• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bergman-Sobolev空間上Toeplitz算子的本性范數(shù)

    2016-10-20 03:40:48曹廣福
    關(guān)鍵詞:信息科學(xué)廣州大學(xué)本性

    何 莉, 曹廣福

    (廣州大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院, 廣東 廣州 510006)

    ?

    Bergman-Sobolev空間上Toeplitz算子的本性范數(shù)

    何莉, 曹廣福

    (廣州大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院, 廣東 廣州510006)

    文章研究了Bergman-Sobolev上Toeplitz算子的某些性質(zhì),主要通過該類算子的符號函數(shù)在邊界處的行為計算了它們的本性范數(shù).

    Bergman-Sobolev空間; Toeplitz算子; 本性范數(shù)

    0 Introduction

    Denote by R the real number set, N the natural number set and N*the positive integer set.

    Forβ∈R and 1≤p<+∞, the Sobolev space Lβ,pis the completion of all functionsf∈() for which

    Forp=2, the space Lβ,2is a Hilbert space with the inner product

    ?f∈Lβ,2,g∈Lβ,2.

    Here,L2denotes the usual Lebesgue spaceL2(,dA) and the notation·,·L2denotes the standard inner product inL2.

    Whenp=+∞, the corresponding Sobolev space is written as

    Lβ,∞={f:→

    with ‖f‖Lβ,∞=‖βf‖L∞+‖f‖L∞.SinceeachfunctioninLβ,∞can be extended to a continuous function on the closed unit disc} by Sobolev’s embedding theorem (see Theorem 5.4 of Ref.[1]), we will use the same notation between a function in Lβ,∞and its continuous extension onin this paper.

    Tuf=P(uf)

    In this paper, we calculate the essential norm of Toeplitz operators on Bergman-Sobolev space with positive integer derivative in terms of the boundary value of the corresponding symbol.

    1 Essential norm of Toeplitz operators

    Lemma 1For eachλ∈

    Proof. See Proposition 3.2 of the paper given in footnote*HE L, CAO G F. Toeplitz operators on Bergman-Sobolev space with positive integer derivative[J]. Sci China Math Ser A, 2016, preprint..

    Proof. See Lemma 3.3 of the paper given in footnote①.

    Proof. See Lemma 3.4 of the paper given in footnote①.

    Lemma 4Letu,v∈Lβ,∞andζ∈. Then, limλ→ζ).

    Proof. See Lemma 3.5 of the paper given in footnote①.

    Theorem 1Letu∈Lβ,∞,β∈N*. Then, ‖Tu‖e=maxζ∈}|u(ζ)|.

    Proof. Setρ=maxζ∈|u(ζ)| for simplicity. Choose some pointη∈so thatu(η)=ρ. For anyK∈,

    byLemma4withv=1, this indicates ‖Tu‖e≥maxζ∈|u(ζ)|.

    ②LEE Y J. Compact sums of Toeplitz products and Toeplitz algebra on the Dirichlet space[J]. Tohoku Math J, preprint,2016.

    for everyj>j0.

    Moreover, sinceuis continuous on, we can choose somer∈(0,1) such that |u(z)|≤ρ+εfor everyr<|z|<1.

    asj→∞. Since

    for eachj∈N*, it is not difficult to get that

    ∫|z|≤r|βfj|2dA<ε

    for everyj>jβ. Notice that

    for eachj∈N*, where

    asj→∞, we have

    Direct calculation follows that

    (1)

    by Minkowski inequality. Since

    by Cauchy-Schwarz inequality, where

    is a positive number, there exists an integerj*≥0 such that

    (2)

    whenj>j*because ‖kfj‖A2→0 for each integer 0≤k≤β-1 asj→∞ by Lemma 3. Furthermore, for everyj>jβ,

    (3)

    Then, by combining the inequalities (1), (2) and (3), we have

    ‖β(ufj)‖L2≤‖

    asj>max{jβ,j*}. This implies that

    2 Main result

    The main result is the calculation of the essential norm of the Toeplitz operators in terms of the boundary value of their corresponding symbols. That is

    Theorem 2Letu∈Lβ,∞,β∈N*. Then,

    ‖Tu‖e=maxζ∈|u(ζ)|.

    AcknowledgmentsThe authors would like to thank professor YOUNG J L in Korea for helpful discussions.

    [1]ADAMS R A. Sobolev spaces[M]∥A subsidiary of Harcourt Brace Jovanovich, Pure and applied mathematics. New York-London: Academic Press, 1975:65.

    [2]COHN W S, VERBITSKY I E. On the trace inequalities for Hardy-Sobolev functions in the unit ball ofn[J]. Indian Univ Math J, 1994, 43(4): 1079-1097.

    [3]BRUNA J, ORTEGA J M. Interpolation along manifolds in Hardy-Sobolev spaces[J]. J Geom Anal, 1997, 7(1): 17-45.

    [5]CASCANTE C, ORTEGA J M. Carleson measures for weighted Hardy-Sobolev spaces[J]. Nagoya Math J, 2007, 186: 29-68.

    [6]TCHOUNDJA E. Carleson measures for the generalized Bergman spaces via aT(1)-type theorem[J]. Ark Mat, 2008, 46(2): 377-406.

    [7]CHO H R, ZHU K H. Holomorphic mean Lipschitz spaces and Hardy-Sobolev spaces on the unit ball[J]. Complex Var Elliptic Equ, 2012, 57(9): 995-1024.

    [8]CAO G F, HE L. Fredholmness of Multipliers on Hardy-Sobolev spaces[J]. J Math Anal Appl, 2014, 418(1): 1-10.

    [9]CAO G F, HE L. Hardy-Sobolev spaces and their multipliers[J]. Sci China Math Ser A, 2014, 57(11): 2361-2368.

    [10]HE L, CAO G F. Composition operators on Hardy-sobolev spaces[J]. Indian J Pure Appl Math, 2015, 46(3): 255-267.

    [11]HE L, CAO G F. Toeplitz operators with unbounded symbols on Segal-Bargmann space[J]. J Math Res Appl, 2015, 35(3): 237-255.

    [12]HONG C K. On the essential maximal numerical range[J]. Acta Sci Math, 1979, 41: 307-315.

    【責(zé)任編輯: 周全】

    date: 2016-01-05;Revised date: 2016-04-18

    s: National Natural Science Foundation of China (11501136); The key discipline construction project of subject groups focus on Mathematics and information science in the construction project of the high-level university of Guangdong Province (4601-2015); Guangzhou University (HL02-1517) and (HL02-2001)

    Essential norm of Toeplitz operators on Bergman-Sobolev space

    HE Li, CAO Guang-fu

    (School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

    In this paper, we study some properties of Toeplitz operators on the Bergman-Sobolev space. Mainly, we calculate the essential norm of these operators in terms of the boundary value of their corresponding symbols.

    Bergman-Sobolev space; Toeplitz operator; essential norm

    O 177.1Document code: A

    1671- 4229(2016)04-0018-04

    O 177.1

    A

    Biography: HE Li(1986-), female, Doctor of science. E-mail: helichangsha1986@163.com.

    猜你喜歡
    信息科學(xué)廣州大學(xué)本性
    單詞“變形計”
    廣州大學(xué)作品選登
    山西大同大學(xué)量子信息科學(xué)研究所簡介
    三元重要不等式的推廣及應(yīng)用
    A Tale of Two Cities:Creating city images through “Shanghai Police Real Stories” and“Guard the Liberation West”
    保持本性方能異彩紛呈
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計探究
    基于文獻(xiàn)類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實(shí)證分析
    《廣州大學(xué)學(xué)報( 社會科學(xué)版) 》2016 年( 第15 卷) 總目次
    論現(xiàn)象學(xué)時空的實(shí)踐本性
    清新县| 莒南县| 吉林市| 苏尼特左旗| 偃师市| 府谷县| 阳东县| 江油市| 黄梅县| 墨脱县| 大埔区| 永春县| 定结县| 墨脱县| 科技| 金阳县| 晋宁县| 尤溪县| 太谷县| 东港市| 喀什市| 河北区| 平顺县| 桃江县| 沂南县| 探索| 普兰县| 蚌埠市| 阿拉善左旗| 武夷山市| 若羌县| 肃宁县| 玉山县| 乃东县| 米林县| 科技| 东平县| 深圳市| 盐池县| 保靖县| 个旧市|