楊 賀 張 虎 李 麗 黃小紅 王日騰
(中國(guó)原子能科學(xué)研究院 放射化學(xué)研究所 北京 102413)
硝酸肼還原反萃取分離镎/钚的研究
楊 賀張 虎李 麗黃小紅王日騰
(中國(guó)原子能科學(xué)研究院 放射化學(xué)研究所北京 102413)
镎的提取和分離是國(guó)際后處理領(lǐng)域重點(diǎn)關(guān)注的研究課題之一。在Purex流程中,硝酸肼常被用來(lái)作為亞硝酸的清掃劑,此外,由于硝酸肼對(duì)Np(VI)和Pu(IV)的氧化還原反應(yīng)具有選擇性,理論上可以利用其反應(yīng)速率上的差異來(lái)實(shí)現(xiàn)镎與鈾钚的分離。為探索硝酸肼分離镎/钚工藝提供可行性,本文采用單級(jí)萃取設(shè)備研究了硝酸肼還原反萃Np和Pu的過(guò)程。通過(guò)研究硝酸濃度、硝酸肼濃度和反應(yīng)溫度對(duì)還原反萃過(guò)程的影響,確定了Np(VI)和Pu(IV)反萃動(dòng)力學(xué)方程和表現(xiàn)活化能。進(jìn)一步通過(guò)動(dòng)力學(xué)方程得出硝酸肼還原反萃Np(VI)和Pu(IV)的半反應(yīng)時(shí)間,并對(duì) Np(VI)/Pu(IV)分離過(guò)程的工藝進(jìn)行了初步探索。
硝酸肼,還原反萃,分離镎钚
镎是后處理中僅次于鈾和钚的重要核材料[1]。從環(huán)境、安全和資源利用等方面考慮,后處理中實(shí)現(xiàn)對(duì)镎的分離和回收具有重要意義。目前,商業(yè)后處理廠均采用水法Purex流程進(jìn)行乏燃料后處理。由于镎的化學(xué)性質(zhì)復(fù)雜,其在Purex流程中的走向分散,這給镎的分離和回收帶來(lái)許多困難。近年來(lái),隨著動(dòng)力堆燃耗的不斷提高,美國(guó)、法國(guó)、日本、印度等許多國(guó)家針對(duì)高燃耗乏燃料開展了先進(jìn)Purex流程的研究[2]。先進(jìn)Purex流程中的一個(gè)重要特點(diǎn)是將镎與鈾钚共同萃取,避免镎進(jìn)入高放廢液,并實(shí)現(xiàn)镎的全分離和回收。在先進(jìn)Purex流程中,镎與鈾钚共萃取后的走向有多種選擇,例如將镎與鈾钚共反萃,所得產(chǎn)品可用于快堆燃料,如果將镎與鈾钚分離則可以簡(jiǎn)化流程,降低后續(xù)純化鈾和钚的難度。針對(duì)镎與鈾钚的分離,近年來(lái)的研究發(fā)現(xiàn)肼類衍生物對(duì)Np(VI)和Pu(IV)的氧化還原反應(yīng)具有明顯的選擇性,它們還原Np(VI)的反應(yīng)速度明顯快于與Pu(IV)的反應(yīng),利用這一特性,有望達(dá)到镎與鈾钚分離的目的[3-4]。Yasutoshi等[5-6]以烯丙基肼為還原劑進(jìn)行了镎與鈾钚的分離實(shí)驗(yàn),水相產(chǎn)品中含有91%的Np、1%的Pu和0.004%的U。張先業(yè)等[7-8]研究了甲基肼還原Np(VI)的動(dòng)力學(xué)研究,并開展了U-Np分離工藝的相關(guān)研究。
目前,關(guān)于水相中肼類衍生物還原Np(VI)和Pu(IV)反應(yīng)機(jī)理、動(dòng)力學(xué)等方面的研究已經(jīng)有大量文獻(xiàn)報(bào)道[9-10]。與水相還原過(guò)程相比,兩相還原反萃過(guò)程除了镎钚還原過(guò)程外,還包含了镎钚在兩相間分配過(guò)程,更貼近實(shí)際工藝過(guò)程。因此,研究Np(VI)和Pu(IV)的還原反萃過(guò)程對(duì)實(shí)際工藝具有重要的指導(dǎo)作用?;谝陨舷敕ǎ竟ぷ鬟x取硝酸肼、甲基肼和偏二甲基肼作為還原劑,系統(tǒng)考察還原劑濃度、硝酸濃度、溫度等因素對(duì)還原反萃Np(VI)和Pu(IV)的影響,本文為硝酸肼還原反萃取Np(VI)和Pu(IV)的動(dòng)力學(xué)系列研究之一。
1.1儀器與裝置
FJ414型低本底α閃爍探頭、α能譜儀(北京核儀器廠);UV-1000紫外可見分光光度計(jì)(中國(guó)Lab-Tech公司);自制單級(jí)實(shí)驗(yàn)裝置。
1.2試劑及配置方法
Np(VI)溶液:采用H型帶隔膜的玻璃電解池,鉑網(wǎng)作為陽(yáng)極,鈦片作為陰極,控制電流密度為30mA·cm-2進(jìn)行電解氧化。镎濃度分析采用烤盤測(cè)α計(jì)數(shù)法。
Pu(IV)溶液:對(duì)含钚料液進(jìn)行調(diào)酸,調(diào)價(jià),再采用2606陰離子交換樹脂進(jìn)行離子交換制備Pu(IV)溶液。钚濃度分析采用烤盤測(cè)α計(jì)數(shù)法。
Np(VI)和Pu(IV)有機(jī)相料液:調(diào)節(jié)Np(VI)或Pu(IV)溶液的硝酸濃度至指定值,采用硝酸預(yù)平衡的30% TBP/煤油對(duì)含Np(VI)或Pu(IV)的溶液進(jìn)行萃取,分析Np(VI)或Pu(IV)濃度。
1.3實(shí)驗(yàn)方法和數(shù)據(jù)處理
將確定組成的水相和有機(jī)相按體積加入單級(jí)實(shí)驗(yàn)設(shè)備中,按預(yù)定時(shí)間點(diǎn)取樣,離心分相后分析水相和有機(jī)相中镎或钚的濃度。
1.3.1Np(VI)還原反萃動(dòng)力學(xué)方程
參考相關(guān)反應(yīng)動(dòng)力學(xué)文獻(xiàn)[11-12],假設(shè)反應(yīng)對(duì)[Np(VI)]o和[Np(V)]a為一級(jí)反應(yīng)。Np(VI)還原反萃速率表達(dá)式為式(1):
式中:[Np(VI)]o和[Np(V)]a分別為有機(jī)相Np(VI)濃度和水相Np(V)濃度。依據(jù)物料衡算得出式(2):
式中:V為水相體積;L為有機(jī)相體積。
假設(shè)Np(V)不被萃取,相比1:1條件下由式(2)簡(jiǎn)化得到式(3):
式中:D為Np(VI)分配比;x=[Np(V)]a/[Np(V)]o0;y=[Np(VI)]o/[Np(V)]o0。其中:[Np(V)]o0為初始有機(jī)相Np(VI)濃度。在保持硝酸濃度和硝酸肼濃度恒定的條件下,結(jié)合式(1)和式(3),得到式(4):
在[0,t]區(qū)間對(duì)式(5)進(jìn)行積分,則得式(6):
以上推導(dǎo)表明:如果假設(shè)正確,以[Np(V)]a/[Np(V)]o0對(duì)時(shí)間t作圖,所得曲線應(yīng)符合e指數(shù)函數(shù)y=a(1-e-bt)。擬合曲線得到相關(guān)參數(shù) A、B。再計(jì)算可以得出kf′、kr′,再分別以ln(kf′)和ln(kr′)對(duì)相應(yīng)的ln[HNO3]和ln[N2H4]作圖,可確定硝酸濃度和硝酸肼濃度的反應(yīng)級(jí)數(shù),最終確定動(dòng)力學(xué)方程。1.3.2Pu(IV)還原反萃動(dòng)力學(xué)方程
假設(shè)反應(yīng)對(duì)[Pu(IV)]o為一級(jí)反應(yīng),速率表達(dá)式為式(7):
式中:[Pu(IV)]o為有機(jī)相Pu(IV)濃度。
在保持硝酸濃度和硝酸肼濃度不改變的條件下,得式(8):
對(duì)式(8)積分,并整理得式(9) :
2.1硝酸肼還原反萃Np(VI)
2.1.1反應(yīng)對(duì)硝酸濃度級(jí)數(shù)的確定
在T=20 oC、[Np(VI)]o0=40 mg·L-1、[N2H4]= 0.25mol·L-1條件下,考察[HNO3]=0.5-3.0 mol·L-1時(shí),有機(jī)相Np濃度隨時(shí)間的變化。由Np(VI)分配比計(jì)算得到[Np(V)]a/[Np(VI)]o0隨時(shí)間t的曲線,如圖1(a)所示。對(duì)圖1(a)中曲線進(jìn)行非線性擬合,曲線符合方程y=a(1-e-bt),由此表明反應(yīng)對(duì)[Np(VI)]o和[Np(V)]a為一級(jí)反應(yīng),所設(shè)式(1)正確。
圖1 硝酸濃度反應(yīng)級(jí)數(shù)的確定(a) [Np(V)]a/[Np(VI)]o0與時(shí)間的關(guān)系,(b) ln(k′)與ln([HNO3])的關(guān)系Fig.1 Determination of reaction orders with respect to concentration of HNO3.(a) Relationship between [Np(V)]a/[Np(VI)]o0and time, (b) Relationship between ln(k′) and ln([HNO3])
采用曲線擬合得出kf′和kr′,并以ln(k′)對(duì)ln([HNO3])做圖,如圖1(b)所示,所得直線斜率為水相硝酸濃度的反應(yīng)級(jí)數(shù),即水相硝酸濃度反應(yīng)級(jí)數(shù)分別為n=-1.6和n′=-0.2。此結(jié)果表明,降低硝酸濃度可以同時(shí)加快正反應(yīng)速度和逆反應(yīng)速度,并且硝酸濃度對(duì)正反應(yīng)的影響更大。
2.1.2反應(yīng)對(duì)硝酸肼濃度級(jí)數(shù)的確定
在T=20 oC、[Np(VI)]o0=40 mg·L-1、[HNO3]= 1mol·L-1、硝酸肼濃度為0.07-0.35 mol·L-1條件下,得到[Np(V)]a/[Np(VI)]o0隨時(shí)間t的變化曲線,如圖2(a)所示,通過(guò)曲線擬合確定k′。再作ln(k′)對(duì)ln([N2H4])的關(guān)系曲線如圖2(b)所示,所得斜率即為水相硝酸肼濃度的反應(yīng)級(jí)數(shù),即m=0.6和m′=1.2(圖2)。因此,提高硝酸肼濃度可以同時(shí)加快正反應(yīng)速度和逆反應(yīng)速度,并且硝酸肼濃度對(duì)逆反應(yīng)的影響更大。
2.1.3反應(yīng)溫度的影響
在[Np(VI)]o0=40 mg·L-1、[HNO3]=1 mol·L-1、[N2H4]=0.25 mol·L-1和溫度范圍為20-45 oC條件下,對(duì)[Np(V)]a/[Np(VI)]o0隨時(shí)間t的變化曲線進(jìn)行非線性擬合,得出k值,如圖3(a)所示。根據(jù)阿倫尼烏斯公式lnk=lnA-Ea/(RT),以ln(k′)對(duì)1/T做圖,如圖3(b)所示。圖3(b)中直線的斜率代表反應(yīng)的表觀活化能,即肼還原反萃Np(VI)的表觀活化能分別為Ea(f)=(78.9±0.3)kJ·mol-1和Ea(r)=(98.8±0.5)kJ·mol-1。
圖2 硝酸肼濃度反應(yīng)級(jí)數(shù)的確定(a) [Np(V)]a/[Np(VI)]o0與時(shí)間的關(guān)系,(b) ln(k′)與ln([N2H4])關(guān)系Fig.2 Determination of reaction orders with respect to concentration of hydrazine.(a) Relationship between [Np(V)]a/[Np(VI)]o0and time, (b) Relationship between ln(k′) and ln([N2H4])
圖3 反應(yīng)活化能的確定(a) [Np(V)]a/[Np(VI)]o0與時(shí)間的關(guān)系,(b) ln(k′)與1/T關(guān)系Fig.3 Determination of activation energy.(a) Relationship between [Np(V)]a/[Np(VI)]o0and time, (b) Relationship between ln(k′) and 1/T
2.1.4表觀速率常數(shù)的確定
根據(jù)式(1)計(jì)算得出溫度20 oC相對(duì)應(yīng)的kf和kr值,結(jié)果列于表1。由一系列的kf和kr取平均值,
通過(guò)以上實(shí)驗(yàn),最終確定了有機(jī)相Np(VI)還原反萃動(dòng)力學(xué)方程如下所示:
表1 kf和kr值的確定Table 1 Determination of kfand kr.
2.2 硝酸肼還原反萃Pu(IV)
在T=18 oC、[Pu(IV)]o0=14 mg·L-1、[N2H4]= 0.2mol·L-1和[HNO3]=0.5-3.0 mol·L-1條件下,考察[HNO3]=0.5-3.0 mol·L-1時(shí),有機(jī)相Pu濃度隨時(shí)間的變化,以ln[Pu(IV)]o/[Pu(IV)]o0對(duì)t作圖,如圖4(a)所示。圖4(a)中圖形均符合線性關(guān)系,這表明反應(yīng)對(duì)[Pu(IV)]o為一級(jí)反應(yīng),所設(shè)的硝酸肼還原反萃Pu(IV)動(dòng)力學(xué)方程正確。對(duì)圖4(a)中直線進(jìn)行擬合,得到不同硝酸濃度對(duì)應(yīng)的k′值。再以ln(k′)對(duì)ln(HNO3)作圖,如圖4(b)所示,圖4(b)中直線斜率代表硝酸濃度反應(yīng)級(jí)數(shù),即水相硝酸濃度的反應(yīng)級(jí)數(shù)為n=-1.9。由此可知,提高硝酸濃度可以減慢反應(yīng)速度。
圖4 硝酸濃度反應(yīng)級(jí)數(shù)的確定(a) ln[Pu(IV)]o/ [Pu(IV)]o0與時(shí)間的關(guān)系,(b) ln(k′)與ln([HNO3])關(guān)系Fig.4 Determination of reaction orders with respect to concentration of HNO3.(a) Relationship between ln[Pu(IV)]o/ [Pu(IV)]o0and time, (b) Relationship between ln(k′) and ln([HNO3])
2.2.2反應(yīng)對(duì)硝酸肼濃度級(jí)數(shù)的確定
在T=18 oC、[Pu(IV)]o0=14 mg·L-1、[HNO3]= 1.5mol·L-1和水相[N2H4]=0.1-0.35 mol·L-1條件下,得出ln[Pu(IV)]o/[Pu(IV)]o0與t關(guān)系曲線(如圖5(a)所示),對(duì)曲線進(jìn)行擬合,得出k′值。再以ln(k′)對(duì)ln([N2H4])曲線,如圖5(b)所示,確定水相硝酸肼反應(yīng)級(jí)數(shù)為m=0.5。由此得出降低硝酸肼濃度可以減慢反應(yīng)速度。
2.2.3反應(yīng)溫度的影響
在反應(yīng)溫度范圍為22-45 oC,將ln[Pu(IV)]o/[Pu(IV)]o0對(duì)t作圖,如圖6(a)所示,得到不同反應(yīng)溫度下k′值。根據(jù)阿倫尼烏斯公式lnk=lnA-Ea/(RT),以ln(k′)對(duì)1/T做圖,如圖6(b)所示。圖6(b)中直線的斜率代表還原反萃過(guò)程的表觀活化能,即反應(yīng)的表觀活化能為:Ea=(23.8±0.1)kJ·mol-1。
圖5 硝酸肼濃度反應(yīng)級(jí)數(shù)的確定(a) ln[Pu(IV)]o/ [Pu(IV)]o0與時(shí)間的關(guān)系,(b) ln(k′)與ln(N2H4])關(guān)系Fig.5 Determination of reaction orders with respect to concentration of hydrazine.(a) Relationship between ln[Pu(IV)]o/ [Pu(IV)]o0and time, (b) Relationship between ln(k′) and ln([N2H4])
圖6 反應(yīng)活化能的確定(a) ln[Pu(IV)]o/ [Pu(IV)]o0與時(shí)間的關(guān)系,(b) ln(k′)與1/T關(guān)系Fig.6 Determination of activation energy.(a) Relationship between ln[Pu(IV)]o/ [Pu(IV)]o0and time, (b) Relationship between ln(k′) and1/T
2.2.4表觀速率常數(shù)的確定
由式(8)計(jì)算得出溫度18 oC時(shí)的k值,結(jié)果列于表2。由一系列k取平均值,得出k=(8.50±0.41)× 10-2(mol·L-1)1.4·min-1。
rADC值、ADC值與BASDAI評(píng)分的相關(guān)性 活動(dòng)組BASDAI評(píng)分為4.00~7.40分,中位數(shù)為5.30,四分位數(shù)間距為1.70;穩(wěn)定組BASDAI評(píng)分為1.00~3.50分,中位數(shù)為2.05,四分位數(shù)間距為1.03。ADC值、rADC值與BASDAI評(píng)分呈顯著正相關(guān)(Pearson相關(guān)系數(shù)分別為0.82、0.80,P<0.0001)。
表2 k值的確定Table 2 Determination of k.
最終確定了硝酸肼還原反萃Pu(IV)動(dòng)力學(xué)方程如下所示:
2.3攪拌轉(zhuǎn)速對(duì)還原反萃Np(VI)和Pu(IV)的影響
還原反萃過(guò)程涉及金屬離子在兩相間傳質(zhì)和金屬離子氧化還原兩個(gè)過(guò)程。攪拌速度是影響兩相間傳質(zhì)過(guò)程的一個(gè)重要因素。因此,在T=20 oC、[Pu(IV)]o0=1.9 mg·L-1、[Np(VI)]o0=43 mg·L-1、[HNO3]=1.0 mol·L-1和[N2H4]=0.2 mol·L-1條件下,考察了攪拌轉(zhuǎn)速在1 800-3 000 r·min-1攪拌轉(zhuǎn)速對(duì)還原反萃過(guò)程的影響,結(jié)果如圖7所示。從圖7(a)和(b)中可以看出,在轉(zhuǎn)速分別為1800 r·min-1、2200r·min-1和3 000 r·min-1時(shí),水相中Np(V)濃度和有機(jī)相中Pu(IV)濃度隨時(shí)間變化的三條曲線幾乎重合,表明轉(zhuǎn)速對(duì)還原反萃過(guò)程無(wú)明顯影響,即在高速攪拌的條件下,還原反萃過(guò)程的速控步驟主要為化學(xué)反應(yīng)控制。
圖7 轉(zhuǎn)速對(duì)還原反萃的影響(a) [Np(V)]a與時(shí)間的關(guān)系,(b) [Pu(IV)]o與時(shí)間的關(guān)系Fig.7 Effect of the rotational speed on the reductive stripping process.(a) Relationship between [Np(V)]aand time, (b) Relationship between [Pu(IV)]oand time
2.4 硝酸肼分離Np(VI)/Pu(IV)工藝可行性分析
依據(jù)硝酸肼還原反萃Np(VI)和Pu(IV)動(dòng)力學(xué)方程,計(jì)算還原半反應(yīng)時(shí)間,如表3所示。表3中τ50(Pu(IV))/τ50(Np(VI))的數(shù)值越高表明分離效果越好。從表3可以看出,隨著硝酸濃度、肼濃度以及溫度的升高,τ50(Pu(IV))/τ50(Np(VI))的數(shù)值增加,Np(VI)/Pu(IV)的分離效果更好。其中,硝酸濃度和反應(yīng)溫度對(duì)Np(VI)/Pu(IV)的分離影響顯著。
基于以上分析,結(jié)合所得動(dòng)力學(xué)方程,模擬了硝酸肼分離Np(VI)和Pu(IV)的單級(jí)過(guò)程。圖8為硝酸濃度3 mol·L-1、反應(yīng)溫度45 oC、硝酸肼濃度0.1mol·L-1條件下,分離系數(shù)βPu/Np與反應(yīng)時(shí)間的關(guān)系。從圖8中可以看出,隨著反應(yīng)時(shí)間的延長(zhǎng),βPu/Np數(shù)值減小,Np(VI)/Pu(IV)的分離效果變差。表4列出了Np(V)和Pu(III)百分比隨時(shí)間的變化,當(dāng)反應(yīng)時(shí)間為0.5 min,22.64%的Np(VI)被還原為Np(V),0.36%的Pu(IV)被還原為Pu(III)。
圖8 βPu/Np與反應(yīng)時(shí)間的關(guān)系Fig.8 Relationship between βPu/Npand time.
表4 1Np(V)和Pu(III)百分比隨時(shí)間的變化Table 4 Variation of percentage of Np(V) and Pu(III) with time.
本文研究了HNO3濃度、硝酸肼濃度、溫度、轉(zhuǎn)速對(duì)硝酸肼還原反萃有機(jī)相Np(VI)和Pu(IV)的過(guò)程,得出Np(VI)和Pu(IV)與硝酸肼的還原反萃動(dòng)力學(xué)方程。研究表明,提高硝酸濃度、硝酸肼濃度和溫度有助于Np(VI)/Pu(IV)分離,其中硝酸濃度和反應(yīng)溫度的影響顯著。從分離系數(shù)βPu/Np與時(shí)間的關(guān)系可以看出,隨著反應(yīng)時(shí)間的延長(zhǎng),Np(VI)/Pu(IV)的分離效果變差。
1 Lange R G, Carroll W P. Review of recent advances of radioisotope power system[J]. Energy Conversion andManagement, 2008, 49(3): 393-401. DOI: 10.1016/ S0265-9646(99)00056-9
2 Gunzo Uchiyama, Sachio Fujine, Shinobu Hotoku, et al. New separation process for neptunium, plutonium, and uranium using butyraldehydes as reductants in reprocessing[J]. Nuclear Technology, 1993, 102: 341-352. DOI: 10.1016/j.enconman.2007.10.028
3 尹東光, 張先業(yè), 胡景炘, 等. 1,1-二甲基肼應(yīng)用于U、Np分離的研究[J]. 核化學(xué)與放射化學(xué), 1998, 20(3): 146-151
YIN Dongguang, ZHANG Xianye, HU Jingxin, et al. Separation of neptunium from uranium in contactor 1A with 1,1-dimethylhydrazine[J]. Journal of Nuclear and Radiochemistry, 1998, 20(3): 146-151
4 張希祥, 葉國(guó)安, 張先業(yè), 等. 1,1-二甲基肼還原Np(V)的動(dòng)力學(xué)研究[J]. 江漢大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 34(2): 25-27
ZHANG Xixiang, YE Guoan, ZHANG Xianye, et al. Kinetic study of Np(V) reduction with 1,1-dimethylhydrazine[J]. Journal of Jianghan University(Natural Science), 2006, 34(2): 25-27
5 Yasutoshi Ban, Toshihide Asakura, Yasuji Morita. Reduction kinetics of Np(VI) by n-butyraldehydein tributyl phosphate diluted with n-dodecane[J]. Radiochimica Acta, 2004, 92(12): 883-887. DOI: 10.1524/ract.92.12.883.55113
6 Yasutoshi Ban, Toshihide Asakura, Yasuji Morita. Separation of Np from U and Pu using a salt-free reductant for Np(VI) by continuous conter-current back-extraction[C]. Global, 2005: 371
7 張先業(yè), 葉國(guó)安, 肖松濤, 等. 單甲基肼還原Np(VI)-I:反應(yīng)動(dòng)力學(xué)研究[J]. 原子能科學(xué)技術(shù), 1997, 31(3): 193-198
ZHANG Xianye, YE Guoan, XIAO Songtao, et al. Reduction of Np(VI) with monomethylhydrazine I: studies on reaction kinetics[J].Atomic Energy Science and Technology, 1997, 31(3): 193-198
8 張先業(yè), 葉國(guó)安, 肖松濤, 等. 單甲基肼還原Np(VI)-II: Purex流程中U-Np分離的研究[J]. 原子能科學(xué)技術(shù), 1997, 31(4): 315-320
ZHANG Xianye, YE Guoan, XIAO Songtao, et al. Reduction of Np(VI) with monomethylhydrazine II: studies on partition of U-Np in Purex process[J]. Atomic Energy Science and Technology 1997, 31(4): 315-320
9 Srinivasan N, Ramaniah M V, Patil S K, et al. Estimation of neptunium in a fuel reprocessing plant[J]. Journal of Radioanalytical Chemistry, 1971, 8: 223-229. DOI: 10.1007/BF02518186
10 Koltunov V S, Tikhonov M F. Kinetics of reduction of neptunium by hydrazine II: reduction of Np(VI) to Np(V)in nitric acid[J]. Radiokhimiya, 1973, 15: 194-198
11 李小該, 何輝, 葉國(guó)安, 等. 單甲基肼還原Np(V)的反應(yīng)動(dòng)力學(xué)[J]. 核化學(xué)與放射化學(xué), 2011, 33(1): 1-5
LI Xiaogai, HE Hui, YE Guoan, et al. Kinetics of reaction between methylhydrazine and neptunium(V)[J]. Journal of Nuclear and Radiochemistry, 2011, 33(1): 1-5
12 肖松濤, 葉國(guó)安, 歐陽(yáng)應(yīng)根, 等. 羥胺乙酸與Pu(IV)的還原動(dòng)力學(xué)[J]. 原子能科學(xué)技術(shù), 2009, 43(5): 400-405
XIAO Songtao, YE Guoan, OUYANG Yinggen, et al. Kinetics of reaction between Pu(IV) and (hydroxyamino)acetic acid in nitric acid solution[J]. Atomic Energy Science and Technology, 2009, 43(5): 400-405
Separation Np from Pu based on reduction-stripping by using hydrazine nitrate as reductant
YANG HeZHANG HuLI LiHUANG XiaohongWANG Riteng
(Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China)
Background: Extraction and separation of neptunium is one of the topics focused in reprocessing. Hydrazine nitrate is often used as a cleaning agent for nitrous acid in the Purex process. In addition, due to the selectivity of hydrazine nitrate for the redox reactions of Np(VI) and Pu(IV), theoretically the difference of the reaction rate can be used to separate the neptunium from uranium and plutonium. Purpose: In order to explore the feasibility of separation for neptunium and plutonium with hydrazine nitrate, this paper adopts the single stage extraction experiments to research the process of reductive stripping of neptunium and plutonium. Methods: By investigating the effects of the concentration on nitric acid and hydrazine nitrate, as well as reaction temperature on the reductive stripping process, the Np(VI) and Pu(IV) stripping kinetics equation and apparent activation energy were determined. Further, the half reaction time of reductive stripping Np(VI) and Pu(IV) with hydrazine nitrate can be obtained by means of kinetics equation, and a preliminary exploration for Np(VI)/ Pu(IV) separation was carried out. Results and Conclusion: The rate equations of the reaction Np(VI) with hydrazine and Pu(IV) with hydrazine were respectively obtained. Further, the half reaction time of reductive stripping Np(VI) and Pu(IV) with hydrazine nitrate can be obtained by means of kinetics equation, and a preliminary exploration for Np(VI)/Pu(IV) separation was carried out.
Hydrazine, Reduction stripping, Separation of neptunium and plutonium
YANG He, male, born in 1981, graduated from Wuhan University of Science and Technology with a master’s degree in 2007, focusing on
ZHANG Hu, E-mail: ciaezhhu@163.com
TL241.1
10.11889/j.0253-3219.2016.hjs.39.090301
——
國(guó)家自然科學(xué)基金(No.91326111)資助
楊賀,男,1981年出生,2007年于武漢科技大學(xué)獲碩士學(xué)位,從事核燃料循環(huán)的研究
張虎,E-mail: ciaezhhu@163.com
Supported by National Natural Science Foundation of China (No.91326111)
nuclear fuel cycle
2016-01-15,
2016-04-29