• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      多元PCR技術(shù)在毛蚶家系鑒定中的應(yīng)用*

      2016-10-18 07:41:49孔令鋒
      關(guān)鍵詞:毛蚶多態(tài)微衛(wèi)星

      陳 辰, 李 琪, 孔令鋒, 于 紅

      (中國海洋大學(xué)海水養(yǎng)殖教育部重點實驗室,山東 青島 266003)

      ?

      研究簡報

      多元PCR技術(shù)在毛蚶家系鑒定中的應(yīng)用*

      陳辰, 李琪??, 孔令鋒, 于紅

      (中國海洋大學(xué)海水養(yǎng)殖教育部重點實驗室,山東 青島 266003)

      為促進毛蚶(Scapharcakagoshimensis)的遺傳育種研究及開展其資源的保護工作。本研究用4組微衛(wèi)星多元PCR體系對5個毛蚶全同胞家系進行了家系鑒定分析。研究表明:4組多元PCR體系中的10個微衛(wèi)星位點均為高多態(tài)性位點,使用1組多元PCR體系的子代模擬鑒定成功率和實際鑒定成功率分別為78%和72%,3組以上多元PCR體系子代的鑒定成功率為100%。研究結(jié)果表明,微衛(wèi)星多元PCR技術(shù)能快速、準(zhǔn)確地將任意子代鑒定至其所屬家系,該技術(shù)可用于大批量家系材料分析,具有較好的應(yīng)用價值。

      毛蚶;微衛(wèi)星標(biāo)記;多元PCR;家系鑒定

      引用格式:陳辰, 李琪, 孔令鋒, 等. 多元PCR技術(shù)在毛蚶家系鑒定中的應(yīng)用[J]. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2016, 46(8): 18-23.

      CHEN Chen, LI Qi, KONG Ling-Feng, et al. Parentage analysis in the ark shell (Scapharcakagoshimensis) based on microsatellite multiplex PCRs[J]. Periodical of Ocean University of China, 2016, 46(8): 18-23.

      毛蚶(Scapharcakagoshimensis)是廣泛分布在西北太平洋近海的埋棲型貝類,因其肉質(zhì)肥嫩,營養(yǎng)豐富,具有較高的經(jīng)濟價值,是中國傳統(tǒng)的漁業(yè)對象[1]。由于在采捕過程中,長期缺乏必要的資源保護意識和行之有效的保護措施,近年來中國毛蚶的自然資源量出現(xiàn)明顯的下降,一些重要的毛蚶產(chǎn)區(qū)目前已無法形成漁汛[2-3]。為促進我國毛蚶產(chǎn)業(yè)的可持續(xù)發(fā)展,很多地方已經(jīng)陸續(xù)展開了毛蚶苗種人工繁育和底播增殖放流工作[3-4]。

      準(zhǔn)確掌握親本和子代的遺傳信息是制訂科學(xué)合理放流計劃和評估放流效果的前提條件。與魚類和甲殼類不同,貝類體表通常存在鈣質(zhì)外殼,限制了物理標(biāo)記和熒光標(biāo)記的應(yīng)用,因而使用分子標(biāo)記進行家系分析,是目前貝類群體研究和種質(zhì)資源保護中最為有效的分析工具[5-9]。微衛(wèi)星標(biāo)記因其變異程度高,在基因組中分布廣泛,易于PCR擴增等特點,是家系分析中常用的分子標(biāo)記[10-12]。

      然而,在實際應(yīng)用中微衛(wèi)星標(biāo)記存在2個突出問題。首先,微衛(wèi)星標(biāo)記屬于單位點標(biāo)記[13],通過一個PCR反應(yīng),每次只能獲得1個樣本的1個位點的遺傳信息,樣本的處理通量較低。應(yīng)用多元PCR體系,可以一定程度上解決微衛(wèi)星標(biāo)記處理通量的問題[14]。其次,雖然微衛(wèi)星標(biāo)記理論上符合孟德爾遺傳規(guī)律,但在一些位點中存在無效等位基因以及與隱性致死基因連鎖的情況,使得這些微衛(wèi)星標(biāo)記在子代的分離比產(chǎn)生偏離[15-17],從而影響數(shù)據(jù)分析的準(zhǔn)確性。因而,在實際應(yīng)用前,對于已經(jīng)開發(fā)的微衛(wèi)星標(biāo)記進行相關(guān)驗證是必要的[18]。

      目前毛蚶已經(jīng)開發(fā)出微衛(wèi)星標(biāo)記[19],但對于標(biāo)記的驗證工作尚未見報道。本文根據(jù)前期開發(fā)的多元PCR體系[20],利用5個毛蚶全同胞家系對標(biāo)記進行驗證,以期為毛蚶今后的增殖放流效果評估提供可靠的技術(shù)支持。

      1 材料與方法

      1.1 材料

      全同胞家系構(gòu)建于2014年6月在山東省日照欣慧水產(chǎn)育苗有限公司進行。挑選性成熟良好的親貝,采用陰干加流水刺激的方法,誘導(dǎo)親貝配子排放,通過人工受精的方式建立了5個毛蚶單對交配家系。受精后72h,使用300目篩絹過濾收集每個家系的D形幼蟲。使用膠頭滴管將收集到的幼蟲,分別轉(zhuǎn)移至1.5mL的離心管中,每個離心管中加入1mL無水乙醇進行固定。此后,每12h更換無水乙醇1次,更換無水乙醇3~4次,以充分置換樣本中的水分。親貝精卵排放后,立即對親本進行解剖,剪取親本閉殼肌,轉(zhuǎn)移至1.5mL的離心管中,加入無水乙醇進行固定,處理方法同幼蟲。

      1.2 DNA提取與微衛(wèi)星分析

      親本DNA提取使用優(yōu)化苯酚-氯仿法[21];幼蟲DNA提取方法參照Li等[17],使用Chelex樹脂方法。選擇前期開發(fā)的4組微衛(wèi)星多元PCR體系[20],位點的序列信息見表1。PCR反應(yīng)體系為10μL,每個反應(yīng)體系中包括:50~100ng/μL的DNA模板,0.4 U DNA聚合酶,1×PCR Buffer(Mg2+Free),dNTP混合物200mmol/L,MgCl21.5mmol/L,正反向引物各1μL(2~5μmol/L)。為保證多元PCR的擴增效率,在反應(yīng)體系中加入了強化組分,成分包括30%(w/v)PEG6000,2.5μg/μL BSA,5mol/L Betaine。PCR的反應(yīng)程序為:94℃ 3min;94℃變性45s,54℃退火60s,72℃延伸75s,35~40個循環(huán);72℃延伸10min,4℃保存。PCR擴增產(chǎn)物經(jīng)95℃變性3min后,與變性劑等體積混合,使用6%聚丙烯酰胺凝膠電泳分離等位基因,使用弱堿法進行銀染顯色,選擇10bp DNA Lad-der(Invitrogen)作為marker。

      1.3 數(shù)據(jù)分析

      使用χ2檢驗子代中位點的分離情況是否符合孟德爾遺傳定律,子代表型期望分離比分別為1∶1,1∶2∶1和1∶1∶1∶1,差異顯著性水平設(shè)定為0.01。使用CERVUS 3.0軟件[22]計算各位點在5個家系中的等位基因數(shù)(NA),多態(tài)信息含量(PIC),以及位點的非排除能力(NE-1P,NE-2P,NE-PP)。使用FSTAT軟件[23]計算每一位點在全部家系樣本中的等位基因豐富度(AR),以校正樣本數(shù)目差異產(chǎn)生的誤差?;旌?個單對交配家系135個子代的基因型數(shù)據(jù),以檢驗多元PCR技術(shù)在家系鑒定中的效率。使用CERVUS 3.0軟件進行家系的模擬鑒定以及實際鑒定計算,具體參數(shù)設(shè)置為:親本數(shù)量10,模擬子代數(shù)10000,親本檢測率及位點檢測率100%,分型誤差率1%,置信水平95%。

      2 結(jié)果

      2.1 微衛(wèi)星位點的特征

      4組微衛(wèi)星多元PCR體系在5個家系中,每個位點的等位基因數(shù)目、等位基因豐富度、多態(tài)信息含量和非排除率見表1。10個微衛(wèi)星位點的等位基因數(shù)范圍為7(Sk02,Sk03,Sk04)~13(Sk14),平均等位基因數(shù)為9.4。等位基因豐富度范圍為3.606~4.780,平均等位基因豐富度為4.125。位點的多態(tài)信息含量范圍為0.727(Sk01)~0.895(Sk09),平均多態(tài)信息含量為0.809。

      表1 毛蚶4組微衛(wèi)星多元PCR在5個全同胞家系中的特征

      注: 上標(biāo)a,b,c含義如下,a.單親本的平均非排除率; b.已知單親本基因型的平均非排除率; c.兩親本的平均非排除率。

      Note: The meaning of superscript a,b,c are as follows. a. Average nonexclusion probability for one candidate parent. b. Average non-exclusion probability for one candidate parent given the genotype of a known parent of the opposite sex. c. Average non-exclusion probability for a candidate parent pair.

      ①Multiplex panel; ② Locus; ③GenBank accession number; ④Primer sequence (5'-3'); ⑤Size range

      2.2 微衛(wèi)星位點在子代中的分離模式

      在獲得的50個基因型分離比中(10位點×5個家系),有5個為親本全部為純合子產(chǎn)生的基因型(見表2),所獲得的子代的基因型與親本或者完全相同(親本等位基因相同),或者為同一種雜合狀態(tài)的基因型(親本等位基因不同)。對剩余的45個分離模式分析發(fā)現(xiàn),32個分離模式符合孟德爾分離規(guī)律;在考慮無效等位基因的情況下,剩余13個基因型中,有2個基因型分離比偏離孟德爾分離定律(F3:Sk04,Sk05;P<0.01)。在5個家系所包含的200個等位基因中(10個親本×10個微衛(wèi)星位點×2),無效等位基因頻率為9.5%(見表2)。

      表2 10個微衛(wèi)星標(biāo)記在5個毛蚶全同胞家系中的分離

      續(xù)表2

      家系①多元組合②位點③母本④父本⑤子代⑥期望分離比⑦觀測分離比⑧χ2P值⑨F4ISk01162/180162/162162/162∶162/1801∶118∶93.0000.083Sk02376/382384/X376/384∶376/X∶382/384∶382/X1∶1∶1∶14∶7∶11∶45.0770.166Sk03287/X307/X287/307∶287/X∶307/X∶X/X1∶1∶1∶18∶13∶4∶28.5900.035IISk04276/282276/282276/276∶276/282∶282/2821∶2∶110∶8∶95.6670.059Sk05459/465425/445425/459∶445/459∶425/465∶445/4651∶1∶1∶17∶7∶3∶103.6670.300IIISk07332/364324/346324/332∶332/346∶324/364∶346/3641∶1∶1∶19∶9∶6∶25.0770.166Sk08272/296282/290272/282∶272/290∶282/296∶290/2961∶1∶1∶110∶6∶2∶85.3850.146Sk09455/479413/413413/455∶413/4791∶116∶82.6670.102IVSk14474/474456/456456/474126--Sk15265/279279/279265/279∶279/2791∶112∶140.1540.695F5ISk01164/164164/192164/164∶164/1921∶114∶91.0870.297Sk02384/396376/382376/384∶382/384∶376/396∶382/3961∶1∶1∶16∶10∶3∶83.9630.265Sk03285/307301/X285/301∶285/X∶301/307∶307/X1∶1∶1∶15∶11∶7∶18.6670.034IISk04254/254262/274254/262∶254/2741∶18∶173.2400.072Sk05449/449449/449449/449127--IIISk07344/348362/X344/362∶344/X∶348/362∶348/X1∶1∶1∶16∶10∶6∶42.9230.404Sk08270/X284/X270/284∶270/X∶284/X∶XX1∶1∶1∶19∶4∶12∶26.4480.092Sk09457/457425/425457/425124--IVSk14434/514428/428428/434∶428/5141∶112∶140.1540.695Sk15265/X245/X245/265∶265/X∶245/X∶X/X1∶1∶1∶15∶4∶9∶93.0740.380

      注:X代表無效等位基因;*代表基因型分離比偏離孟德爾分離定律(P<0.01)。

      Note: X, Null allele; *, Genotypic ratios that are not in agreement with Mendelian segregation (P<0.01).

      ①Family; ②Multiplex panel; ③Locus; ④Dam; ⑤Sire; ⑥Offspring; ⑦Expected segregation ratio; ⑧Observed segregation ratio; ⑨Pvalue

      2.3 多元PCR體系的家系鑒定成功率

      在5個毛蚶單對交配家系中,4組微衛(wèi)星多元PCR鑒定結(jié)果如圖1所示。CERVUS 3.0軟件分析結(jié)果顯示,只使用1組多態(tài)性信息含量最高的多元PCR(Panel III),其家系模擬和實際的鑒定結(jié)果成功率分別為78%和72%。使用3組以上的多元PCR組合時,子代的親本鑒定成功率可達100%。

      (鑒定成功置信水平為95%。95% confidence interval.)

      3 討論

      微衛(wèi)星標(biāo)記是一種多態(tài)性豐富的共顯性標(biāo)記。根據(jù)Bostein等[24]所提出的多態(tài)信息含量指標(biāo)范圍,當(dāng)PIC>0.5時,為高度多態(tài)基因位點,PIC<0.25時,則為低多態(tài)基因位點。本研究所使用的4組多元PCR體系,位點的PIC均大于0.7,屬于高多態(tài)基因位點。在實際應(yīng)用中,選擇的標(biāo)記具有較高的多態(tài)性,對于家系分析效率具有重要意義,因為這意味著在位點數(shù)目相同的情況下,可以獲得更多的遺傳信息,從而提高分析結(jié)果的準(zhǔn)確度[25]。Norris等[26]研究發(fā)現(xiàn),在全部的15個標(biāo)記中使用其中8個多態(tài)性最高位點(平均期望雜合度0.85)獲得成功鑒定的子代比例,僅比使用全部標(biāo)記降低了2%,這樣可以大量節(jié)省分析時間和基因分型成本。通常,家系鑒定所需要的位點數(shù)量,取決于標(biāo)記的總體信息量,排除能力的高低以及親本和子代的數(shù)量。Bulter等[27]根據(jù)實際和模擬數(shù)據(jù)的計算結(jié)果,建議家系分析中應(yīng)該至少使用6~8個標(biāo)記。在本研究中,使用2組多元PCR組合,就可達到95%以上的實際鑒定成功率。這可能是與組成這4組多元PCR的10個微衛(wèi)星標(biāo)記具有較高的多態(tài)信息含量,且家系親本規(guī)模較為有限(5個父本和5個母本)有關(guān)。因此,在大批量的家系材料分析中,可能需要更多的標(biāo)記位點,才能使家系鑒定成功率達到滿意的效果。

      子代基因型的分離模式顯示了本研究中的一些位點存在無效等位基因。無效等位基因是指不能被PCR擴增的等位基因,微衛(wèi)星標(biāo)記中存在無效等位基因是一個較普遍的現(xiàn)象,尤其在海洋貝類[28]。本研究結(jié)果表明,10個微衛(wèi)星位點在5個全同胞家系中無效等位基因頻率為9.5%,這與其他海洋貝類微衛(wèi)星標(biāo)記的研究結(jié)果相類似。例如:聶鴻濤等[29]研究結(jié)果顯示,在皺紋盤鮑12個家系中,12個微衛(wèi)星標(biāo)記的無效等位基因頻率為10.7%;Li等[30]開發(fā)的12個太平洋牡蠣EST微衛(wèi)星標(biāo)記中,無效等位基因頻率為4.9%;而太平洋牡蠣的非編碼區(qū)基因組微衛(wèi)星標(biāo)記,無效等位基因的頻率為11%~22%[31-32]。一般來說,來自EST中的微衛(wèi)星標(biāo)記,無效等位基因頻率通常會小于來自基因組中的微衛(wèi)星[33]。偏分離現(xiàn)象也是使用微衛(wèi)星標(biāo)記進行海洋貝類家系分析研究中經(jīng)常會遇到的情況。一般來說,偏分離的產(chǎn)生主要由兩方面原因造成,即無效等位基因的存在和合子存活力的差異[28]。本研究結(jié)果表明,在考慮無效等位基因的情況下,仍有2個位點的基因型分離偏離孟德爾分離比。這種偏分離情況,可能的原因是基因轉(zhuǎn)換、減數(shù)分裂過程中染色體非隨機分離,以及同致死的主效基因連鎖等形成[15]。

      綜上所述,微衛(wèi)星標(biāo)記是較為理想的分子標(biāo)記,在水產(chǎn)動物研究的很多領(lǐng)域都有廣泛的應(yīng)用。本研究將開發(fā)的微衛(wèi)星標(biāo)記多元PCR體系應(yīng)用于毛蚶的家系鑒定分析,獲得較高的家系鑒定成功率,對于毛蚶的遺傳多樣性分析、遺傳育種研究以及種質(zhì)資源保護具有重要意義。

      [1]馬云聰. 毛蚶育苗養(yǎng)殖實用技術(shù)[M]. 北京: 海洋出版社, 2008: 1-2. Ma Y C. Practical Technologies for Ark Shell (Scapharcakagoshimensis) Seed Breeding [M]. Beijing: China Ocean Press, 2008: 1-2.

      [2]邊紹新. 豐南區(qū)淺海養(yǎng)殖毛蚶現(xiàn)狀及發(fā)展設(shè)想[J]. 河北漁業(yè), 2004, 3: 21-22.

      Bian S X. Status and development plan for inshore culture of ark shell (Scapharcakagoshimensis) in Fengnan district [J]. Hebei Fisheries, 2004, 3: 21-22.

      [3]付卓, 朱守維. 錦州淺海毛蚶底播增養(yǎng)殖成效調(diào)查[J]. 河北漁業(yè), 2008, 2: 40-42.

      Fu Z, Zhu S W. Investigation of bottom sowing effects of ark shell (Scapharcakagoshimensis) in Jinzhou city [J]. Hebei Fisheries, 2008, 2: 40-42.

      [4]任玉水, 趙炳然. 萊州灣毛蚶苗種健康培育技術(shù)初探[J]. 中國水產(chǎn), 2014, 3: 55-57.

      Ren Y S, Zhao B R. Preliminary study on heathy farming of ark shell (Scapharcakagoshimensis) seedlings [J]. China Fisheries Monthly, 2014, 3: 55-57.

      [5]Waples R S, Punt A E, Cope J M. Integrating genetic data into management of marine resources: How can we do it better? [J]. Fish and Fisheries, 2008, 9: 423-449.

      [6]Palumbi S R. Marine reserves and ocean neighborhoods: The spatial scale of marine populations and their management [J]. Annual Review of Environment and Resources, 2004, 29: 31-68.

      [7]Haig S M. Molecular contributions to conservation [J]. Ecology, 1998, 79: 413-425.

      [8]Ni L H, Li Q, Kong L F. Microsatellites reveal fine-scale genetic structure of the Chinese surf clamMactrachinensis(Mollusca, Bivalvia, Mactridae) in Northern China [J]. Marine Ecology, 2011, 32: 488-497.

      [9]Selkoe K A, Henzler C M, Gaines S D. Seascape genetics and the spatial ecology of marine populations [J]. Fish and Fisheries, 2008, 9: 363-377.

      [10]Li R H, Li Q, Wang C L. Sibship reconstruction and effective population size estimation in mass spawning ark shell,Scapharcabroughtoniibased on microsatellite analysis [J]. Genes & Genomics, 2013, 35: 703-708.

      [11]Jones O R, Wang J. Molecular marker-based pedigrees for animal conservation biologists [J]. Animal Conservation, 2010, 13: 26-34.

      [12]Li Q, Yu H, Yu R H. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostreagigas) in China [J]. Aquaculture, 2006, 259: 95-102.

      [13]Sunnucks P. Efficient genetic markers for population biology [J]. Trends in Ecology & Evolution, 2000, 15: 199-203.

      [14]Guichoux E, Lagache L, Wagner S, et al. Current trends in microsatellite genotyping [J]. Molecular Ecology Resources, 2011, 11: 591-611.

      [15]Li Q, Park C, Kobayashi T, et al. Inheritance of microsatellite DNA markers in the Pacific abaloneHaliotisdiscushannai[J]. Marine Biotechnology, 2003, 5: 331-338.

      [16]Li Q, Zheng X D, Yu R H. Inheritance mode of microsatellite loci and their use for kinship analysis in the Pacific oyster (Crassostreagigas) [J]. Chinese Journal of Oceanology and Limnology, 2008, 26: 256-262.

      [17]Li Q, Park C, Kijima A. Allelic transmission of microsatellites and application to kinship analysis in newly hatched Pacific abalone larvae [J]. Fisheries Science, 2003, 69: 883-889.

      [18]Hellberg M E. Gene flow and isolation among populations of marine animals [J]. Annual Review of Ecology Evolution and Systematics, 2009, 40: 291-310.

      [19]Feng Y W, Li Q, Kong L F. Isolation and characterization of 14 polymorphic microsatellite loci in the ark shellScapharcasubcrenata(Bivalvia: Arcidae) [J]. Conservation Genetics, 2009, 10: 1125-1127.

      [20]Chen C, Li Q, Yu H, et al. Development and multiplex genotyping of 20 microsatellite markers in the ark shellScapharcakagoshimensis(Mollusca: Bivalvia)[J]. Conservation Genetics Resources, 2015, 7: 917-944.

      [21]Li Q, Park C, Kijima A. Isolation and characterization of microsatellite loci in the Pacific abalone,Haliotisdiscushannai[J]. Journal of Shellfish Research, 2002, 69: 883-889.

      [22]Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 2007, 16: 1099-1106.

      [23]Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3)[EB/OL]. [2015-04-20].http://www2.unil.ch/popgen/softwares/fstat. htm. Updated from Gouclet.

      [24]Botstein D, Whiter R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. American Journal of Human Genetics, 1980, 32(3): 314-331.

      [25]Pearse D E, Crandall K A. BeyondFST: Analysis of population genetic data for conservation [J]. Conservation Genetics, 2004, 5: 585-602.

      [26]Norris A T, Bradley D G, Cunningham E P. Parentage and relatedness determination in farmed Atlantic salmon (Salmosalar) using microsatellite markers [J]. Aquaculture, 2000, 182: 73-83.

      [27]Butler K, Field C, Herbinger C M, et al. Accuracy, efficiency and robustness of four algorithms allowing full sibship reconstruction from DNA marker data [J]. Molecular Ecology, 2004, 13: 1589-1600.

      [28]Reece K S, Ribeiro W L, Gaffney P M, et al. Microsatellite marker development and analysis in the eastern oyster (Crassostreavirginica): Confirmation of null alleles and non-mendelian segregation ratios [J]. Journal of Heredity, 2004, 95: 346-352.

      [29]聶鴻濤, 李琪, 孔令鋒. 皺紋盤鮑微衛(wèi)星多重PCR體系構(gòu)建及其在家系鑒定中的應(yīng)用[J]. 水產(chǎn)學(xué)報, 2013, 37: 207-215.

      Nie H T, Li Q, Kong L F. Development of four multiplex PCR panels of microsatellites and application to kinship analysis in the Pacifica balone (Haliotisdiscushannai) [J]. Journal of Fisheries of China, 2013, 37: 207-215.

      [30]Li R H, Li Q, Cornette F, et al. Development of four EST-SSR multiplex PCRs in the Pacific oyster (Crassostreagigas) and their validation in parentage assignment [J]. Aquaculture, 2010, 310: 234-239.

      [31]Li L, Guo X M, Zhang G F. Inheritance of 15 microsatellites in the Pacific oysterCrassostreagigas: segregation and null allele identification for linkage analysis [J]. Chinese Journal of Oceanology and Limnology, 2009: 74-79.

      [32]Mcgoldrick D J, Hedgecock D, English L J, et al. The transmission of microsatellite alleles in australian and north american stocks of the pacific oyster (Crassostreagigas): selection and null alleles [J]. Journal of Shellfish Research, 2000, 19: 779-788.

      [33]Li Q, Liu S K, Kong L F. Microsatellites within genes and ESTs of the Pacific oysterCrassostreagigasand their transferability in five otherCrassostreaspecies [J]. Electronic Journal of Biotechnology, 2009, 12: 1-6.

      責(zé)任編輯朱寶象

      Parentage Analysis in the Ark Shell (Scapharca kagoshimensis)Based on Microsatellite Multiplex PCRs

      CHEN Chen, LI Qi, KONG Ling-Feng, YU Hong

      (The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China)

      Ark shell (Scapharcakagoshimensis) is a commercially important but dwindling natural resource bivalve species in the shallow coastal waters of the northwestern Pacific. In order to protect and exploit the resource of the species effectively, the inheritance mode of 10 microsatellite markers, which were pooled into 4 multiplex PCR panels, was investigated in newly hatchedS.kagoshimensislarvae from five full-sib families, and the feasibility of these markers for kinship estimation was also examined. The result showed that all of these loci were highly polymorphic. The average polymorphism information content was 0.809. The frequency of null alleles was estimated 9.5%. Two loci (Sk04, Sk05) showed deviation from Mendelian segregation in a family (F3) even though null alleles were considered. Parentage analysis showed that with the most informative multiplex set (Panel III), the simulated and real assignment success could be 78% and 72%, respectively, and 100% of the offspring were correctly allocated to their parents when three or more multiplex PCR panels were used. Our results showed that the four multiplex PCR panels of microsatellites are possible and can be used for rapid and highly efficient parentage assignment inS.kagoshimensis.

      Scapharcakagoshimensis; microsatellite locus; multiplex PCR; parentage assignment

      海洋公益性行業(yè)科研專項(201205023);教育部博士點基金項目(20130132110009)資助

      2015-05-04;

      2015-07-30

      陳辰(1987-),男,博士生。E-mail: chenchen3729@163.com

      ??通訊作者:E-mail:qili66@ouc.edu.cn

      Q347

      A

      1672-5174(2016)09-018-06

      10.16441/j.cnki.hdxb.20150171

      Supported by the Grants from National Marine Public Welfare Research Program (201205023); Doctoral Program of Ministry of Education of China (20130132110009)

      猜你喜歡
      毛蚶多態(tài)微衛(wèi)星
      梅花鹿基因組微衛(wèi)星分布特征研究
      水溫、底質(zhì)對不同規(guī)格毛蚶潛砂行為的影響
      分層多態(tài)加權(quán)k/n系統(tǒng)的可用性建模與設(shè)計優(yōu)化
      毛蚶增殖放流技術(shù)
      2種升溫方式對毛蚶呼吸代謝及免疫相關(guān)酶活性的影響
      參差多態(tài)而功不唐捐
      林麝全基因組微衛(wèi)星分布規(guī)律研究
      四川動物(2017年4期)2017-07-31 23:54:19
      人多巴胺D2基因啟動子區(qū)—350A/G多態(tài)位點熒光素酶表達載體的構(gòu)建與鑒定及活性檢測
      基于轉(zhuǎn)錄組測序的波紋巴非蛤微衛(wèi)星標(biāo)記研究
      中國“一箭雙星”成功將“遙感衛(wèi)星二十一號”與“天拓二號視頻微衛(wèi)星”發(fā)射升空
      河北遙感(2014年3期)2014-07-10 13:16:48
      昌黎县| 临西县| 安龙县| 中卫市| 禄丰县| 大石桥市| 峡江县| 鄂尔多斯市| 柳河县| 东阿县| 扶沟县| 温州市| 兰州市| 灵丘县| 万年县| 克拉玛依市| 八宿县| 乳源| 上虞市| 普安县| 盐山县| 达日县| 沾益县| 南康市| 政和县| 香港 | 许昌县| 雷波县| 浦东新区| 辉南县| 茌平县| 垫江县| 遂川县| 临颍县| 弥渡县| 平湖市| 岐山县| 贵港市| 久治县| 夏河县| 屏东市|