龔金科 陳長(zhǎng)友 胡遼平 楊迪 劉冠麟
摘 要:采用發(fā)動(dòng)機(jī)性能仿真軟件GT-power建立了帶廢氣旁通閥電控系統(tǒng)的渦輪增壓汽油機(jī)模型,基于增壓壓力隨旁通閥開度變化的情況,確定了控制系統(tǒng)的特性參數(shù)值.根據(jù)不同增壓壓力下渦前壓力的變化規(guī)律以及汽油機(jī)動(dòng)力性能的要求對(duì)廢氣旁通閥開度進(jìn)行標(biāo)定,分析了增壓器與汽油機(jī)聯(lián)合運(yùn)行性能并進(jìn)行了實(shí)驗(yàn)驗(yàn)證.結(jié)果表明,選配的小尺寸渦輪確保了汽油機(jī)的低速性能;建立的控制系統(tǒng)實(shí)現(xiàn)了對(duì)增壓壓力多目標(biāo)值的連續(xù)控制,高速時(shí)沒有發(fā)生因增壓壓力過高而導(dǎo)致爆燃和增壓器超速的現(xiàn)象.
關(guān)鍵詞:汽油機(jī);渦輪增壓器;電控旁通閥;匹配;數(shù)值仿真
中圖分類號(hào):TK411.8 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract: A simulation model of turbocharged gasoline engine with electronically controlled waste valve system was built with the software of GT-power. Based on the condition of boost pressure changing with the waste valve opening, characteristic values of the control system were obtained. According to the change rules of exhaust back pressure under different boost pressures, the waste valve opening was calibrated on the basis of the requirements of power performance of the engine, the matching performance between the turbocharger and the gasoline engine was analyzed, and then, test verification was conducted.The results have shown that matching a small diameter turbine can ensure the engine performance at low speed condition; the electronically controlled system can realize the continuous control of boost pressure target value; and the problems of deflagration and turbocharger super speed caused by too high boost pressures can be resolved at high speed conditions.
Key words:gasoline engine; turbochargers; electronically controlled waste valve; matching; numerical simulation
渦輪增壓已成為發(fā)展內(nèi)燃機(jī)節(jié)能減排的關(guān)鍵技術(shù)之一,而汽油機(jī)采用渦輪增壓技術(shù)卻容易出現(xiàn)低速增壓壓力不足和高速增壓壓力過高的情況,為改善渦輪增壓器的響應(yīng)特性,國(guó)內(nèi)外研究者已提出了采用可變噴嘴渦輪增壓、電輔助渦輪增壓、二級(jí)渦輪增壓、廢氣旁通渦輪增壓、蒸汽輔助渦輪增壓等技術(shù)[1-5].采用廢氣旁通閥渦輪增壓器與汽油機(jī)匹配時(shí),高速工況下采用廢氣旁通的方法改善增壓壓力過高的情況,機(jī)械控制的廢氣旁通閥不能根據(jù)工況的變化調(diào)整放氣量,要實(shí)現(xiàn)發(fā)動(dòng)機(jī)各工況下對(duì)目標(biāo)增壓壓力的理想控制通常采用電磁廢氣旁通閥.由于旁通閥的開度會(huì)影響渦輪前排氣壓力,進(jìn)而會(huì)導(dǎo)致進(jìn)氣壓力的變化,因此對(duì)汽油機(jī)與電控旁通閥渦輪增壓器的標(biāo)定匹配進(jìn)行計(jì)算研究具有十分重要的理論和實(shí)際意義.
本文使用發(fā)動(dòng)機(jī)性能仿真軟件GT-power建立了電控旁通閥渦輪增壓汽油機(jī)模型;利用建立的PID Controller模塊對(duì)旁通閥執(zhí)行閉環(huán)控制,實(shí)現(xiàn)了對(duì)多目標(biāo)增壓壓力的控制;對(duì)發(fā)動(dòng)機(jī)與電控執(zhí)行器參數(shù)進(jìn)行標(biāo)定,避免了爆燃以及增壓器喘振和超速現(xiàn)象;得出外特性各轉(zhuǎn)速目標(biāo)增壓壓力下的功率、轉(zhuǎn)矩、燃油消耗率,并對(duì)仿真結(jié)果進(jìn)行了實(shí)驗(yàn)驗(yàn)證,為渦輪增壓器與發(fā)動(dòng)機(jī)匹配性能優(yōu)化提供了參考依據(jù).
1 發(fā)動(dòng)機(jī)模型的建立
1.1 發(fā)動(dòng)機(jī)基本參數(shù)
研究采用的機(jī)型為0.8 L電控渦輪增壓汽油機(jī),該發(fā)動(dòng)機(jī)的基本結(jié)構(gòu)參數(shù)如表1所示.
1.2 發(fā)動(dòng)機(jī)本體建模
渦輪增壓汽油機(jī)模型如圖1所示,該模型是結(jié)合實(shí)際增壓汽油機(jī)的構(gòu)造和布置,依次將進(jìn)氣環(huán)境端、中冷器、進(jìn)氣管路、氣缸、噴油器、曲軸箱、排氣管路、排氣環(huán)境端等用相應(yīng)的節(jié)流模塊進(jìn)行連接,按照增壓汽油機(jī)的實(shí)際結(jié)構(gòu)尺寸對(duì)進(jìn)排氣系統(tǒng)、中冷器、進(jìn)排氣門、氣缸、噴油嘴、曲軸箱等模塊參數(shù)進(jìn)行設(shè)置,其中,進(jìn)排氣門升程曲線、噴油正時(shí)、燃燒模型等由已知數(shù)據(jù)直接輸入,燃燒模型采用雙韋伯燃燒模型,機(jī)械損失采用D.E.Winterbone經(jīng)驗(yàn)公式進(jìn)行計(jì)算.空濾器、尾氣后處理系統(tǒng)和消聲器等部件在模型中使用壓力損失元件計(jì)算其對(duì)發(fā)動(dòng)機(jī)動(dòng)力性能的影響[6].進(jìn)排氣道流量系數(shù)由試驗(yàn)參數(shù)標(biāo)定,由于缸內(nèi)壓力的變化和氣流的影響,燃燒持續(xù)期會(huì)有所不同,根據(jù)相關(guān)文獻(xiàn)和經(jīng)驗(yàn)公式,將發(fā)動(dòng)機(jī)全負(fù)荷下的空燃比設(shè)為12∶1,通過對(duì)氣門正時(shí)的調(diào)整來調(diào)節(jié)進(jìn)氣量,改變各轉(zhuǎn)速下燃料燃燒50%對(duì)應(yīng)的曲軸轉(zhuǎn)角來調(diào)整發(fā)動(dòng)機(jī)的功率輸出.
1.3 渦輪增壓器廢氣旁通閥電控系統(tǒng)建模
渦輪增壓器廢氣旁通閥電控系統(tǒng)模型如圖2所示.
建立的PID Controller模塊是基于增壓壓力的閉環(huán)控制,控制系統(tǒng)采用增量式數(shù)字PID算法與PWM方式相結(jié)合的方法對(duì)旁通閥開度進(jìn)行控制.