杜新,胡揚(yáng),王金龍
(長春理工大學(xué) 機(jī)電工程學(xué)院,長春 130022)
考慮水膜結(jié)構(gòu)的PEMFC團(tuán)聚體二相流模型
杜新,胡揚(yáng),王金龍
(長春理工大學(xué)機(jī)電工程學(xué)院,長春130022)
液態(tài)水對(duì)催化層的影響是目前PEMFC的研究熱點(diǎn)之一。團(tuán)聚體模型是催化層研究中廣泛采用的一種復(fù)雜模型,但目前的研究多集中在液態(tài)水對(duì)催化層孔隙率的影響,對(duì)團(tuán)聚體模型的影響卻很少。本文引入液態(tài)水對(duì)團(tuán)聚體自身結(jié)構(gòu)的影響,建立了能更加準(zhǔn)確反映催化層結(jié)構(gòu)參數(shù)影響的二維、氣液二相變的陰極模型。計(jì)算分析結(jié)果顯示液態(tài)水在團(tuán)聚體表面形成水膜會(huì)阻礙氧氣的擴(kuò)散,從而導(dǎo)致在大電流密度(>5000A/m2)時(shí),PEMFC極化曲線會(huì)快速下降,同時(shí)極限電流密度減小。
質(zhì)子交換膜燃料電池(PEMFC);團(tuán)聚體催化層;二相流;液態(tài)水;水膜
隨著對(duì)清潔能源需求的迅速增長,燃料電池(PEMFC)的研發(fā)進(jìn)展迅速[1]。近年來,液態(tài)水對(duì)催化層內(nèi)的物質(zhì)傳遞、化學(xué)反應(yīng)快慢以及電池性能的影響成為研究熱點(diǎn)之一。團(tuán)聚體模型是催化層研究中廣泛采用的一種復(fù)雜模型,但目前的研究多集中在液態(tài)水對(duì)催化層孔隙率的影響,關(guān)于對(duì)團(tuán)聚體模型影響的研究卻很少。本文引入液態(tài)水對(duì)團(tuán)聚體自身結(jié)構(gòu)的影響,建立一種新型的帶水膜結(jié)構(gòu)的團(tuán)聚體模型,可以更準(zhǔn)確地分析大電流密度下的電池工作狀態(tài),為改進(jìn)電池制造工藝提供更真實(shí)的數(shù)據(jù)。
1.1工作原理
氫氣進(jìn)入陽極雙極板上的流道,經(jīng)陽極氣體擴(kuò)散層的充分?jǐn)U散后到達(dá)陽極催化層,在催化劑的作用下發(fā)生反應(yīng),接著生成的H+進(jìn)入并通過質(zhì)子交換膜,到達(dá)陰極催化層,在此與經(jīng)過陰極流道、陰極氣體擴(kuò)散層到達(dá)陰極催化層的氧氣在催化劑的作用下發(fā)生反應(yīng)[2]。
1.2模型假設(shè)
為簡化計(jì)算,本文假設(shè):(1)所有氣體均認(rèn)為是不可壓縮的理想氣體;(2)燃料電池處于穩(wěn)態(tài);(3)忽略模型中陽極活化極化的影響;(4)燃料電池的整個(gè)反應(yīng)中處于恒溫;(5)模型為二維模型。
1.3PEMFC極化模型建立
考慮催化層結(jié)構(gòu)的二維、氣液二相變電池陰極控制方程:
式中ωi為各物質(zhì)的質(zhì)量分?jǐn)?shù),Dij為擴(kuò)散系數(shù),組分i和 j在陰極代表O2、N2、H2O,在陽極是H2、H2O,Mj為各物質(zhì)的摩爾質(zhì)量,ρ為密度,反應(yīng)原項(xiàng)Ri=-?·i/nF,?·i是體電流密度,n是參與反應(yīng)的電子數(shù),F(xiàn)是法拉第常數(shù)數(shù),σm、σs分別為催化層中離子和電子的電導(dǎo)率,?·i由Butler-Volmer方程決定:
氣液二相變方程引用Lei Xing等[3]的控制方程和源項(xiàng):
式中Dc為體擴(kuò)散系數(shù),Slh2o為源項(xiàng)。
圖1 團(tuán)聚體小球表面形成的電解質(zhì)膜和水膜宏觀結(jié)構(gòu)
圖1中所示的水膜厚度為式中N為團(tuán)聚體數(shù)量,s為水的飽和度,ragg為團(tuán)聚體半徑,δ為電解質(zhì)膜厚度。
1.4PEMFC模型邊界設(shè)定
在通道-擴(kuò)散層入口邊界,給定氣體壓力(P),溫度(T),相對(duì)濕度(RH),從而計(jì)算出水蒸氣、氫氣、氧氣、氮?dú)獾某跏寄栙|(zhì)量,水的飽和度設(shè)為零。在陰極催化層-質(zhì)子交換膜邊界,氧氣的通量、氮?dú)獾耐吭O(shè)為零,電解質(zhì)電勢為給定值。在陰極擴(kuò)散層-雙極板邊界,電勢設(shè)為零。
本文給定電解質(zhì)電勢,求電流,從而得出PEMFC極化曲線。PEMFC的輸出電壓Vcell受Enerst(熱力學(xué)電動(dòng)勢)、ηact(活化過電壓)、ηohm(歐姆過電壓)和ηcon(濃差過電壓)的影響,如式(7)所示:
2.1模型結(jié)果
本文選用了Secanell M[4]的文章內(nèi)一些基本參數(shù),引入液態(tài)水對(duì)團(tuán)聚體自身結(jié)構(gòu)的影響,得出結(jié)果與實(shí)驗(yàn)結(jié)果[5]符合良好,如圖2所示。模型中一些參數(shù)如表1所示。
圖2 考慮水膜的團(tuán)聚體模型和液態(tài)水模型極化曲線
表1 模型中一些參數(shù)
2.2討論
圖2所示為引入水膜的新型團(tuán)聚體模型和改進(jìn)前的團(tuán)聚體模型的電池性能曲線??梢钥吹剑?dāng)輸出電流密度較小時(shí)(<5000A/m2),兩者差別不大;此后,隨著電流密度的增加,新型團(tuán)聚體模型的輸出電壓迅速降低,極限電流密度小于改進(jìn)前的模型。新模型的結(jié)果更加接近實(shí)驗(yàn)數(shù)據(jù),證明液態(tài)水不僅對(duì)催化層孔隙率影響,其對(duì)團(tuán)聚體自身結(jié)構(gòu)的影響也不可忽略。
圖3所示為相同輸入條件下,兩種模型的氧氣摩爾濃度分布。在催化層內(nèi)的同一位置,考慮水膜的新模型的氧氣摩爾濃度要高于無水膜模型的濃度。由于液態(tài)水在催化層的存在,因此會(huì)在團(tuán)聚體表面形成一層薄水膜,氧氣需要先溶解到液態(tài)水中,才能進(jìn)一步溶解到電解質(zhì)中。液態(tài)水膜降低了到達(dá)催化劑表面的氧氣濃度,使電池反應(yīng)速率降低,進(jìn)而降低輸出電壓。團(tuán)聚體上的水膜會(huì)對(duì)氧氣擴(kuò)散到團(tuán)聚體表面參與電化學(xué)反應(yīng)形成阻礙作用力。
圖3 不考慮水膜模型和考慮水膜模型氧氣摩爾濃度分布
圖4給出了過電壓不斷增大時(shí)水膜厚度(nm)的變化情況??梢钥吹?,這層水膜的厚度隨過電壓的增大而增大。因此,大電流密度下,電池輸出電壓會(huì)迅速降低,直至截止。
圖4 不同電解質(zhì)電勢時(shí)催化層中水膜的厚度分布
本文引入液態(tài)水對(duì)團(tuán)聚體自身結(jié)構(gòu)的影響,建立了能更加準(zhǔn)確反映催化層結(jié)構(gòu)參數(shù)影響的二維、氣液二相變的陰極模型。得出液態(tài)水不僅對(duì)催化層孔隙率有影響,其對(duì)團(tuán)聚體自身結(jié)構(gòu)的影響也不可忽略;水膜的厚度隨過電壓的增大而增大,并且增大趨勢逐步減?。豢紤]液態(tài)水對(duì)團(tuán)聚體自身影響時(shí),大電流密度下輸出電壓會(huì)快速下降,極限電流密度減小。
[1]Ryan,O’Hayre,車碩源,等.王曉紅等譯.燃料電池基礎(chǔ)[M].北京:電子工業(yè)出版社,2007.
[2]衣寶廉.燃料電池技術(shù)—原理·技術(shù)·應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2003.
[3]LeiXing,LiuXiaoteng,TaiwoAlaje,etal.A two-Phaseflowandnon-isothermalagglomerate model for a proton exchange membrane(PEM)fuel cell[J].International Journal of Hydrogen Energy,2014,73(5):618-634.
[4]Secanell M,Karan K,Suleman A,et al.Multi-variable optimization of PEMFC cathodes using an agglomerate model[J].Electrochimica Acta,2007,52 (7):6318-6337.
[5]Lin Wang,Attila Husar,Zhou Tianhong,et al.A parametricstudyofPEMfuelcellperformances [J].International Journal of Hydrogen Energy,2003,28(11):1263-1272.
Two-phase Flow Model of Proton Exchange Membrane Fuel Cell Based on Agglomerate Catalyst Layer with Liquid Water Membrane
DU Xin,HU Yang,WANG Jinlong
(School of Mechatronical Engineering,Changchun University of Science and Technology,Changchun 130022)
The effect of liquid water on the catalyst layer is one of the hot spots of PEMFC.The agglomerate model is widely used in complex models.However,the current research focused on the effect of liquid water on the porosity of the catalyst layer,but little impact on the agglomerate model.In this paper,the effect of liquid water on the structure of agglomerate is introduced,a two dimensional gas liquid two-phase flow with structure parameters of agglomerate catalyst cathode model is established.The results show that the water film that surrounding the agglomerate surface can hinder the diffusion of oxygen,which leads to the rapid decrease of the output voltage of PEMFC polarization curve at high current density(>5000A/m2) and the limited current density will be drop.
proton exchange membrane fuel cell(PEMFC);agglomerate catalyst layer;two-phase flow;liquid water;water film
TM911
A
1672-9870(2016)03-0070-03
2015-12-29
吉林省科技廳科研項(xiàng)目(20150204009SF)
杜新(1975-),男,博士,講師,E-mail:duxin225@sina.com