袁萍, 鄧畏平
(1.長江大學(xué)文理學(xué)院基礎(chǔ)課部, 湖北荊州434020;西南財經(jīng)大學(xué)天府學(xué)院數(shù)學(xué)教學(xué)中心, 四川綿陽621000)
?
5階變系數(shù)Korteweg-de Vries方程的光孤子解
袁萍1, 鄧畏平2
(1.長江大學(xué)文理學(xué)院基礎(chǔ)課部, 湖北荊州434020;西南財經(jīng)大學(xué)天府學(xué)院數(shù)學(xué)教學(xué)中心, 四川綿陽621000)
KDV方程可用于描述量子力學(xué)、非線性光學(xué)、江河等領(lǐng)域中的非均勻傳輸介質(zhì)孤立子的傳播,是最典型的非線性色散波動方程的代表。以5階變系數(shù)KDV方程為研究對象,首先結(jié)合齊次平衡原理,采用擬設(shè)函數(shù)法證明了方程當(dāng)系數(shù)滿足一定約束條件時存在sech函數(shù)形式的亮孤子解與tanh函數(shù)形式的暗孤子解;然后在所得孤子解中結(jié)合參數(shù)的實際背景,選取了一些特殊參數(shù)和方程系數(shù)進行了數(shù)值模擬,刻畫了波函數(shù)的實際傳播形態(tài)。與已有的結(jié)果進行比較,發(fā)現(xiàn)用此方法更加簡潔,研究結(jié)果完善了KDV方程解的形式,該方法也適用于解決其他非線性波動方程。
光孤子解;齊次平衡原理;變系數(shù)Korteweg-de Vries方程;波形圖
越來越多有關(guān)非線性問題的非線性微分方程已經(jīng)出現(xiàn)在許多領(lǐng)域,如物理、化學(xué)、生物、機械和光學(xué)等。例如描述等離子物理中不穩(wěn)定漂移波的KdV-Burgers-Kuramoto方程[1]、描述短脈沖在單模光纖中傳播的非線性Schr?dinger方程[2]、描述單種群優(yōu)勢基因傳播的Fisher方程[3]等,因此非線性發(fā)展方程精確解的研究已經(jīng)成為一項重要工作。目前,對尋找非線性發(fā)展方程的精確解,已經(jīng)形成較為完善的求解方法,如齊次平衡法[4-5]、首次積分法[6-7]、各種函數(shù)展開法和試探函數(shù)法[8-9]、逆散射方法[10]、Backlund變換法[11]等。
KDV方程可用于描述量子力學(xué)、非線性光學(xué)、江河等領(lǐng)域中的非均勻傳輸介質(zhì)孤立子的傳播,以5階時變系數(shù)KDV方程為研究對象,其形式為:
ut+f(t)u2ux+g(t)uxuxx+h(t)uuxxx+
k(t)uxxxxx=0
(1)
其中:u(x,t)為波函數(shù),f(t),g(t),h(t),k(t)為實解析函數(shù)。文獻[12]已經(jīng)推出該方程的Lax對、Darboux變換和一系列解析解,文獻[13]利用AKNS變換,構(gòu)造了方程ut+f(t)u2ux+g(t)uxuxx+h(t)uuxxx+k(t)uxxxxx+l(t)u=0的自Backlund變換和一系列孤子解。
本文利用孤波擬設(shè)函數(shù)法[14-15]證明當(dāng)方程(1)的系數(shù)滿足一定約束條件時,方程存在暗孤子解和亮孤子解,這種方法已經(jīng)成功運用于若干類非線性偏微分方程[16-18]。
假設(shè)方程(1)的解具有如下形式:
u(x,t)=λ(t)sechpξ,ξ=l(t)x+v(t)t
(2)
其中:λ(t)為孤波的振幅,l(t)為逆寬,v(t)為波速,這些函數(shù)均待定,p由齊次平衡原理確定。由p+5=2p+3得p=2。
易得:
ut=λ′sech2ξ-2λsech2ξ·tanhξ·
(l′x+v′t+v)
(3)
ux=-2λlsech2ξ·tanhξ
(4)
u2ux=-2λ3lsech6ξ·tanhξ
(5)
uxuxx=4λ2l3(-2sech4ξ·tanhξ+3sech6ξ·tanhξ)
(6)
uxxx=-2λl3(4sech2ξ·tanhξ-12sech4ξ·tanhξ)
(7)
uxxxxx=-2λl5(16sech2ξ·tanhξ-240sech4ξ·
tanhξ+360sech6ξ·tanhξ)
(8)
將(3)式~(8)式代入方程(1)得:
λ′sech2ξ-2λsech2ξ·tanhξ·(l′x+v′t+v)v-
2f(t)λ3lsech6ξ·tanhξ+4g(t)λ2l3(-2sech4ξ·
tanhξ+3sech6ξ·tanhξ)-2h(t)λ2l3(4sech2ξ·
tanhξ-12sech4ξ·tanhξ)-
2k(t)λl5(16sech2ξ·tanhξ-
240sech4ξ·tanhξ+360sech6ξ·tanhξ)=0
(9)
令(9)式中sechiξ·tanhjξ的系數(shù)全為0得:
sech2ξ: λ′=0
sech2ξ·tanhξ:l′x+v′t+v+16l5k(t)=0
sech4ξ·tanhξ:λg(t)+λh(t)-60l2k(t)=0
sech6ξ·tanhξ:λ2f(t)-6λl2g(t)-12λl2h(t)+
360l4k(t)=0
(10)
解代數(shù)方程組(10)得:
(11)
假設(shè)方程(1)的解具有如下形式:
u(x,t)=λ(t)sechpξ,ξ=l(t)x+v(t)t
(12)
其中,λ(t)為孤波的振幅,l(t)為逆寬,v(t)為波速,這些函數(shù)均待定。p由齊次平衡原理確定。由p+5=2p+3得p=2。
易得:
ut=λ′tanh2ξ+2λ(tanhξ-tanh3ξ)·
(l′x+v′t+v)
(13)
ux=2λl(tanhξ-tanh3ξ)
(14)
u2ux=2λ3l(tanh5ξ-tanh7ξ)
(15)
uxuxx=4λ2l3(tanhξ-5tanh3ξ+
7tanh5ξ-3tanh7ξ)
(16)
uxxx=2λ2l3(-8tanh3ξ+20tanh5ξ-12tanh7ξ)
(17)
uxxxxx=2λl5(136tanhξ-616tanh3ξ+
840tanh5ξ-360tanh7ξ)
(18)
將(12)式~(17)式代入方程(1)得:
λ′tanh2ξ+2λ(tanhξ-tanh3ξ)·(l′x+v′t+v)+
2f(t)λ3l(tanh5ξ-tanh7ξ)+
4g(t)λ2l3(tanhξ-5tanh3ξ+7tanh5ξ-3tanh7ξ)+
2h(t)λ2l3(-8tanh3ξ+
20tanh5ξ-12tanh7ξ)+
2k(t)λl5(136tanhξ-616tanh3ξ+
840tanh5ξ-360tanh7ξ)=0
(19)
令式(19)中tanhiξ的系數(shù)全為0得:
tanh2ξ: λ′=0
tanhξ:l′x+v′t+v+2λl3g(t)+136l5k(t)=0
tanh3ξ:l′x+v′t+v+10λl3g(t)+8λl3h(t)+
616l5k(t)=0
tanh5ξ:λ2f(t)+14λl2g(t)+20λl2h(t)+
840l4k(t)=0
tanh7ξ:λ2f(t)+6λl2g(t)+12λl2h(t)+
360l4k(t)=0
(20)
解代數(shù)方程組(20)得:
u(x,t) = λ0tanh2
(21)
為刻畫孤子解對應(yīng)的波函數(shù)實際傳播形態(tài),在(11)式和(21)式中結(jié)合參數(shù)的實際背景,選取了一些特殊參數(shù)和系數(shù)進行了數(shù)值模擬,圖1 、圖2 分別模擬了(11)式和(21)式形式的孤子解的波形圖。
圖1 (11) for λ=2,l=0.5 ,k(t)=sint
圖2 (21) for λ=2,l=0.5 ,k(t)=cost
運用擬設(shè)函數(shù)法獲得變系數(shù)5階KDV方程的光孤子解,包含sech函數(shù)形式的亮孤子解和tanh函數(shù)形式的暗孤子解,擴大了解的范圍,對于研究非線性發(fā)展方程具有非常廣泛的應(yīng)用意義,這種方法簡潔方便,值得推廣。
[1] COHEN B,KROMMES J,TANG W,et al.Non-linear saturation of the dissipative trappedion mode by mode coupling[J].Nucl.Fusion,1976,16:971-992.
[2] SCHR?DING E.An Undulatory Theory of the Mechanics of Atoms and Molecules[J].Phys Re,1926,28:1049-1070.
[3] FISHER R A.The wave of advance of advantageous genes[J].Ann Eugenics,1937,7:355-369.
[4] WANG M L.Exact Solutions for a Compound Kdv-Burgers Equation[J].Physics Letters A,1996,213(5-6):279-287.
[5] 王明亮,李志斌,周宇斌.齊次平衡原理及其應(yīng)用[J].蘭州大學(xué)學(xué)報:自然科學(xué)版,1999,35(3):8-16.
[6] TAGHIZADEH N,MIRZAZADEH M,FILIZ T.The first-integral method applied to the Eckhaus equation[J].Applied Mathematics Letters,2012,25(5):798-802.
[7] 套格圖桑,伊麗娜.廣義Zakharov-Kuzentsov方程的類孤子新解[J].量子電子學(xué)報,2015,35(3):290-299.
[8] 馮慶江,肖紹菊.應(yīng)用改進的(G′/G2)-展開法求Zakharov方程的精確解[J].量子電子學(xué)報,2015,32(1):40-45.
[9] 龐晶,靳玲花,應(yīng)孝梅.利用(G′/G)展開法求解廣義變系數(shù)Burgers方程[J].量子電子學(xué)報,2011,28(6):674-680.
[10] ABLOWITZ M J P,CLARKSON P A.Solitons Nonlinear Evolution Equations and Inverse Scattering[M].New York:Cambridge University Press,1991.
[11] 曾昕,張鴻慶.(2+1)維Boussinesq方程的Banklund變換與精確解[J].物理學(xué)報,2005,54(4):1476-1480.
[12] CHEN B,XIE Y C.An auto-Backlund transformation and exact solutions of stochastic Wick-type Sawada-Kotera equation[J].Chao,Solitons and Fractals,2005,23:243-248.
[13] 王嘉謀,王尚戶,何莉敏.變系數(shù)5階Korteweg-de Vries方程的Lax對和自Backlund變換研究[J].江蘇科技大學(xué)學(xué)報:自然科學(xué)版,2013,27(3):303-306.
[14] BISWAS A.1 -soliton solution of the K(m,n) equation with generalized evolution[J].Phy Lett A,2008,372(25):4601-4602.
[15] TRIKI H,WAZWAZ A M.Bright and dark soliton solutions for a K(m,n) equation with t-dependent Coefficients[J].Phy Lett A,2009(373):2162-2165.
[16] BISWAS A.1 -Soliton solution of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and time-dependent coefficients[J].Phys.Lett.A,2009,373(33):2931-2934.
[17] BISWAS A,TRIKI H,LABIDI M.Bright and dark solitons ofthe Rosenau-Kawahara equation with power law nonlinearity[J].Phys.Wave Phenom,2011(19):24-29.
[18] TRIKI H,ISMAIL M S.Soliton solutions of a BBM(m,n) equation with generalized evolution[J].Appl.Math.Computat,2010,217(1):48-54.
Optical Soliton Solutions for the Fifth-order Variable-coefficient Korteweg-de Vries Equation
YUANPing1,DENGWeiping2
(1.Basic Courses Department,Yangtze University College of Art and Science, Jingzhou 434020, China;2.Mathematics Teaching Center, Tianfu College of SWUFE, Mianyang 621000, China)
KDV equations can be used to describe the spread of non-uniform transmissive medium soliton in quantum mechanics, nonlinear optics and the field of rivers. It’s also the most typical representative of nonlinear dispersive wave equations. In view of the fifth-order variable-coefficient Korteweg-de Vries equation, fist of all, combining with the homogeneous balance principle and using the ansatz method, when the coefficients of equation are constrained by some conditions, the bright solition solutions with sech function and dark solition solutions with tanh function are obtained; Then, combining with the practical background of the parameters in solutions, selected some special parameters and coefficients, the numerical simulation has been conducted as well as the actual communication form of wave function has been depicted. Compared with the past results, the method is more concise, the results generalize and develop the forms of KDV equation’s solutions. The method can be aslo used to solve the other non-linear wave equations.
optical solitons; homogeneous balance method; variable-coefficient Korteweg-de Vries equation
2016-06-22
湖北省教育廳科研計劃項目(B2016461)
袁 萍(1984-),女,湖北潛江人,講師,碩士,主要從事偏微分方程方面的研究,(E-mail)346323353@qq.com
1673-1549(2016)05-0097-04
10.11863/j.suse.2 016.05.2 0
O175
A