趙建成,楊 揚(yáng),鐘勝?gòu)?qiáng),李 錕,陳小剛
(1:暨南大學(xué)水生生物研究所,廣州510632)(2:深圳市深港產(chǎn)學(xué)研環(huán)保工程技術(shù)股份有限公司,深圳518055)
沉水植物水槽對(duì)農(nóng)村水體凈化效果與機(jī)制的模擬?
趙建成1,2,楊 揚(yáng)1??,鐘勝?gòu)?qiáng)1,李 錕2,陳小剛2
(1:暨南大學(xué)水生生物研究所,廣州510632)(2:深圳市深港產(chǎn)學(xué)研環(huán)保工程技術(shù)股份有限公司,深圳518055)
實(shí)驗(yàn)設(shè)計(jì)中試水槽裝置,模擬研究2種沉水植物輪葉黑藻(Hydrilla nerticillata)和苦草(Vallisneria natans)對(duì)農(nóng)村水體的凈化效果,并探討沉水植物在水體氮、磷去除中的作用.結(jié)果顯示,沉水植物系統(tǒng)均能顯著降低水體中總氮、銨態(tài)氮、硝態(tài)氮和磷酸鹽濃度,去除率分別達(dá)到50.5%、84.4%、41.9%和64.6%,且輪葉黑藻組選擇20 g/m2,苦草組選擇40 g/m2為適種密度.水體流經(jīng)各串聯(lián)單元時(shí)氮、磷去除負(fù)荷存在顯著差異,其中總氮、硝態(tài)氮、磷酸鹽濃度在有植物單元高于無(wú)植物單元,銨態(tài)氮濃度相反,結(jié)合單元內(nèi)溶解氧濃度、硝化與反硝化細(xì)菌總數(shù)表明,有植物單元可顯著發(fā)生反硝化作用,無(wú)植物單元可顯著發(fā)生硝化作用,有無(wú)植物串聯(lián)單元更有利于氮的去除.
沉水植物水槽;有植物區(qū);無(wú)植物區(qū);氮;磷;農(nóng)村水體;輪葉黑藻;苦草
近年來(lái),隨著人們對(duì)農(nóng)村水體污染危害認(rèn)識(shí)的逐漸提高,農(nóng)村諸多源頭控制及過(guò)程排水的處理技術(shù)[1]等逐漸開展起來(lái),并收到一定的治理效果.目前,農(nóng)村污水處理設(shè)施普遍排放標(biāo)準(zhǔn)不高,水體中仍含有較高的氮、磷等營(yíng)養(yǎng)鹽物質(zhì),導(dǎo)致地表水體的富營(yíng)養(yǎng)化.因此,需要一種近自然的深度處理技術(shù),以進(jìn)一步降低尾水營(yíng)養(yǎng)物質(zhì),達(dá)到改善水體的要求.
?國(guó)家“十二五”科技支撐計(jì)劃項(xiàng)目(2012BAJ21B07)資助.2015-09-01收稿;2015-12-02收修改稿.趙建成(1988~),男,碩士研究生;E-mail:476675687@qq.com.
??通信作者;E-mail:yangyang@scies.org.
沉水植物是一種根、莖、葉全部位于水層下面營(yíng)固著生活的大型水生植物,是水生生態(tài)系統(tǒng)重要組成部分,作為水生生態(tài)系統(tǒng)的生產(chǎn)者,在生長(zhǎng)過(guò)程中可通過(guò)直接吸收或間接作用顯著降低水體中的氮、磷營(yíng)養(yǎng)鹽濃度,并釋放出氧氣,同時(shí)分泌化感物質(zhì)抑制藻類的生長(zhǎng),對(duì)水體環(huán)境起到凈化作用[2-3].目前,利用沉水植物凈化水體氮、磷具有高效、低消耗且環(huán)境安全等優(yōu)點(diǎn),越來(lái)越受到該領(lǐng)域的廣泛重視和研究[4-5].雷澤湘等[6]運(yùn)用苦草等大型沉水植物圍隔實(shí)驗(yàn)可顯著降低太湖梅梁灣的湖水營(yíng)養(yǎng)鹽濃度,吳娟等[7]利用靜態(tài)模擬實(shí)驗(yàn)研究表明,輪葉黑藻的生長(zhǎng)能顯著降低水體的氮、磷水平.國(guó)內(nèi)外開展沉水植物凈化水體水質(zhì)實(shí)驗(yàn)多為靜態(tài)小試或圍隔實(shí)驗(yàn)[8-9],但自然狀態(tài)下水體是不斷流動(dòng).目前,對(duì)沉水植物修復(fù)動(dòng)態(tài)水研究報(bào)道較少[10],尤其是對(duì)水體中沉水植物植物區(qū)和無(wú)植物區(qū)動(dòng)態(tài)流動(dòng)中的研究更是鮮有報(bào)道[11].
本文以尾水的氮、磷營(yíng)養(yǎng)鹽為凈化對(duì)象,設(shè)計(jì)沉水植物有植物單元和無(wú)植物單元串聯(lián)凈化系統(tǒng),了解沉水植物系統(tǒng)不同單元的凈化效果,并探討系統(tǒng)中有無(wú)植物單元串聯(lián)設(shè)計(jì)對(duì)水體氮、磷營(yíng)養(yǎng)鹽去除的影響,以期為沉水植物系統(tǒng)凈化農(nóng)村水體提供參考.
1.1 實(shí)驗(yàn)材料
實(shí)驗(yàn)所用的沉水植物輪葉黑藻(Hydrilla verticillata)和苦草(Vallisneria natans)均采集于廣州野外采集.植物經(jīng)實(shí)驗(yàn)條件下馴養(yǎng)適應(yīng)15 d后,選擇葉芽根莖齊全、性狀統(tǒng)一且含15~18 cm健壯頂枝的輪葉黑藻和高度為15~20 cm的苦草幼苗進(jìn)行實(shí)驗(yàn),2種植物均采用扦插法栽種,栽種配置見(jiàn)表1.
1.2 實(shí)驗(yàn)設(shè)計(jì)
1.2.1 水槽設(shè)計(jì) 實(shí)驗(yàn)于2013年3月10日至7月10日在廣州暨南大學(xué)溫室內(nèi)的水槽中進(jìn)行.實(shí)驗(yàn)水槽共計(jì)2組,每組水槽面積約為3.4 m2,由6個(gè)尺寸為75 cm×75 cm×65 cm的單元構(gòu)成,分為輪葉黑藻組(H1~H6)和苦草組(V1~V6)(圖1),其中輪葉黑藻組無(wú)植物單元為H1、H3、H5,有植物單元為H2、H4、H6;苦草組相同.每組水槽通過(guò)水體在無(wú)植物單元上端進(jìn)水,下端出水,在有植物單元下端進(jìn)水,上端出水垂直方向呈對(duì)角的連續(xù)流動(dòng)方式,使6個(gè)單元形成了無(wú)植物區(qū)和有植物區(qū)循環(huán)串聯(lián)的水槽裝置.
圖1 布水和裝置設(shè)計(jì)流程圖Fig.1 Water distribution design flow chart
1.2.2 實(shí)驗(yàn)底泥及水體設(shè)計(jì) 實(shí)驗(yàn)水槽底部放置厚度為8~12 cm的土壤(采自氮、磷營(yíng)養(yǎng)鹽含量相對(duì)較低的廣州火爐山山體土壤),其中土壤背景值總氮(TN)含量為0.35±0.04 g/kg,總磷(TP)含量為0.14±0.01 g/kg.
實(shí)驗(yàn)用水參考Wienβer等[12]污水配置方法,選擇適宜稀釋梯度液用于模擬農(nóng)村池塘污水水體TN濃度為4.5±1.4 mg/L,TP濃度為0.4±0.1 mg/L(進(jìn)水氮、磷離子濃度見(jiàn)表2).實(shí)驗(yàn)每天進(jìn)水100 L,進(jìn)水流量為10 L/h,每天10 h.
1.2.3 水溫和光照條件 實(shí)驗(yàn)期間水體溫度范圍為20.9~28.3℃,各單元水溫差異小于2℃;溫室陰天和晴天光照范圍為3470~98690 lx.
1.3 取樣與分析方法
1.3.1 水質(zhì)分析 實(shí)驗(yàn)開始時(shí)測(cè)定水質(zhì)初始值,之后每隔5 d采集進(jìn)水和12個(gè)單元出水口附近水樣,現(xiàn)場(chǎng)測(cè)定水溫、pH值、溶解氧(DO)濃度(YSI-Plus,US),實(shí)驗(yàn)室測(cè)定總氮(TN)、硝態(tài)氮、銨態(tài)氮、葉綠素a(Chl.a)和磷酸鹽濃度等指標(biāo),共采集水樣24次.采樣及水質(zhì)分析方法參照文獻(xiàn)[13].
1.3.2 植物測(cè)定 沉水植物生長(zhǎng)情況于實(shí)驗(yàn)初期和實(shí)驗(yàn)?zāi)┢跁r(shí)分別測(cè)定,每次現(xiàn)場(chǎng)測(cè)定6個(gè)有植物單元內(nèi)植物鮮重、株高及分蘗數(shù).且在每個(gè)植物單元里選擇3兜代表性植株用純水沖洗干凈稱量鮮重,60℃烘干至恒重,計(jì)算含水率,并將植物磨碎過(guò)100目篩,測(cè)定植物體內(nèi)的全氮和全磷含量[14].
1.3.3 微生物測(cè)定 實(shí)驗(yàn)采用最大可能計(jì)數(shù)(Most Probable Number,MPN)法測(cè)定水體、底泥及植物表面硝化細(xì)菌與反硝化細(xì)菌總數(shù).水樣采集利用無(wú)菌100 ml白色廣口塑料瓶在每個(gè)單元中水體中層(約水下0.3 m)處取得12個(gè)樣品;底泥采集完裝入盛有100 ml無(wú)菌水的三角瓶中,置于搖床上振蕩30 min,制成均勻懸濁液12個(gè)樣品;植物單元內(nèi)取植物樣鮮重(各個(gè)部位)20 g,用100 ml無(wú)菌水洗脫植物根、莖、葉表面微生物6個(gè)樣品.
1.4 數(shù)據(jù)及統(tǒng)計(jì)分析
1.4.1 相對(duì)生長(zhǎng)速率 選用相對(duì)生長(zhǎng)速率(RGR)比較不同植物的生長(zhǎng)速率,公式為:
式中,W2為第2次測(cè)定的植物干重(g);W1為第1次測(cè)定的植物干重(g);t為2次測(cè)定的時(shí)間間隔(d). 1.4.2細(xì)菌總數(shù) 查MPN表,計(jì)算水樣、底泥附著和植物附著微生物的細(xì)菌總數(shù)[15].底泥與植物附著微生物單位為kg-1;比較水樣細(xì)菌總數(shù)時(shí),視1 L為1 kg,單位為L(zhǎng)-1. 1.4.3數(shù)據(jù)處理 數(shù)據(jù)處理使用Excel 2007軟件,統(tǒng)計(jì)分析使用SPSS 17.0軟件,其中P<0.05為差異顯著,P<0.01為差異極顯著,實(shí)驗(yàn)數(shù)據(jù)采用平均值±標(biāo)準(zhǔn)差表示.
2.1 輪葉黑藻和苦草生長(zhǎng)特性
輪葉黑藻和苦草栽種初期,生長(zhǎng)狀況良好.輪葉黑藻為枝條分蘗,分蘗數(shù)由初始1條變?yōu)?.5~12.3條,無(wú)分株現(xiàn)象,逐步形成一個(gè)頂冠蓬散、底部稀少(株數(shù)不變)的植物群落;苦草分蘗數(shù)由5.6~7.3條增至8.3~10.3條,分株由20~28棵增至52~69棵,平均增加株數(shù)133.1%,形成底部覆蓋較多的“草坪型”生長(zhǎng)模塊(表1).從生長(zhǎng)特性上看,輪葉黑藻對(duì)光照競(jìng)爭(zhēng)壓力更大,過(guò)量的頂端枝葉使植物中、下層難以透過(guò)光照,造成植物光合作用受阻,影響其生長(zhǎng).
表1 各凈水單元沉水植物的生長(zhǎng)特性Tab.1 The growth of submerged macrophytes in units
實(shí)驗(yàn)結(jié)束時(shí),各個(gè)單元沉水植物生物量均顯著大于實(shí)驗(yàn)初期(P<0.01),輪葉黑藻組H2、H4和H6單元生物量增長(zhǎng)倍數(shù)分別為16.9、22.9和38.3倍,苦草組V2、V4和V6單元生物量增長(zhǎng)倍數(shù)分別為3.2、8.7和7.6倍.通過(guò)對(duì)比各單元內(nèi)沉水植物的相對(duì)生長(zhǎng)速率(RGR),輪葉黑藻組H6單元生長(zhǎng)最快(0.030 d-1),顯著高于H2和H4單元(P<0.05);苦草組V4單元生長(zhǎng)最快(0.019 d-1),顯著高于其他單元(P<0.05),原因可能是H2、H4和V2單元植物生長(zhǎng)的限制因子為植物過(guò)密,導(dǎo)致植物生長(zhǎng)空間和光照受限,而過(guò)密的植物生物量會(huì)影響植物生長(zhǎng).結(jié)果顯示,本實(shí)驗(yàn)中輪葉黑藻選擇20 g/m2,苦草選擇40 g/m2可作為適種密度,結(jié)合植物生長(zhǎng)特性和相對(duì)生長(zhǎng)速率等因素,適時(shí)收割才能保證植物持續(xù)旺盛生長(zhǎng).
2.2 進(jìn)、出水水質(zhì)特征
表2 實(shí)驗(yàn)水槽進(jìn)水與出水水質(zhì)比較?Tab.2 The inflow and outflow water quality comparison experiment
2.3 水體N、P的延程變化
沉水植物系統(tǒng)對(duì)水體中的TN去除效果顯示(圖2a),TN濃度隨水流沿程方向呈逐級(jí)降低的趨勢(shì).統(tǒng)計(jì)分析發(fā)現(xiàn),輪葉黑藻組有植物單元TN的平均凈化效率為14.8%,苦草組為12.3%,而2組無(wú)植物單元平均凈化效率不到3.7%,有植物單元處理水體TN效率極顯著高于無(wú)植物單元(P<0.01),但輪葉黑藻組和苦草組之間并無(wú)顯著差異(P>0.05).
圖2 輪葉黑藻組和苦草組各凈水單元氮、磷濃度變化Fig.2 Changes of water quality in water purification unit of Hydrilla verticillata and Vallisneria natans
2.4 水體DO和pH值的空間變化
實(shí)驗(yàn)初期2組沉水植物單元水體DO濃度均較低,隨著實(shí)驗(yàn)的進(jìn)行,DO濃度逐漸升高.整個(gè)實(shí)驗(yàn)期間,輪葉黑藻組水體DO濃度變化范圍分別為1.4~8.9 mg/L,苦草組為0.6~12.6 mg/L.其中輪葉黑藻組有植物單元和無(wú)植物單元DO濃度平均值分別為5.5和6.8 mg/L,苦草組分別為5.1和7.4 mg/L.統(tǒng)計(jì)發(fā)現(xiàn),沉水植物有植物單元DO濃度顯著小于無(wú)植物單元(P<0.05).實(shí)驗(yàn)前期各單元水槽中水體pH值無(wú)明顯變化,均在6.5~7.5之間,到實(shí)驗(yàn)中后期,pH值逐漸升高(圖3).
圖3 輪葉黑藻組和苦草組各凈水單元pH值和DO濃度變化Fig.3 Changes of pH and DO concentrations in water purification unit of Hydrilla verticillata and Vallisneria natans
2.5 硝化、反硝化細(xì)菌在系統(tǒng)中的分布特征
對(duì)比2組實(shí)驗(yàn)組的水體和底泥微生物含量分析,底泥表面硝化細(xì)菌和反硝化細(xì)菌總數(shù)均顯著高于水體(P<0.01)(表3),表明底泥表面為微生物生長(zhǎng)提供了必要的營(yíng)養(yǎng)與能量,是系統(tǒng)硝化與反硝化作用的主要位點(diǎn).輪葉黑藻組和苦草組底泥表面的硝化細(xì)菌和反硝化細(xì)菌總數(shù)無(wú)顯著差異(P>0.05).
表3 輪葉黑藻組和苦草組有無(wú)植物單元硝化與反硝化細(xì)菌總數(shù)lg[n(MPN)]的差異性分析?Tab.3 The nitrification and denitrification bacteria lg[n(MPN)]in plant and open cells of Hydrilla verticillata and Vallisneria natans
對(duì)比2組實(shí)驗(yàn)組有無(wú)植物單元微生物含量分析,植物單元與無(wú)植物單元水體硝化細(xì)菌與反硝化細(xì)菌總數(shù)無(wú)顯著差異(P>0.05),硝化細(xì)菌總數(shù)在無(wú)植物單元略大于植物單元.而底泥中植物單元硝化細(xì)菌總數(shù)顯著小于無(wú)植物區(qū)域(P<0.03),反硝化細(xì)菌總數(shù)植物單元顯著小于無(wú)植物單元(P<0.02).結(jié)果表明,在無(wú)植物單元水體和底泥發(fā)生硝化作用較為顯著,而在有植物單元內(nèi)底泥發(fā)生反硝化作用較為顯著,水體中的反硝
化強(qiáng)度也有所增強(qiáng).
通過(guò)6個(gè)月的連續(xù)監(jiān)測(cè)數(shù)據(jù),分析實(shí)驗(yàn)水槽中DO濃度、pH值、葉綠素a濃度、植物生物量、植物面積與水質(zhì)氮、磷去除負(fù)荷的關(guān)系,對(duì)找出水體營(yíng)養(yǎng)鹽去除機(jī)制,評(píng)價(jià)沉水植物在池塘水體中的生態(tài)修復(fù)作用及其與無(wú)植物區(qū)域串聯(lián)之間的關(guān)系非常重要.
表4 沉水植物各環(huán)境影響因子之間的相關(guān)性Tab.4 Correlations between environmental impact factors of submerged plants
輪葉黑藻組和苦草組植物分別設(shè)置高、中、低3個(gè)栽種覆蓋度,結(jié)果顯示,除H2、H4區(qū)域沉水植物在生長(zhǎng)過(guò)程中因空間受限存在輕微的發(fā)黃以外,其他均迅速生長(zhǎng)且很快高于原來(lái)設(shè)置的最大密度,從DO、pH值和微生物含量看出,植物存在營(yíng)造出有別于無(wú)植物單元的降解N、P過(guò)程環(huán)境.沉水植物栽種面積是一個(gè)可以調(diào)控改變水體中N、P濃度去除的影響因素[22].分析沉水植物面積與水質(zhì)參數(shù)的相關(guān)性可知,其與TN、濃度呈顯著正相關(guān),與濃度呈負(fù)相關(guān).表明沉水植物生物量在一定范圍內(nèi),沉水植物面積的持續(xù)增加雖然可以顯著降低水體中的濃度,但對(duì)的去除不明顯,這對(duì)于處理高濃度的農(nóng)村生活廢水不太適宜,且水體大面積的水生植物收割不合理很容易使得植物殘?bào)w淤積于池底,造成更多的污染物質(zhì)甚至造成生物累積而引發(fā)毒害等問(wèn)題[23].本實(shí)驗(yàn)地處華南熱帶亞熱帶地區(qū)廣州,溫度較高,植物生長(zhǎng)迅速,實(shí)驗(yàn)中植物蓋度為25%的水槽生長(zhǎng)情況和處理能力均比較理想,與Reed[25]建議水生植物占水體全部面積的25%~35%基本一致.
1)2種沉水植物在本實(shí)驗(yàn)污水濃度和植物密度下,均可旺盛生長(zhǎng),通過(guò)收割輪葉黑藻可帶走水體中的氮為1.6~3.3 g/m2,磷為0.27~0.57 g/m2;苦草帶走的氮為0.3~0.5 g/m2,磷為0.08~0.12 g/m2.輪葉黑藻和苦草適種植密度分別為20和40 g/m2.
[1] Sun Qingye,Ma Xiuling,Yang Guide et al.Studies on nitrogen,phosphorus and organic matter in ponds around Chaohu Lake.Environmental Science,2010,31(7):110-1515(in Chinese with English abstract).DOI:10.13227/j.hjkx.2010. 07.015.[孫慶業(yè),馬秀玲,陽(yáng)貴德等.巢湖周圍池塘氮、磷和有機(jī)質(zhì)研究.環(huán)境科學(xué),2010,31(7):1510-1515.]
[2] Hough RA,F(xiàn)ornwall MD,Negele BJ et al.Plant community dynamics in a chain of lakes-principal factors in the decline of rooted macrophytes with eutrophication.Hydrobiologia,1989,173(3):199-217.
[3] Gao Yunni,Liu Biyun,Wang Jing et al.Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa.J Lake Sci,2011,23(5):761-766(in Chinese with English abstract).DOI:10.18307/2011.0514.[高云霓,劉碧云,王靜等.苦草(Vallisneria spiralis)釋放的酚酸類物質(zhì)對(duì)銅綠微囊藻(Microcystis aeruginosa)的化感作用.湖泊科學(xué),2011,23(5):761-766.]
[4] Melzer A.Aquatic macrophytes as tools for lake management.Hydrobiologia,1999,395/396:181-190.
[5] Wang Liqing,Li Yan,Zhang Ruilei.The purification of Lake Dianshan water quality with six species of submerged macrophyte systems.Journal of Agro-Environment Science,2008,27(3):1134-1139(in Chinese with English abstract).[王麗卿,李燕,張瑞雷.6種沉水植物系統(tǒng)對(duì)淀山湖水質(zhì)凈化效果的研究.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2008,27(3):1134-1139.]
[6] Lei Zexiang,Xie YF,Liu ZW et al.Study on the purification of eutrophicated water with aquatic macrophytes.Journal of Anhui Agricultural Sciences,2006,34(3):553-554(in Chinese with English abstract).[雷澤湘,謝貽發(fā),劉正文等.大型水生植物對(duì)富營(yíng)養(yǎng)化湖水凈化效果的試驗(yàn)研究.安徽農(nóng)業(yè)科學(xué),2006,34(3):553-554.]
[7] Wu Juan,Wu Zhenbin,Cheng Shuiping.Effect of Hydrilla verticillata on characteristics of water and sediment and removals of nutrition.Acta Hydrobiologica Sinica,2009,33(4):589-595(in Chinese with English abstract).DOI:10.3724/SP.J0000.2009.40589.[吳娟,吳振斌,成水平.輪葉黑藻對(duì)水體和沉積物理化性質(zhì)的改善和營(yíng)養(yǎng)元素的去除作用.水生生物學(xué)報(bào),2009,33(4):589-595.]
[8] Jukka H,Leena N.Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi(southern Finland).Water Research,2003,37:4468-4474.
[9] Wu Zhenbin,Qiu Dongru,He Feng et al.Effects of rehabilitation of submerged macrophytes on nutrient level of a eutrophic lake.Chinese Jouranl of Applied Ecology,2003,14(8):1351-1353(in Chinese with English abstract).DOI:10. 13287/j.1001-9332.2003.0301.[吳振斌,邱東茹,賀鋒等.沉水植物重建對(duì)富營(yíng)養(yǎng)水體氮磷營(yíng)養(yǎng)水平的影響.應(yīng)用生態(tài)學(xué)報(bào),2003,14(8):1351-1353.]
[10] Wang Weihong,Ji Min.The restoration of submerged macrophytes for improving water quality in a reclaimed wastewater river in Tianjin Binhai new area,China.Journal of Agro-Environment Science,2007,26(6):2292-2298(in Chinese with English abstract).[王衛(wèi)紅,季民.濱海再生水河道中沉水植物的恢復(fù)對(duì)水質(zhì)的改善.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007,26(6):2292-2298.]
[11] Qin Boqiang.Principles and approach for lake ecological restoration.Acta Ecologica Sinica,2007,27(11):4848-4858(in Chinese with English abstract).[秦伯強(qiáng).湖泊生態(tài)恢復(fù)的基本原理與實(shí)現(xiàn).生態(tài)學(xué)報(bào),2007,27(11):4848-4858.]
[12] Wienβer A,Kappelmeyer U,Kuschk P et al.Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland.Water Research,2005,39:248-256.
[13] State Environmental Protection Administration ed.Water and wastewater monitoring and analysis methods:4th edition.Beijing:China Environmental Science Press,2002:88-285(in Chinese).[國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法(第4版).北京:中國(guó)環(huán)境科學(xué)出版社,2002:88-285.]
[14] Wu Jianzhi,Ge Ying,Wang Xiaoyue.UV absorptio photo metric determin ation of total nitrogen in plant after K2S2O8oxidation.Physical Testing:Chemical Analysis,2000,36(4):166-167(in Chinese with English abstract).[吳建之,葛瀅,王曉月.過(guò)硫酸鉀氧化吸光光度法測(cè)定植物總氮.理化檢驗(yàn):化學(xué)分冊(cè),2000,36(4):166-167.]
[15] Xu Guanghui,Zheng Hongyuan eds.Agricultural microbiology experimental technology.Beijing:Beijing Agriculture Press,1986(in Chinese).[徐光輝,鄭洪元.農(nóng)業(yè)微生物學(xué)實(shí)驗(yàn)技術(shù).北京:農(nóng)業(yè)出版社,1986.]
[16] Sundberg C,Tonderski K,Lindgren PE.Potential nitrification and denitrification and the corresponding composition of the bacterial communities in a compact constructed wetland treating landfill leachates.Water Science and Technology,2007,56:159-166.
[17] Peterson SB,Teal JM.The role of plants in ecologically engineered wastewater treatment systems.Ecological Engineering,1996,6(2):137-148.
[18] Xie Yifa,Hu Yaohui,Liu Zhengwen et al.Effects of sediment resuspension on the growth of submerged plants.Acta Scientiae Circumstantiae,27(1):18-22(in Chinese with English abstract).[謝貽發(fā),胡耀輝,劉正文等.沉積物再懸浮對(duì)沉水植物生長(zhǎng)的影響研究.環(huán)境科學(xué)學(xué)報(bào),2007,27(1):18-22.]
[19] Hu Lian,Wang Chengyan,Shen Zhenfeng.In situ enclosure experiment for purification ability of the submerged plants in Yunlonghu Reservoir.Journal of Hydroecology,2008,29(2):17-21(in Chinese with English abstract).DOI:10.15928/j.1674-3075.2008.06.003.[胡蓮,萬(wàn)成炎,沈振鋒.云龍湖水庫(kù)沉水植物凈化水質(zhì)的原位圍隔試驗(yàn).水生態(tài)學(xué)雜志,2008,29(2):17-21.]
[20] Saunders DL,Kalff J.Nitrogen retention in wetlands,lakes and rivers.Hydrobiologia,2001,443:205-212.
[21] Peder GE,Weisner SEB.An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic system.Limnology and Oceanography,1999,44(8):1993-1999.
[22] Dai YR,Jia CR,Liang W et al.Effects of the submerged macrophyte Ceratophyllum demersum L.on restoration of a eutrophic waterbody and its optimal coverage.Ecological Engineering,2012,40:113-116.
[23] Zhu Qingshun.On the dynamics of the aquatic vegetation in Changdang Hu Lake with reference to fishery effect.Journal of Fisheries of China,1988,13(1):24-35(in Chinese with English abstract).[朱清順.長(zhǎng)蕩湖水生植被動(dòng)態(tài)及其漁業(yè)效應(yīng).水產(chǎn)學(xué)報(bào),1988,13(1):24-35.]
[24] Chen Qichun,Li Zhengkui,Wang Yichao et al.Applied study of the submerged macrophytes bed-immobilized bacteria in drinking water restoration.Environmental Science,2012,33(1):83-87(in Chinese with English abstract)DOI:10. 13227/j.hjkx.2012.01.027.[陳祈春,李正魁,王易超等.沉水植物床-固定化微生物技術(shù)在水源地修復(fù)中的應(yīng)用研究.環(huán)境科學(xué),2012,33(1):83-87.]
[25] Reed SC,Brown D.Subsurface flow wetlands:A performance evaluation.Water Environment Research,1995,67:244-248.
Simulation on rural water purification effect and mechanism with submerged macrophytes' sink
ZHAO Jiancheng1,2,YANG Yang1??,ZHONG Shengqiang1,LI Kun2&CHEN Xiaogang2
(1:Research Center of Hydrobiology,Jinan University,Guangzhou 510632,P.R.China)(2:Engineering Research Center of the Ministry of Education for Tropical and Subtropical Aquatic Ecological Engineering,Shenzhen 518055,P.R.China)
This experiment examined the purification effect of two submerged plants(Hydrilla verticillata and Vallisneria natans)on rural pond,and the nitrogen and phosphorus removal function of the plants in water,which was experimentized in pilot sink.The results showed that the plants can significantly decrease the concentration of total nitrogen,ammonium nitrogen,nitrate nitrogen,phosphate with a removing rates reached 50.5%,84.4%,41.9%,64.6%,respectively.The density of H.verticillata and V.natans setting to be 20 g/m2,and 40 g/m2would be the best options.As water flew through the series unit,there was obviously difference in nitrogen and phosphorus removal efficiency.The removal rates on total nitrogen,nitrate nitrogen,phosphate in planting area were higher than the ones in open area,while to the removal rate on ammonium nitrogen,is higher in open area.Combining dissolved oxygen of the units and the total number of nitrification and denitrification bacteria,it showed that plant units may have significant denitrification,while open units have significant nitrification.Tandeming the open unit and planting unit together could have a better total nitrogen removal effect.
Submerged macrophyte sink;planting area;open area;nitrogen;phosphorus;rural water;Hydrilla verticillata;Vallisneria natans
J.Lake Sci.(湖泊科學(xué)),2016,28(6):1274-1282
DOI 10.18307/2016.0613
?2016 by Journal of Lake Sciences