饒君鳳, 呂偉德, 曹方彬
(1. 杭州職業(yè)技術(shù)學(xué)院,浙江 杭州 310018; 2. 浙江大學(xué) 農(nóng)業(yè)與生物技術(shù)學(xué)院,浙江 杭州 310058)
表1 鉻脅迫下西紅花葉片表達(dá)下調(diào)的蛋白
表2 鉻脅迫下西紅花葉片表達(dá)上調(diào)的蛋白
?
鉻脅迫對西紅花葉片蛋白表達(dá)譜的影響
饒君鳳1, 呂偉德1, 曹方彬2
(1. 杭州職業(yè)技術(shù)學(xué)院,浙江 杭州 310018; 2. 浙江大學(xué) 農(nóng)業(yè)與生物技術(shù)學(xué)院,浙江 杭州 310058)
鉻是植物的非必需元素,對植物的生長發(fā)育具有顯著的抑制作用.采用雙向電泳和質(zhì)譜技術(shù),研究了鉻脅迫對西紅花葉片蛋白表達(dá)的影響.通過質(zhì)譜技術(shù),成功鑒定出9個(gè)在鉻脅迫后下調(diào)表達(dá)的蛋白,分別為細(xì)胞分裂循環(huán)蛋白48、ATP合成酶α亞基、核酮糖二磷酸羧化酶長鏈(2個(gè))、未知蛋白、核酮糖二磷酸羧化加氧酶、蛋白酶體α亞基、鐵蛋白和蛋白酶體β亞基;6個(gè)上調(diào)表達(dá)的蛋白,分別為蔗糖合酶、真核起始因子4A、α-1,4-葡聚糖蛋白合成酶、1-氨基環(huán)丙烷-1-羧酸氧化酶、異黃酮還原酶類似物IRL和未知蛋白.以上結(jié)果為研究植物響應(yīng)鉻脅迫的分子機(jī)制提供了參考.
鉻;西紅花;葉片;蛋白組
鉻(Chromium, Cr),特別是六價(jià)鉻Cr(VI)被認(rèn)為是與鎘、汞、鉛并列的最危險(xiǎn)、毒害最大的主要重金屬污染物之一.近年來,電鍍、制革、冶煉等工業(yè)活動的加快發(fā)展,使得環(huán)境中的鉻含量大幅增加[1],由此帶來的環(huán)境污染問題已引起廣泛關(guān)注.據(jù)統(tǒng)計(jì),我國每年排放鉻渣近60萬t,累計(jì)堆存達(dá)600萬t,而經(jīng)過解毒處理或回收利用的卻不足17%[2].土壤中的鉻不斷累積,并最終通過食物鏈危害人類健康,甚至引發(fā)癌癥[3-4].鉻對植物來說同樣具有較高的毒性,并對植物的生長發(fā)育具有顯著的抑制作用[5].鉻脅迫通過影響光合作用過程中的一些重要參數(shù),如CO2的固定、電子鏈的傳遞、光合磷酸化和關(guān)鍵酶的活性,抑制植物的光合作用[5].因此,鉻毒害對農(nóng)業(yè)可持續(xù)發(fā)展和人類的生存質(zhì)量構(gòu)成了較大的威脅,鉻污染治理及其作用機(jī)理研究迫在眉睫.
西紅花是一種貴細(xì)中藥材和常用的色素,別名番紅花和藏紅花,基源為鳶尾科植物番紅花Crocus sativus L.的干燥柱頭.西紅花具有活血、涼血、解毒、解郁、安神的功效.藥理研究表明,西紅花具有降血脂、降血壓、抗動脈粥樣硬化、抗細(xì)胞凋亡、抗氧化、抗自由基、抑制腫瘤細(xì)胞增殖等作用.因其藥用部位僅是柱頭,產(chǎn)量很低,加上西紅花只能靠種球培育,種球退化嚴(yán)重,對栽培技術(shù)要求又很高,一直處于供不應(yīng)求的狀態(tài).為提高西紅花的產(chǎn)量和品質(zhì),有必要對影響西紅花生長的各因素加以研究.本研究采用雙向電泳和質(zhì)譜技術(shù)研究鉻脅迫對西紅花葉片蛋白表達(dá)譜的影響并鑒定相關(guān)蛋白.研究結(jié)果可為培育西紅花鉻低積累品種提供參考.
土培試驗(yàn)于杭州職業(yè)技術(shù)學(xué)院溫室內(nèi)進(jìn)行,每個(gè)實(shí)驗(yàn)設(shè)置4個(gè)生物學(xué)重復(fù).試驗(yàn)使用土壤為營養(yǎng)土,每盆裝2 kg土(盆體積5 L、高22 cm).移栽前1個(gè)月,向土壤中添加鉻溶液形成50 mg·kg-1鉻處理樣品,對照組中添加相同體積水.添加鉻溶液后,在溫室內(nèi)平衡30 d.將西紅花種球置于陰暗通風(fēng)的架子上發(fā)芽.約60 d后,將發(fā)芽一致的西紅花移栽于不同處理土壤中,每盆4株.處理30 d后采集2處理植株葉片進(jìn)行蛋白組分析.葉片首先在液氮中速凍,后置于-80 ℃冰箱中保存.
將4個(gè)生物學(xué)重復(fù)的葉片組成一個(gè)混樣,將葉片切細(xì)后置于液氮冷凍過的研缽中,加入液氮迅速研磨至無明顯顆粒粉末.加入PVPP,并將粉末轉(zhuǎn)移至50 mL離心管中.葉片蛋白質(zhì)的提取方法參考文獻(xiàn)[6],并略有修改.提取出的蛋白質(zhì)樣品采用牛血清標(biāo)準(zhǔn)品定量.
采用雙向電泳技術(shù)分離蛋白質(zhì),隨即銀染顯色.試驗(yàn)中所用的試劑均為電泳級.第1維等電使用的程序:S1,500 V,1 h;S2,1 000 V,1 h;S3,8 000 V,3 h;S4,8 000 V,5 h.第2維SDS-PAGE電泳程序:S1,2 W·gel-1,1 h;S2,17 W·gel-1,約4.5 h.電泳結(jié)束即進(jìn)行染色[7].染色后的凝膠使用PowerLook1100掃描儀進(jìn)行掃描和標(biāo)準(zhǔn)化處理,參數(shù)設(shè)置參考文獻(xiàn)[7].用ImageMaster 2D platinum 5.0(GE)進(jìn)行分析.將選出的目標(biāo)蛋白點(diǎn)從膠中挖出,采用胰蛋白酶進(jìn)行酶解[6].首先采用雙蒸水洗滌2次;加入50%甲醇洗脫至無色;每管加入ACN,震蕩脫水后加入100 mmoL·L-1NH4HCO3,完全吸脹后吸出,再加入50% CAN進(jìn)行吸脹;加入CAN脫水至膠粒完全干燥;于37 ℃培養(yǎng)箱中加入胰酶酶切12~16 h.
將酶切后的肽段進(jìn)行抽提:超聲處理15 min,加入成分為90%ACN和2.5%TFA的抽提液60 μL,振蕩10 min,將抽提液轉(zhuǎn)至新EP管中,真空干燥;加入30%ACN(含0.1%TFA)的重溶液重新溶解肽段.將肽段溶液點(diǎn)靶上機(jī),當(dāng)液滴揮發(fā)至原體積的1/3時(shí),加入含5 mg·mL-1HCCA(溶于50% ACN和0.1% TFA)的基質(zhì)于樣品上,待完全干燥后將樣品送入U(xiǎn)ltraflex III TOF/TOF質(zhì)譜儀(Bruker Dalton,德國)進(jìn)行質(zhì)譜分析.相關(guān)參數(shù)設(shè)置參考文獻(xiàn)[7].使用flexAnalysis(Bruker Dalton)過濾基線峰、識別信號峰,并采用BioTools(Bruker Dalton)搜索NCBI數(shù)據(jù)庫,查找匹配蛋白質(zhì),并查詢相關(guān)功能,鑒定蛋白質(zhì)種類,查詢條件參照文獻(xiàn)[7].檢索后得分最高者為目標(biāo)蛋白.
圖1和2分別是西紅花葉片對照組和鉻處理組的蛋白質(zhì)圖譜.鉻處理和對照樣品中蛋白質(zhì)點(diǎn)數(shù)分別為1 384和1 588個(gè).當(dāng)以變化超過1.5倍為基礎(chǔ)時(shí),與對照組相比,鉻處理組分別有91和101個(gè)蛋白點(diǎn)上調(diào)和下調(diào)表達(dá).其中,通過MALDI-TOF-TOF-MS成功鑒定出9個(gè)下調(diào)表達(dá)和6個(gè)上調(diào)表達(dá)的蛋白(見表1,表2,圖1~3).9個(gè)下調(diào)表達(dá)的蛋白分別為細(xì)胞分裂循環(huán)蛋白48(D1)、ATP合成酶α亞基(D2)、核酮糖二磷酸羧化酶長鏈(D3、D4)、未知蛋白(D5)、核酮糖二磷酸羧化加氧酶(D6)、蛋白酶體α亞基(D7)、鐵蛋白(D8)和蛋白酶體β亞基(D9).與對照相比,這些蛋白的表達(dá)倍數(shù)分別為-1.64,-1.99,-1.87,-2.04,-106,-106,-3.46,-1.58和-1.61.其中,有4個(gè)蛋白點(diǎn)(核酮糖二磷酸羧化酶長鏈和鐵蛋白)參與了植物的光合作用.
圖1 對照條件下西紅花葉片雙向電泳圖Fig.1 Representative 2-DE maps of saffron leaf proteins isolated from control conditionTotal proteins were extracted and separated by 2-DE. In IEF,100 mg proteins were loaded onto pH 4-7 IPG strips (24 cm,linear). SDS-PAGE was performed with 12.5% gels. The spots were visualized by silver staining. Differentially accumulated protein spots are indicated by green sashes. Six higher expressed spots (U) and nine suppressed (D) spots are shown in the maps.
圖2 50 mg·kg-1鉻脅迫下西紅花葉片雙向電泳圖Fig.2 Representative 2-DE maps of saffron leaf proteins isolated from 50 mg·kg-1 Cr treatmentTotal proteins were extracted and separated by 2-DE. In IEF,100 mg proteins were loaded onto pH 4-7 IPG strips (24 cm,linear). SDS-PAGE was performed with 12.5% gels. The spots were visualized by silver staining. Differentially accumulated protein spots are indicated by green sashes. Six higher expressed spots(U) and nine suppressed (D) spots are shown in the maps.
表1 鉻脅迫下西紅花葉片表達(dá)下調(diào)的蛋白
Table 1 Proteins whose expression were significantly down-accumulated in leaves of saffron under Cr stress
表2 鉻脅迫下西紅花葉片表達(dá)上調(diào)的蛋白
Table 2 Proteins whose expression were significantly induced in leaves of saffron under Cr stress
圖3 50 mg·kg-1鉻處理30 d后西紅花葉片差異蛋白的點(diǎn)圖Fig.3 Spot view of the identified proteins in leaves after 50 mg·kg-1 Cr treatment for 30 d
與對照組相比,鉻處理后表達(dá)上調(diào)的蛋白分別為蔗糖合酶(U1)、真核起始因子4A(U2)、α-1,4-葡聚糖蛋白合成酶(U3)、1-氨基環(huán)丙烷-1-羧酸氧化酶(U4)、異黃酮還原酶類似物IRL(U5)和未知蛋白(U6).與對照相比,上調(diào)表達(dá)的倍數(shù)分別為3.67,1.51,2.45,106,1.65和2.55.
圖4 基于雙向電泳分析的西紅花鉻解毒機(jī)制及對光合作用的影響Fig.4 Detoxification mechanism of saffron under Cr stress and the effect of Cr on photosynthesis ACCO—1-氨基環(huán)丙烷-1-羧酸氧化酶;Chl—葉綠體;N—細(xì)胞核
鉻對植物的毒害作用已被廣泛研究.鉻不僅影響植物許多重要的生理生化過程,而且會降低作物的產(chǎn)量和品質(zhì)[8-9].本研究在9個(gè)下調(diào)表達(dá)的蛋白中,發(fā)現(xiàn)有4個(gè)蛋白,核酮糖二磷酸羧化酶長鏈(D3、D4)、核酮糖二磷酸羧化加氧酶(D6)和鐵蛋白(D8)參與了植物的光合作用.表明,鉻毒害對西紅花的光合系統(tǒng)造成了損傷,進(jìn)而有可能降低西紅花的產(chǎn)量(見圖4).而細(xì)胞分裂循環(huán)蛋白48(D1)的下調(diào)表達(dá)表明鉻毒害抑制了西紅花正常的細(xì)胞分裂.有研究發(fā)現(xiàn),ATPase與植物的重金屬積累和耐性密切相關(guān).如MIYADATE等[10]發(fā)現(xiàn)了一種P1B型ATP酶(OsHMA3)通過介導(dǎo)鎘向液泡的流出從而影響鎘由地下部向地上部的轉(zhuǎn)運(yùn).本研究中,ATPase的表達(dá)顯著降低,表明鉻毒害條件下,西紅花的解毒能力可能受到了抑制.此外,發(fā)現(xiàn)了2個(gè)蛋白酶復(fù)合體,說明鉻脅迫下西紅花正常的蛋白質(zhì)降解受到了顯著的抑制,從而使大量無用蛋白累積,對西紅花的正常生長造成了影響.
經(jīng)過長期進(jìn)化,植物具有一定的解毒機(jī)制.本研究發(fā)現(xiàn)蔗糖合成酶2在鉻脅迫后上調(diào)表達(dá).李運(yùn)合等[11]發(fā)現(xiàn)外源NO通過促進(jìn)蔗糖合成酶活性的提高以增強(qiáng)玉米幼苗對鹽脅迫的抗性.本文蔗糖合成酶2的上調(diào)表達(dá)可能會提高西紅花對鉻脅迫的抗性.1-氨基環(huán)丙烷-1-羧酸氧化酶(ACCO,U5)催化乙烯合成路徑的最后一步[12];乙烯信號轉(zhuǎn)導(dǎo)途徑在植物抵抗非生物脅迫時(shí)具有重要作用.真核起始因子的上調(diào)表達(dá)也將有助于西紅花在鉻脅迫下蛋白質(zhì)的正常翻譯.因此,在以上差異蛋白的基礎(chǔ)上,提出了西紅花鉻解毒的調(diào)控示意圖(見圖4).
此外,在上調(diào)和下調(diào)表達(dá)蛋白中也發(fā)現(xiàn)了功能未知的蛋白.雖然目前功能未知,但這些蛋白可能在西紅花抵御鉻毒害時(shí)發(fā)揮了非常重要的作用,未來可做進(jìn)一步鑒定.
[1] ZAYED A M, TERRY N. Chromium in the environment: Factors affecting biological remediation[J]. Plant and Soil,2003,249:139-156.
[2] 劉婉,李澤琴.水中鉻污染治理的研究進(jìn)展[J].廣東微量元素科學(xué),2008,14:5-9. LIU Wan, LI Zeqin. Development of governance of chromium pollution in water[J]. Guangzhou Trace Element Science,2008,14:5-9.
[3] PANDA S K, CHOUDHURY S. Chromium stress in plants[J]. Brazilian Journal of Plant Physiology,2005,17:95-102.
[4] 朱建華,王莉莉.不同價(jià)態(tài)鉻的毒性及其對人類的影響[J].環(huán)境與開發(fā),1997,12:46-48. ZHU Jianhua, WANG Lili. The toxicity of different valence chromium and effect on human body[J]. Environment and Exploitation, 1997,12:46-48.
[5] SHANKER A K, CERVANTES C, LOZA-TAVERA H, et al. Chromium toxicity in plants[J]. Environment International,2005,31:739-753.
[6] CAI Y, CAO F, WEI K, et al. Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings[J]. Journal of Hazardous Materials, 2011,192:1056-1066.
[7] 吳德志.西藏野生大麥耐鹽種質(zhì)的發(fā)掘及其耐鹽機(jī)制研究[D].杭州:浙江大學(xué),2012. WU Dezhi. Exploration of Salt-Tolerant Germplasm and Its Mechanism in Tibetan Wild Barley[D]. Hangzhou: Zhejiang University, 2012.
[8] ZENG F, QIU B Y, WU X J, et al. Glutathione-mediated alleviation of chromium toxicity in rice plants[J]. Biological Trace Element Research, 2012,148:255-263.
[9] CAO F, WANG N, ZHANG M, et al. Comparative study of alleviating effects of GSH, Se and Zn under combined contamination of cadmium and chromium in rice (Oryza sativa) [J]. Biometals, 2013,26:297-308.
[10] MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P1B- type of ATPase affects root- to- shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011,189:190-199.
[11] 李運(yùn)合,錢善勤,覃逸明.鹽脅迫下外源NO對玉米幼苗葉片蔗糖代謝的影響[J].湖北農(nóng)業(yè)科學(xué),2010,49(7):1589-1592. LI Yunhe, QIAN Shanqin, QIN Yiming. Effect of exogenous nitric oxide on sucrose metabolism of maize seedlings leaves under salt stress[J]. Hubei Agricultural Sciences, 2010,49(7):1589-1592.
[12] HERBETTE S, TACONNAT L, HUGOUVIEUX V, et al. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots[J]. Biochimie, 2006,88:1751-1765.
RAO Junfeng1, LYU Weide1, CAO Fangbin2
(HangzhouVocational&TechnicalCollege,Hangzhou310018,China; 2.CollegeofAgricultureandBiotechnology,ZhejiangUniversity,Hangzhou310058,China)
Effect of chromium stress on protein profiles in saffron. Journal of Zhejiang University(Science Edition), 2016,43(6):751-755
Chromium (Cr) is a nonessential element for plants. Cr not only affects a series of physiological processes in plants, but also significantly inhibits the growth and development of plants. Under Cr stress, plants have evolved complex detoxification mechanisms. In the present study, we investigated the protein expression of leaves of saffron in response to Cr stress via 2D electrophoresis and mass spectrum analysis. Nine proteins were identified to be down-regulated under Cr stress, including cell division cycle protein 48 homolog, ATP synthase subunit alpha, ribulose bisphosphate carboxylase large chain, Proteasome subunit alpha type, etc. Six proteins were up-regulated, including sucrose synthase 2, eukaryotic initiation factor 4A, Alpha-1,4-glucan-protein synthase, 1-aminocyclopropane-1-carboxylate oxidase and Isoflavone reductase homolog IRL, etc. The results provide valuable insights towards the molecular mechanism of saffron in response to Cr toxicity.
chromium; saffron; leaf; proteomics
2015-11-02.
科技部國家星火計(jì)劃項(xiàng)目(2015GA700053);浙江省自然科學(xué)基金資助項(xiàng)目(LY13B020001);浙江省科技廳公益技術(shù)研究農(nóng)業(yè)項(xiàng)目(2015C32104).
饒君鳳(1969-),ORCID:http://orcid.org/0000-0000-0002-069X,女,副教授,主要從事中藥品質(zhì)評價(jià)和資源應(yīng)用研究,E-mail:13588867756@139.com.
10.3785/j.issn.1008-9497.2016.06.022
R 282.2
A
1008-9497(2016)06-751-05