038); the Gansu Provincial Natural Science Foundation(145RJZA087).
About the author:SHEN Wenguo (1963-), ORCID:http://orcid.org/0000-0001-7323-1887, Doctor, Professor, the field of interest is nonlinear functional differential equations,E-mail: shenwg369@163.com.