王永成,張玉偉,王曉莉,李 爽,盛 陽
(西北師范大學(xué)化學(xué)化工學(xué)院,甘肅蘭州 730070)
?
王永成,張玉偉,王曉莉,李 爽,盛 陽
(西北師范大學(xué)化學(xué)化工學(xué)院,甘肅蘭州 730070)
密度泛函理論(DFT);轉(zhuǎn)化頻率(fTO);能量跨度模型;反應(yīng)機(jī)理
近來,如何降低大氣污染物一直是科學(xué)家們關(guān)注的焦點(diǎn)[1-2].作為大氣污染物之一的N2O和CO倍受理論化學(xué)研究者的關(guān)注,N2O不僅會引起溫室效應(yīng),還會破壞臭氧層,引起臭氧空洞;CO也是一種有毒氣體,它可以結(jié)合血液中的血紅蛋白并阻止與氧結(jié)合從而導(dǎo)致血液缺氧癥.大量研究表明,過渡金屬氧化物離子作為催化劑之所以能減少N2O和CO的污染[3-4],是由于過渡金屬氧化物離子由于具有較高的選擇性和活性,因此過渡金屬氧化物被廣泛用作催化劑和起催化作用的介質(zhì)材料[5-7].氧化物的催化作用主要是提供氧,在實(shí)驗(yàn)中,許多過渡金屬氧化物離子與一些小分子CO,C2H4,C2H2等[8-10]之間的氧轉(zhuǎn)移反應(yīng)已經(jīng)被觀察到,其反應(yīng)在熱力學(xué)和動(dòng)力學(xué)上是有利的.同時(shí),過渡金屬氧化物轉(zhuǎn)移氧之后的產(chǎn)物也能在碰撞條件下與N2O繼續(xù)反應(yīng).鑒于它們在氧轉(zhuǎn)移催化反應(yīng)中表現(xiàn)出優(yōu)良的催化活性,過渡金屬氧化物催化劑的研究依然是具有挑戰(zhàn)性的課題[11].
(1)
(2)
圖催化CO與N2O的循環(huán)反應(yīng)示意圖
1.1 全參數(shù)優(yōu)化幾何構(gòu)型
在理論化學(xué)計(jì)算中密度泛函理論[13](DFT)已被廣泛運(yùn)用.文中采用DFT中Becke’s三參數(shù)交換泛函(B3)結(jié)合Lee-Yang-Parr(LYP)相關(guān)泛函的混合DFT/Hartree-Fock的B3LYP方法[14-15],對C,H,O,N采用TZVP[16-17]全電子基組,對Zr原子選用有效核心勢(ECP)LANL2DZ贗勢基組[18].全參數(shù)優(yōu)化了二、四重態(tài)反應(yīng)勢能面上所有駐點(diǎn)的幾何構(gòu)型,以及對優(yōu)化后的穩(wěn)定點(diǎn)做了頻率分析,保證穩(wěn)定構(gòu)型的力常數(shù)均大于零,過渡態(tài)鞍點(diǎn)處有唯一虛頻.為了確保各過渡態(tài)及反應(yīng)路徑的合理性,對各過渡態(tài)鞍點(diǎn)進(jìn)行了內(nèi)稟反應(yīng)坐標(biāo)(IRC)[19]驗(yàn)證.二、四重態(tài)反應(yīng)勢能面上各駐點(diǎn)構(gòu)型見圖2,勢能面相對能量見圖3.所有計(jì)算均采用Gaussian09程序包完成[20-21].
1.2 能量跨度模型
在實(shí)驗(yàn)中,催化性能的評價(jià)是通過測定單位時(shí)間內(nèi)單位濃度催化劑的轉(zhuǎn)換次數(shù),即催化轉(zhuǎn)化頻率TOF.Kozuch通過結(jié)合催化轉(zhuǎn)化頻率的概念和Eyring速率常數(shù)公式,建立起由Gibbs自由能描述催化循環(huán)過程的能量跨度模型[22-23].在能量跨度模型理論中,并不是每個(gè)中間體和過渡態(tài)的Gibbs自由能對整個(gè)循環(huán)反應(yīng)速率都有影響,而起決定作用的是Gibbs自由能最低的中間體和Gibbs自由能最高的過渡態(tài),即整個(gè)循環(huán)反應(yīng)的決速中間體(TDI)和決速過渡態(tài)(TDTS).Kozuch又結(jié)合Compbell對循環(huán)反應(yīng)速率控制度的定義,提出了循環(huán)反應(yīng)控制度的概念[24-25],進(jìn)而計(jì)算各中間體和過渡態(tài)的控制度.
圖2 在B3LYP/TZVP水平下各駐點(diǎn)優(yōu)化后的幾何構(gòu)型及相關(guān)參數(shù)(鍵角/(°),鍵長/nm)
圖3 初始反應(yīng)物的前線分子軌道相互作用分析圖
圖4 在二重態(tài)和四重態(tài)下所有反應(yīng)的路徑示意圖
2.2 循環(huán)反應(yīng)中催化劑的TOF計(jì)算
根據(jù)Kozuch能量跨度模型理論,在循環(huán)反應(yīng)中對反應(yīng)速率起決定作用的是Gibbs自由能最低的決速中間體(TDI)和Gibbs自由能最高的決速過渡態(tài)(TDTS),而不是活化能最大的基元決速步驟.能量跨度δE作為多步催化反應(yīng)的表觀活化能,它的大小由TDI和TDTS間的Gibbs自由能差值決定.
圖催化CO與N2O循環(huán)反應(yīng)的相對Gibbs自由能圖
物種IM1IM2IM3IM4XTOF,TiTS1TS2XTOF,Ij180×1072118×10216142×10-209575×10146531×1026455×10-135645×10147595×1027509×10-134126×10281117×10161100100923×10-121100
(3a)
(3b)
(4)
其中,ΔGr為最終產(chǎn)物和初始反應(yīng)物的Gibbs自由能的差值;Ti為第i個(gè)過渡態(tài)的Gibbs自由能值;Ij為第j個(gè)中間體的Gibbs自由能值.
1)整個(gè)反應(yīng)是沿著二重態(tài)勢能面進(jìn)行,是典型的單態(tài)反應(yīng);
2)該催化循環(huán)反應(yīng)是一個(gè)強(qiáng)放熱反應(yīng);
[1] PLANE J M C,ROLLASON R J.A kinetic study of the reactions of Fe(a5D)and Fe+(a6D) with N2O over the temperature range 294-850 K[J].JChemSoc,F(xiàn)aradayTrans,1996,92(22):4371.
[2] RITTER D,WEISSHAAR J C.Kinetics of neutral transition-metal atoms in the gas phase:oxidation of titanium(a3F) by nitric oxide,oxygen,and nitrous oxide[J].JPhysChem,1989,93(4):1576.
[3] CAMPBELL M L,K?LSCHl E J,HOOPER K L.Kinetic study of the reactions of gas-phase V(a4F3/2),Cr(a7S3),Co(a4F9/2),Ni(a3F4,a3D3) and Zn(4s2 1S0) atoms with nitrous oxide[J].JPhysChemA,2000,104(47):11147.
[4] TISHCHENKO O,CEULEMANS A,NGUYEN M T.Theoretical study on the group 2 atoms+ N2O reactions[J].JPhysChemA,2005,109(27):6099.
[5] TRIMM D L.HandbookofHeterogeneousCatalysis[M].Weinheim:Wiley-VCH,1997.
[6] TROVARELLI A.Catalytic properties of ceria and CeO2-containing materials[J].CatalRevSciEng,1996,38(4):439.
[7] BARTEAU M A.Organic reactions at well-defined oxide surfaces[J].ChemRev,1996,96(4):1413.
[8] ZEMSKI K A,JUSTES D R,CASTLEMAN A W.Reactions of group V transition metal oxide cluster ions with ethane and ethylene[J].JPhysChemA,2001,105(45):10237.
[10] JOHNSON G E,MITRIC R,TYO E C,et al.Stoichiometric zirconium oxide cations as potential building blocks for cluster assembled catalysts[J].JAmeChemSoc,2008,130(42):13912.
[11] CRAMER C J,TRUHLAR D G.Density functional theory for transition metals and transition metal chemistry[J].PhysChemChemPhys,2009,11:10757.
[12] JOHNSON G E,MITRIC R,TYO E C,et al.Stoichiometric zirconium oxide cations as potential building blocks for cluster assembled catalysts[J].JAmChemSoc,2008,130(42):13912.
[13] SU M D,CHU S Y.Density functional study of some germylene insertion reactions[J].JAmChemSoc,1999,121(17):4229.
[14] BECKE A D.Density-functional thermochemistry.Ⅲ.The role of exact exchange[J].JChemPhys,1993,98:5648.
[15] STEPHENS P J,DEVIN F J,CHABALOWSKI C F,et al.Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J].JPhysChem,1994,98(45):11623.
[16] ANDREA D,HAEUSSERMANN U,DOLG M,et al.Energy-adjusted ab initio pseudopotentials for the second and third row transition elements[J].TheorChimActa,1990,77(2):123.
[17] GILB S,WEIS P,F(xiàn)URCHE F,et al.Structures of small gold cluster cations(Au+n,n<14):ion mobility measurements versus density functional calculations[J].JChemPhys,2002,116:4094.
[18] HAY P J,WADT W R.Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg[J].JChemPhys,1985,82(1):270.
[19] GONZALEZ C,SCHLEGEL H B.Reaction path following in mass-weighted internal coordinates [J].JChemPhys,1990,94(14):5523.
[20] KOZUCH S,SHAIK S.How to conceptualize catalytic cycles?The energetic span model[J].AccChemRes,2011,44(2):101.
[21] FORESMAN J B,ORTIZ J V,CIOSLOWSK J,et al.Gaussian 09,Revision D.01[Z].Wallingford:Gaussian Inc,2009.
[22] CHRISTIANSEN J A.The elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrations[J].AdvCatal,1953(5):311.
[23] KOZUCH S,SHAIK S.A combined kinetic-quantum mechanical model for assessment of catalytic cycles:application to cross-coupling and heck reactions[J].JAmChemSoc,2006,128(10):3355.
[24] STEGELMANN C,ANDREASEN A,CAMPBELL C T.Degree of rate control:how much the energies of intermediates and transition states control rates[J].JAmChemSoc,2009,131(23):8077.
[25] YOSHIZAWA K,SHIOTA Y,YAMABE T.Intrinsic reaction coordinate analysis of the conversion of methane to methanol by an iron-oxo species:a study of crossing seams of potential energy surfaces[J].JPhysChem,1999,111(2):538.
(責(zé)任編輯 陸泉芳)
WANG Yong-cheng,ZHANG Yu-wei,WANG Xiao-li,LI Shuang,SHENG Yang
(College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou 730070,Gansu,China )
density functional theory(DFT);turnover frequency(fTO);energy span model;reaction mechanism.
10.16783/j.cnki.nwnuz.2016.06.013
2016-05-12;修改稿收到日期:2016-07-14
國家自然科學(xué)基金資助項(xiàng)目(21263023)
王永成(1956—),男,陜西戶縣人,教授,博士研究生導(dǎo)師.主要研究方向?yàn)榛瘜W(xué)動(dòng)力學(xué).
E-mail:ycwang@163.com
O 641
A
1001-988Ⅹ(2016)06-0064-06