崔海英 李鑫
摘要: 以靜止?fàn)顟B(tài)下某高速列車(chē)車(chē)體為研究對(duì)象,將其復(fù)雜的內(nèi)外熱交換系統(tǒng)簡(jiǎn)化為車(chē)體壁和冷橋兩部分,運(yùn)用Abaqus仿真計(jì)算得到整車(chē)傳熱系數(shù);與相似設(shè)計(jì)的動(dòng)車(chē)組車(chē)體實(shí)驗(yàn)結(jié)果對(duì)比可知仿真結(jié)果合理可靠.編寫(xiě)Python腳本實(shí)現(xiàn)在Abaqus后處理中顯示車(chē)體壁傳熱系數(shù)K值云圖的功能,以便于指導(dǎo)車(chē)體結(jié)構(gòu)的優(yōu)化設(shè)計(jì);根據(jù)車(chē)體的原始設(shè)計(jì)并將選材成本考慮在內(nèi),提出的三種車(chē)體結(jié)構(gòu)優(yōu)化方案,使得整車(chē)傳熱系數(shù)降低10%.
關(guān)鍵詞: 高速列車(chē); 車(chē)體; 車(chē)體壁; 冷橋; 傳熱系數(shù); 結(jié)構(gòu)優(yōu)化; Abaqus; Python
中圖分類(lèi)號(hào): U270.383文獻(xiàn)標(biāo)志碼: B
Abstract: A high-speed train body in a stationary state is taken as the research object, of which the complex internal and external heat exchange system is simplified as two parts: vehicle wall and cold bridge. The heat transfer coefficient of the vehicle is calculated by Abaqus simulation. By comparing with the experimental result of an Electric Multiple Unit train body with similar design, the simulation result is reasonable and reliable. The function that displays heat transfer coefficient contour of vehicle wall in post-processing of Abaqus is implemented by Python script. This method can be used for guiding optimization design of vehicle body structure. According to the original design of the vehicle body and taking the material cost into account, three optimization schemes about body structure are proposed, which can reduce vehicles heat transfer coefficient by 10 %.
Key words: high-speed train; vehicle body; vehicle wall; cold bridge; heat transfer coefficient; structure optimization; Abaqus; Python
0引言
高速列車(chē)不僅要保證安全高速地運(yùn)行,還要為旅客和車(chē)上工作人員盡可能創(chuàng)造舒適的環(huán)境.為保持車(chē)室內(nèi)溫度恒定,除使用空調(diào)設(shè)備外,車(chē)體還必須具有良好的隔熱性能,車(chē)體傳熱系數(shù)K便是衡量其隔熱性能的重要參數(shù).[1-2]采用計(jì)算機(jī)仿真技術(shù)不僅可以計(jì)算K值,還可以根據(jù)仿真結(jié)果指導(dǎo)車(chē)體結(jié)構(gòu)優(yōu)化.[3]現(xiàn)有的計(jì)算方法通常將車(chē)體三維傳熱問(wèn)題簡(jiǎn)化為一維問(wèn)題,誤差較大,并且難以反映各種部件裝配間隙對(duì)傳熱的影響.[4-5]另外,通用仿真軟件不具備直觀顯示K值分布的功能,不利于提出結(jié)構(gòu)熱工優(yōu)化方案.[6]
本文以靜止?fàn)顟B(tài)下某高速列車(chē)車(chē)體為研究對(duì)象,通過(guò)Abaqus仿真計(jì)算其傳熱系數(shù)K,并與相似設(shè)計(jì)的動(dòng)車(chē)組車(chē)體實(shí)驗(yàn)結(jié)果對(duì)比,通過(guò)二次開(kāi)發(fā)實(shí)現(xiàn)在Abaqus后處理中顯示車(chē)體壁K值云圖的功能,最終提出降低整車(chē)K值的車(chē)體結(jié)構(gòu)優(yōu)化方案.
1計(jì)算方法
高速列車(chē)車(chē)體的內(nèi)外熱交換系統(tǒng)較為復(fù)雜,車(chē)頂部分的傳熱路徑為:車(chē)體外側(cè)涂料—中空鋁型材—阻尼漿—隔熱層—內(nèi)飾件,車(chē)體內(nèi)外壁之間還有各種冷橋結(jié)構(gòu)交錯(cuò)組合.本文將此復(fù)雜的傳熱系統(tǒng)簡(jiǎn)化為車(chē)體壁和冷橋2部分,基于穩(wěn)態(tài)傳熱原理,在不考慮輻射傳熱的前提下運(yùn)用Abaqus仿真軟件分別計(jì)算得到各部分的傳熱量,再通過(guò)式(1)計(jì)算整車(chē)傳熱系數(shù)K[7].K=ΦA(chǔ)(t高-t低)(1)式中:Φ為傳熱量,W;A為傳熱面積,m2;t高和t低分別為車(chē)體內(nèi)、外側(cè)溫度,K.
2計(jì)算條件
設(shè)置車(chē)室內(nèi)外的溫度和車(chē)體內(nèi)外的表面?zhèn)鳠嵯禂?shù)作為邊界條件.根據(jù)《鐵道客車(chē)采暖通風(fēng)設(shè)計(jì)參數(shù)》[8],靜止?fàn)顟B(tài)下車(chē)體的邊界條件為:車(chē)室外計(jì)算溫度為280.5 K;車(chē)室內(nèi)計(jì)算溫度為305.5 K;車(chē)體外表面?zhèn)鳠嵯禂?shù)為16 W/(m2·K);車(chē)體內(nèi)表面?zhèn)鳠嵯禂?shù)為8 W/(m2·K).車(chē)體結(jié)構(gòu)使用材料的熱導(dǎo)率見(jiàn)表1.另外,車(chē)體的風(fēng)道結(jié)構(gòu)中存在空氣層,可查《實(shí)用供熱空調(diào)設(shè)計(jì)手冊(cè)》[9]得到熱流水平及熱流向下情況下不同厚度流動(dòng)空氣層的熱導(dǎo)率,見(jiàn)表2.
3傳熱系數(shù)計(jì)算
3.1車(chē)體壁
車(chē)體壁是由各種均質(zhì)材料層層疊加組合而成的.根據(jù)車(chē)體結(jié)構(gòu),將車(chē)體壁劃分為4個(gè)區(qū)域:觀光室、一位端通過(guò)臺(tái)、客室和二位端,見(jiàn)圖1.各區(qū)域又由若干子區(qū)域構(gòu)成.仿真計(jì)算時(shí)先分析各子區(qū)域的傳熱路徑,然后按照由車(chē)體外側(cè)至車(chē)體內(nèi)側(cè)的鋪層方向在Abaqus中建立各子區(qū)域的鋪層簡(jiǎn)化模型,最后計(jì)算得到車(chē)體壁傳熱系數(shù)Kb.
4.2車(chē)窗和車(chē)門(mén)
計(jì)算車(chē)體壁面?zhèn)鳠嵯禂?shù)時(shí),車(chē)窗和車(chē)門(mén)傳熱系數(shù)已知,分別為2.620和4.400 W/(m2·K).根據(jù)市場(chǎng)調(diào)研,選用隔熱性能更好的車(chē)窗和車(chē)門(mén),可使其傳熱系數(shù)分別降低至1.900和4.000 W/(m2·K),則優(yōu)化后整車(chē)Kz為1.184 W/(m2·K),比原始設(shè)計(jì)降低3.4%.
4.3二位端門(mén)
在原始設(shè)計(jì)時(shí),該車(chē)二位端門(mén)的鋪層結(jié)構(gòu)為端門(mén)鋁型材+空氣層130 mm+三維鋁蜂窩20 mm.可考慮在端門(mén)鋁型材表面適當(dāng)鋪設(shè)隔熱材料.若將鋪層結(jié)構(gòu)優(yōu)化為端門(mén)鋁型材+阻尼漿5 mm+碳纖維MCIII 30 mm+空氣層95 mm+三維鋁蜂窩20 mm,則優(yōu)化后整車(chē)Kz為1.184 W/(m2·K),比原始設(shè)計(jì)降低3.4%.
5結(jié)論
(1)將高速列車(chē)車(chē)體復(fù)雜的內(nèi)外熱交換系統(tǒng)簡(jiǎn)化為車(chē)體壁和冷橋2部分,運(yùn)用Abaqus仿真計(jì)算得到整車(chē)傳熱系數(shù)Kz為1.226 W/(m2·K),并與相似設(shè)計(jì)的動(dòng)車(chē)組車(chē)體實(shí)驗(yàn)結(jié)果對(duì)比,誤差為-9.2 %.考慮到本文忽略輻射傳熱且車(chē)體冷橋部位傳熱路徑較為復(fù)雜,因此認(rèn)為計(jì)算結(jié)果合理可靠.
(2)通過(guò)編寫(xiě)Python腳本實(shí)現(xiàn)在Abaqus后處理中顯示車(chē)體壁傳熱系數(shù)Kb值云圖的功能,有利于結(jié)構(gòu)熱工優(yōu)化方案的提出.
(3)根據(jù)車(chē)體的具體設(shè)計(jì)并將選材成本考慮在內(nèi),綜合使用本文提出的3種優(yōu)化方案,可將整車(chē)傳熱系數(shù)降低10%,實(shí)現(xiàn)車(chē)體綜合節(jié)能設(shè)計(jì)技術(shù)的提高.參考文獻(xiàn):
[1]黃兆麟, 盧汝鈞, 王興江, 等. 小型單元式空調(diào)機(jī)組[J]. 鐵道車(chē)輛, 2000, 38(5): 17-20. DOI: 10.3969/j.issn.1002-7602.2000.05.006.
HUANG Z L, LU R J, WANG X J, et al. Small self-contained air-conditioner sets[J]. Rolling Stock, 2000, 38(5): 17-20. DOI: 10.3969/j.issn.1002-7602.2000.05.006.
[2]孫相業(yè), 王書(shū)傲, 談越明. 淺析客車(chē)通風(fēng)[J]. 鐵道車(chē)輛, 1999, 37(9): 32-35.
SUN X Y, WANG S A, TAN Y M. Analysis of ventilation for railway passenger trains[J]. Rolling Stock, 1999, 37(9): 32-35.
[3]熊華生. 動(dòng)車(chē)組隔熱仿真及整車(chē)傳熱系數(shù)K值計(jì)算研究[D]. 青島: 青島理工大學(xué), 2012.
[4]SCHUSTER M. Simulations of heat transfer through the cabin walls of rail vehicle[J]. Applied and Computational Mechanics, 2007(1): 273-280.
[5]MEZRHABA A, BOUZIDI M. Computation of thermal comfort inside a passenger car compartment[J]. Applied Thermal Engineering, 2006, 26(14/15): 1697-1704. DOI: 10.1016/j.applthermaleng.2005.11.008.
[6]蘇慈, 武雙虎, 歐陽(yáng)立芝, 等. 高速動(dòng)車(chē)組車(chē)體傳熱系數(shù)模擬計(jì)算研究[J]. 裝備制造技術(shù), 2013(5): 33-35. DOI: 0.3969/j.issn.1672-545X.2013.05.012.
SU C, WU S H, OUYANG L Z, et al. Simulative calculation research on heat transfer coefficient of high speed EMU hull[J]. Equipment Manufacturing Technology, 2013(5): 33-35. DOI: 0.3969/j.issn.1672-545X.2013.05.012.
[7]楊世銘, 陶文銓. 傳熱學(xué)[M]. 4版. 北京: 高等教育出版社, 2006: 12-14.
[8]鐵道客車(chē)采暖通風(fēng)設(shè)計(jì)參數(shù): TB/T 1955—2000[S].
[9]陸耀慶. 實(shí)用供熱空調(diào)設(shè)計(jì)手冊(cè) [M]. 2版. 北京: 中國(guó)建筑工業(yè)出版社, 2008: 20.
[10]李莉, 敬俊娥, 姜云海, 等. 基于冷橋分析的列車(chē)車(chē)體K值優(yōu)化計(jì)算[J]. 青島理工大學(xué)學(xué)報(bào), 2010, 31(2): 63-68. DOI: 10.3969/j.issn.1673-4602.2010.02.013.
LI L, JING J E, JIANG Y H, et al. Optimization calculation of K value of train based on cold bridge analysis[J]. Journal of Qingdao Technological University, 2010, 31(2): 63-68. DOI: 10.3969/j.issn.1673-4602.2010.02.013.
(編輯武曉英)