丁躍 吳剛 郭長奎
(浙江農林大學植物生長與品質調控實驗室,杭州 311300)
植物葉綠素降解機制研究進展
丁躍 吳剛 郭長奎
(浙江農林大學植物生長與品質調控實驗室,杭州 311300)
葉綠素降解與作物產量密切相關,葉綠素降解延遲,能延長作物后期的光合能力,并提高作物產量。近年隨著結構生物學、基因組測序和生物信息學的發(fā)展,人們已經在植物葉綠素降解機制的研究上取得了一系列進展,特別是對葉綠素降解的主要生化途徑—— 脫鎂葉綠酸氧化酶(pheide a oxygenase,PaO)途徑已有深入的了解。主要對近年來葉綠素降解代謝、調控機理、滯綠突變體等三方面的研究進展進行綜述,并對未來研究方向進行了展望,旨為作物育種和光高效利用提供理論依據(jù)。
葉綠素;降解;滯綠;PAO途徑
葉綠素是植物體內重要的光合色素,以色素蛋白復合體形式存在于植物類囊體中,在光合作用中起捕獲并傳遞光能的作用。植物葉綠素主要由葉綠素a(chlorophyll a,Chl a)和葉綠素b(chlorophyll b,Chl b)組成,兩者結構類似,包含卟啉環(huán)、卟啉環(huán)中央的鎂原子和長脂肪烴側鏈,它們僅在吡咯環(huán)Ⅱ的附加基團有差異:前者是甲基,后者是醛基[1]。葉綠素吸收光能,通過光合作用為植物體發(fā)育提供能量,但過量的葉綠體存在會產生大量自由基,加速植物細胞死亡[2]。葉綠素降解產物具有抗氧化的作用,可以維持或緩解細胞活性。因此,葉綠素的適時降解具有重要的生物學意義。
植物葉綠素在體內以動態(tài)形式存在。據(jù)統(tǒng)計,全球每年約有109t葉綠素在植物中被降解[3]。其中,葉綠素降解速率的變化是植物發(fā)育的重要調節(jié)劑和指示劑。如年齡增加、細胞死亡、外界溫度的劇烈變化、蟲害及病原體等都會加速葉綠素降解[4,5]。豐富的葉綠素結合蛋白在降解過程中分解形成氮素被重新利用,這部分再利用的氮素對植物的生長發(fā)育及生存繁衍意義重大[6]。此外,衰老階段出現(xiàn)的葉綠素降解緩慢或者不降解的現(xiàn)象,即“滯綠”現(xiàn)象,是作物高產的重要指標之一[7]。因此,闡明植物葉綠素降解代謝及調控機理對明確植物的生長發(fā)育調控、作物的品種改良和農業(yè)生產控制具有重要的理論和實踐意義。自20世紀90年代對葉綠素降解產物結構的解析和相關酶基因的克隆,葉綠素降解過程逐漸明晰[6]。近年,隨著結構生物學、基因組測序和生物信息學的發(fā)展,對植物葉綠素降解途徑的分子調控機制研究已經取得了巨大進展。本文主要對近年來葉綠素降解代謝和調控機理方面的研究進展進行綜述,并對本領域未來研究方向進行了展望,以期為農業(yè)生產和作物育種提供理論依據(jù)。
1991年大麥中非熒光葉綠素代謝物(nonfluorescent chl catabolites,NCCs)的發(fā)現(xiàn),加速了對葉綠素代謝研究[8]。到目前為止,植物中已發(fā)現(xiàn)15種結構的NCCs[9]。進一步對底物脫鎂葉綠酸a(pheide a)分析發(fā)現(xiàn)紅色葉綠素代謝物(red chlorophyll catabolites,RCCs)和初級熒光葉綠素代謝物(primary fluorescent chlorophyll catabolite,pFCC)[10]。
植物葉綠素a占總葉綠素的比重較大,在降解的初始階段,葉綠素a被葉綠素酶(chrolophyllase,CS)催化形成脫植基葉綠素a(chlide a)和葉綠醇;脫植基葉綠素a后經脫鎂螯合酶(Mg-dechelatase,MDCase)脫去鎂離子形成脫鎂葉綠素a(pheophytin a),并保持卟啉大環(huán)結構[6]。脫植基葉綠素a可在葉綠素加氧酶的作用下合成葉綠素b,葉綠素b在葉綠素b還原酶的作用下又可還原成葉綠素a,這種轉換稱為“葉綠素循環(huán)”。在脫鎂葉酸酶加氧酶和紅色葉綠素代謝產物還原酶的作用下,脫植基葉綠素a降解形成pFCC并運輸?shù)揭号葜?,期間會形成一種不穩(wěn)定代謝產物紅色葉綠素代謝產物(RCC),由于卟啉環(huán)被打開,綠色隨之消失,最后pFCC在液泡中部分高度修飾形成熒光葉綠素代謝物hFCCs(hypermodifided FCCs),或修飾形成mFCCs(modified FCCs)并異構成NCCs;至此,葉綠素從綠色被降解成無色化合物,完成葉綠素的降解。此葉綠素降解途徑,稱之為脫鎂葉綠素a加氧酶(pheide a oxygenase,PAO)途徑[10](圖1),在植物中高度保守,其活性只出現(xiàn)在葉片衰老和果實成熟的階段。
2.1 葉綠素降解主要代謝酶類及基因
葉綠素降解受體內酶類代謝調控。在擬南芥和水稻中已鑒定了6種葉綠素代謝酶(Chl catabolic enzymes,CCEs),包括NON-YELLOW COLORING1(NYC1)和NYC1-LIKE(NOL)[11]編碼的葉綠素b還原酶、7-羥甲基葉綠素還原酶(7-Hydroxymethyl chlorophyll a reductase,HCAR)[12]、 脫 鎂 葉 綠素酶(pheophytinase,PPH)[13]、PAO[14]和紅 色 代 謝 物 還 原 酶(red chlorophyll catabolite reductase,RCCR)[15]。除上述主要酶類代謝基因外,擬南芥PAO途徑中,STAY-GREEN(SGR)和METHYLESTERASE FAMILY MEMBER 16(MES16)也參與調控葉綠素降解[13,16-19]。
水稻中,NYC1和NOL基因編碼葉綠素b還原酶,兩者共同定位在內囊體膜上,形成葉綠素b還原酶復合體,催化葉綠素b的降解[11]。水稻滯綠突變體nyc1在葉片衰老過程中,葉綠素和捕光色素復合體(light-harvesting pigment protein complex II,LHCII)中類胡蘿卜素的降解同時受到抑制,大多數(shù)LHCII異構體被保留下來。因此,nyc1突變體比對照葉片葉綠素降解緩慢,呈現(xiàn)持久的綠色,在葉片衰老后期也能觀察到大而密的葉綠體基粒[20]。擬南芥中過表達NOL基因導致葉綠素a/b的比率下降,其光系統(tǒng)II(photosystemII,PSII)的捕光天線系統(tǒng)變?。?1]。
HCAR基因編碼7-羥基葉綠素a還原酶,是葉綠素降解途徑中的另一類重要酶??的塑盎ò旰腿~子發(fā)育過程中,HCAR的轉錄水平與葉綠素含量呈正相關[22]。雖擬南芥綠苗時期HCAR基因表達水平較高,但過表達HCAR基因植株葉片黃化速率卻加速,相應的hcar突變體在黑暗誘導處理中依然為滯綠表型[23]。植物衰老過程中一個主要的脫脂醇酶類PPH,廣泛存在于藻類和陸地植物。PPH主要作用于脫鎂葉綠素,對葉綠素沒有影響,PPH的缺失導致植物非功能型滯綠。PAO定位在葉綠體中,在葉片衰老和成熟過程中含量增加[24]。脫鎂葉綠酸a轉變?yōu)闊晒獯x產物pFCCs主要依賴PAO和RCCR。水稻的基因組中存在2個RCCR同源基因RCCR1和RCCR在衰老水稻葉片中變化顯著。RCCR1和PAO缺失的水稻突變體會出現(xiàn)致死的表型[25]。
2.2 葉綠素降解的調控
植物葉綠素降解機制研究中,SGR1(STAYGREEN1)/NYE1(NON-YELLOWING1)的發(fā)現(xiàn)是里程碑進展。進一步研究發(fā)現(xiàn),擬南芥中含3個SGR的同源蛋白,分別為SGR1、SGR2和SGR-LIKE(SGRL),在葉綠素降解中各司其職[26]。其中,對SGR1的研究最為廣泛。在自然衰老和黑暗誘導情況下,sgr1-1突變體表現(xiàn)出滯綠現(xiàn)象,且SGR1過表達植株葉片提前黃化[16,27]。nye1-1/sgr1-1突變體在種子褪綠階段和營養(yǎng)生長期受生物脅迫和非生物脅迫時,葉片顏色更為深綠[28]。SGRL也促進葉綠素的降解,且僅在正常植物營養(yǎng)階段發(fā)揮功能,但在受脅迫時誘導葉片黃化[29]。大部分陸生植物都存在功能保守的SGR1和SGRL,并在葉綠素降解中發(fā)揮重要功能[30]。SGR2和SGR1在序列上高度相似,但功能卻截然相反。SGR2過表達植株表現(xiàn)為滯綠,而sgr2突變體葉片提前黃化。這些結果表明,SGR2在葉片衰老過程中,對葉綠素的降解起負調控作用[31]。相比于SGR1和SGR2,SGRL在植物衰老前表達較高,隨后表達量開始下降。進一步研究發(fā)現(xiàn),SGR同源蛋白功能的差異可能是與CCEs結合能力不同引起。SGR1和SGRL能與6個CCEs和LHCⅡ互作參與葉綠素代謝途徑[26]。值得一提的是,SGR1與CCEs的結合僅存在于植物衰老組織中。然而,SGR2卻很難結合CCEs,雖然其可以與LHCⅡ發(fā)生互作,但對SGR1-CCE和SGRL-CCE與LHCⅡ的結合起到抑制作用(圖1)[27,29,31]。
圖1 葉綠素降解調節(jié)機制[32]
激素信號通路在葉綠素降解調控中發(fā)揮重要作用。水楊酸(salicylic,SA)途徑中,WRKY53主要在植物衰老的早期階段表達,而將其過量表達和敲除后植物分別出現(xiàn)早衰和滯綠表型[33,34],并且在水楊酸的誘導下,WRKY53作為轉錄因子激活SAG12(Senescence-associated gene 12)、CATLASE1/2/3和ORE9(ORESARA9)[35]促進植物葉片衰老,影響植物葉綠素的降解。2007年研究發(fā)現(xiàn),EPITHIOSPECIFYING SENESCENCE REGULATOR(ESR)隨葉片年齡逐漸減少,能夠和WRKY53互作入核,并抑制WRKY53的DNA結合功能,以調節(jié)植物衰老過程的葉綠素降解[36]。脫落酸(abscisic acid,ABA)通路兩個bZIP家族的轉錄因子ABA INSENSITIVE5(ABI5)和ENHANCED EM LEVEL(EEL)在植物衰老階段直接激活SGR、NYC1和NYE1,并調控其下游基因PHYTOCHROME INTERACTING FACTOR 4(PIF4)和PIF5的表達[37]。NAC016是葉片衰老相關轉錄因子,NAC016過表達植株加速衰老,而敲除突變體nac016則衰老延后[38]。通過酵母單雜交和染色質免疫共沉淀(chromatin Immunoprecipitation,ChIP)實驗發(fā)現(xiàn),NAC016與SGR1啟動子直接結合,調控葉綠素降解[39]。此外,NAC016通過間接方式調控ABA信號通路中的ABI5、EEL和AAO3(ABSCISIC ALDEHYDE OXIDASE3)表達,影響葉綠素降解。而NAP(NAC-LIKE,ACTIVATED BY AP3/PI)蛋白可以直接結合到ABA合成基因AAO3啟動子上,增加植物體內ABA含量來促進SGR和CCEs的含量調控植物衰老[40]。
乙 烯(ethylene) 可 以催 化 葉 綠 素 的 降解[41-43]。乙烯信號通路重要轉錄因子ETHYLENE INSENSITIVE3(EIN3) 通 過 結 合NYC1、NYE1和PAO三個葉綠素代謝基因直接促進葉綠素的降解;ORESARA1(ORE1/NAC092)屬于NAC家族并為miR164的靶基因,通過調控一系列涉及到植物信號傳導,衰老相關基因SAGs(SENSECESENCEASSOCIATED GENES)影響葉片衰老[44,45]。NAC家族基因ANAC046調控NYC1、SGR1、SGR2和PAO的表達[46]。進一步研究發(fā)現(xiàn),EIN3還可以直接結合到miR164a啟動子上抑制其表達,從而促進ORE1基因表達。而ORE1又能在衰老階段調控乙烯合成基因1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE 2(ACS2),調節(jié)乙烯的合成[47]。
植物中茉莉酸(jasmonate,JA)也能誘導植物的衰老。Schommer等[48]發(fā)現(xiàn)miR319靶基因TCPs(TEOSINTE BRANCHED1、CYCLOIDEA和PCF)通過轉錄激活茉莉酸合成基因LIPOXYGENASE 2(LOX2)正向調控葉片衰老。MYC2/3/4蛋白作為茉莉酸信號途徑的重要元件,可以直接與CCGs(Chl catabolic enzyme genes)(包括PAO、NYC1和NYE1)基因結合,調控葉綠素降解。此外,MYC2蛋白還能與ANAC019直接互作,調控CCGs(NYE1/SGR1、NYE2/SGR2和NYC1)表達來影響葉綠素降解[47]。
油菜素內酯(brassinosteroid,BR)在植物葉綠素降解中發(fā)揮了重要作用。WRKY53同時參與調控水楊酸與BR信號通路中,通過調節(jié)ORE9表達,促進BRASSINAZOLE-RESISTANT1(BZR1)和BRI1-EMS-SUPPRESSOR1(BES1)表達調控葉綠素降解[49,50]。BZR1和BES1還可以直接抑制衰老相關的NAC家族基因(NAC002、NAC019、NAC055和NAC072)[51-53]。另外,BZR1激活轉錄抑制子WRKY57從而抑制SAG4和SAG12基因表達,以阻止葉片提前衰老[54]。
2.3 其他調控葉綠素降解因素
1-甲基環(huán)丙烯作為一種乙烯抑制劑(1-MCP),處理植物果皮后,葉綠素代謝途徑中部分相關基因被抑制表達,而葉綠素酶和紅色葉綠素代謝產物還原酶活性不發(fā)生改變,但葉綠素降速率減緩[55]。光照也會加速植物葉綠素的降解[56,57],但植物油脂可以保護植物葉綠素不被光降解[58]。添糖處理后,植物葉綠素降解速率加快,而花青素積累[59]。
鹽脅迫時,植物體內5-氨基酮戊酸(ALA)的合成受到抑制,植物體內葉綠素含量降低,而在降解階段低鹽脅迫會提高葉綠素酶的活性,高鹽脅迫后會抑制葉綠素酶的活性,加速葉綠素降解[60]。在低溫條件下,一氧化碳會降低植物體內葉綠素酶和鎂離子螯合酶的活性,防止生物膜的損壞[61]。干旱條件下,植物葉綠素降解速率加快,且適當脅迫處理有利于植物生物量和產量的提高[62]。
滯綠與作物產量正相關,是作物高產的重要指標之一。如滯綠玉米(Zea mays L.)葉面積增大,對光的捕獲能力增強,提高了作物的代謝水平,使作物高產[63]?;跍G的重要性且和葉綠素代謝密切關聯(lián),通過挖掘葉綠素代謝途徑突變體,迄今為止,已經鑒定出多個滯綠表型的突變體(表1)[64]。
3.1 滯綠類型
基于衰老過程中葉片滯綠的特性,將滯綠分成5種類型:功能型滯綠A型和B型,非功能型滯綠C型、D型和E型[7]。A型相比于野生型葉綠素降解起始延后,但降解速率不發(fā)生改變,如玉米突變體fs854[65],基因型為GGd1d1d2d2的大豆突變體等[66]。B型降解的葉綠素起始時間與野生型相同,而光合速率和葉綠素降解的速率比野生型緩慢,如高粱突變體和煙草突變體g28[67]。C類型的滯綠,在衰老階段,某段時間葉綠素降解受到抑制,光合速率和葉綠素降解起始與野生型相同,如草地羊毛突變體bf993[68]。D型為植物受到外界脅迫后,植物組織受到破壞,植物體內的葉綠素不發(fā)生降解,導致葉綠素永久停留在植物體內。E型為葉綠素降解速率和光合速率與野生型相同,而葉綠素在植物成熟期階段含量更高,葉綠素降解需要更多時間。因此,功能型滯綠比非功能型滯綠的滯綠表型和光合特性維持更長[7]。
表1 葉綠體中葉綠素代謝途徑中基因及滯綠突變體
3.2 滯綠突變體
滯綠突變體分為兩大類,包括能維持光合能力的功能型滯綠突變體和無光合能力的非功能型滯綠突變體。有功能型的滯綠突變體主要表現(xiàn)為衰老起始延遲或衰老過程延緩。在衰老階段,水稻‘SNUSG1’劍葉葉綠素含量比對照高,葉片光合速率也更強,植株結實率提高,水稻產量明顯提高[69]。擬南芥ore1、ore3和ore9突變體也是功能型滯綠,3種同源基因通過影響植株中的脫落酸、乙烯和甲基茉莉酸的含量影響葉綠素降解。功能型的滯綠能有效提高作物產量。到目前為止,玉米[70]和小麥[71]中鑒定出的功能性滯綠突變體已經應用于生產。
非功能型滯綠突變體的研究也較多。sgr為水稻非功能型滯綠突變體,僅在灌漿期葉片出現(xiàn)滯綠,但葉片光合作用在植物的衰老階段正常減少。Hiroshi等[72]在水稻中發(fā)現(xiàn)NYC4基因,為擬南芥THYLAKOID FORMATION1(THF1)的同源基因,它的突變呈現(xiàn)非功能型滯綠的表型。但擬南芥thf1并無滯綠表型,僅在衰老階段調控葉綠素蛋白復合體的降解。研究發(fā)現(xiàn),水稻nyc4與sgr突變體都滯綠,但衰老階段保存葉綠體蛋白的模式卻截然不同,特別是D1和D2蛋白[73],表明NYC4在葉綠素蛋白復合體降解功能上區(qū)別于SGR[74]。此外,還發(fā)現(xiàn)了多個非功能性滯綠突變體,如草田羊毛senescenceinduced deficiency(sid)[75]突變體,豌豆cytG和d1d2突變體[76]及擬南芥ore10 ore11[77]等。擬南芥nyc1和nol的植株中葉綠素b大量殘留,以維持補光復合物LHCⅡ的穩(wěn)定,使植物葉綠素不被降解,但是否具有功能尚未確定[18]。在衰老葉片中,非黃化突變體sid脫植基葉綠素a和脫鎂葉綠素a顯著上升,但沒有PAO活性[78]。擬南芥ACCELERATED CELL DEATH1(ACD1)的缺失[79]導致PAO缺陷突變,使成熟葉片脫鎂葉綠酸a積累,光依賴和年齡依賴細胞死亡[80]。玉米中PaO缺失突變體letal leaf spot-1(lls1),葉片會持續(xù)出現(xiàn)壞死的斑點直到枯萎[81,82]。而擬南芥acd2突變體成熟葉片也存在斑點并死亡的特點。
研究證實,葉綠素降解與作物產量密切相關[83,84]。通過延遲作物葉綠素降解,延長整個生育后期的光合能力,有利于提高干物質合成和輸送,有助于作物產量的提高。葉綠素代謝相關研究已持續(xù)數(shù)十年,從最初的生理化學分析、物理結構研究到近年來的分子水平研究[85],已對高等植物中的葉綠素含量變化,降解的基因調控,及功能應用等有了比較全面的認識。但隨著研究進一步的深入,仍有許多問題待闡明,特別是分子機制的研究。如SGRs在葉綠素降解代謝中的確切功能也尚待進一步澄清;小分子物質、激素、生物與非生物脅迫等是通過何種途徑直接調控葉綠素降解的;調控葉綠素降解的各種信號途徑間是否存在互作;葉綠素的適時降解是如何響應植物發(fā)育調控的;葉綠素降解影響農作物產量的具體分子機制是什么等一系列問題有待深入解析。隨著滯綠突變體研究的深入,其應用價值也將被不斷挖掘,將會在農產品產量和抗性的提高及農產品的儲存和運輸方面得到應用。而對滯綠突變體的理論研究,將為進一步研究葉綠素的代謝機制、光合作用、生理生化變化、植物衰老機理研究提供新的思路和方向。
[1] Von Wettstein D, Gough S, Kannangara CG. Chlorophyll biosynthesis[J]. The Plant Cell, 1995, 7(7):1039-1057.
[2]Pru?inská A, Tanner G, Anders I, et al. Chlorophyll breakdown:pheophorbide a oxygenase is a rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene[J]. Proc Natl Acad Sci USA, 2003, 100(25):15259-15264.
[3]Rüdiger W. Chlorophyll metabolism:from outer space down to the molecular level[J]. Phytochemistry, 1997, 46(7):1151-1167.
[4]Benedetti CE, Costa CL, Turcinelli SR, et al. Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the Coi1 mutant of Arabidopsis[J]. Plant Physiology, 1998, 116(3):1037-1042.
[5]Gr?fe S, Saluz HP, Grimm B, et al. Mg-chelatase of tobacco:the role of the subunit CHL D in the chelation step of protoporphyrin IX[J]. Proc Natl Acad Sci USA, 1999, 96(5):1941-1946.
[6]H?rtensteiner S. Chlorophyll degradation during senescence[J]. Annual Review of Plant Biology, 2006, 57:55-77.
[7]Thomas H, Howarth CJ. Five ways to stay green[J]. Journal of Experimental Botany, 2000, 51(Suppl 1):329-337.
[8]Kr?utler B, Jaun B, Matile P, et al. On the enigma of chlorophyll degradation:the constitution of a secoporphinoid catabolite[J]. Angew Chem Int Ed Engl, 1991, 30(10):1315-1318.
[9]H?rtensteiner S, Kr?utler B. Chlorophyll breakdown in higher plants[J]. Biochim Biophys Acta, 2011, 1807(8):977-988.
[10] H?rtensteiner S. Update on the biochemistry of chlorophyll breakdown[J]. Plant Molecular Biology, 2013, 82(6):505-517.
[11]Sato Y, Morita R, Katsuma S, et al. Two short-chain dehydrogenase/ reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice[J]. The Plant Journal, 2009, 57(1):120-131.
[12]Meguro M, Ito H, Takabayashi A, et al. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis[J]. The Plant Cell, 2011, 23(9):3442-3453.
[13]Schelbert S, Aubry S, Burla B, et al. Pheophytin pheophorbide hydrolase(pheophytinase)is involved in chlorophyll breakdown during leaf senescence in Arabidopsis[J]. The Plant Cell, 2009, 21(3):767-785.
[14] Rodoni S, Schellenberg M, Matile P. Chlorophyll breakdown in senescing barley leaves as correlated with phaeophorbidea oxygenase activity[J]. J Plant Physiol, 1998, 152(2):139-144.
[15] Wüthrich KL, Bovet L, Hunziker PE, et al. Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism[J]. The Plant J, 2000, 21(2):189-198.
[16] Ren G, An K, Liao Y, et al. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis[J]. Plant Physiology, 2007, 144(3):1429-1441.
[17]Ren G, Zhou Q, Wu S, et al. Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis[J]. Journal of Integrative Plant Biology, 2010, 52(5):496-504.
[18]Horie Y, Ito H, Kusaba M, et al. Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis[J]. Journal of Biological Chemistry, 2009, 284(26):17449-17456.
[19]Christ B, Schelbert S, Aubry S, et al. MES16, a member of the methylesterase protein family, specifically demethylatesfluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis[J]. Plant Physiology, 2012, 158(2):628-641.
[20]Kusaba M, Ito H, Morita R, et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence[J]. The Plant Cell, 2007, 19(4):1362-1375.
[21] Jia T, Ito H, Tanaka A. The chlorophyll b reductase NOL participates in regulating the antenna size of photosystem II in Arabidopsis thaliana[J]. Procedia Chem, 2015, 14:422-427.
[22]Ohmiya A, Hirashima M, Yagi M, et al. Identification of genes associated with chlorophyll accumulation in flower petals[J]. PLoS One, 2014, 9(12):e113738.
[23]Sakuraba Y, Kim YS, Yoo SC, et al. 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence[J]. Biochem Biophys Res Commun, 2013, 430(1):32-37.
[24]Yang X, Zhang Z, Joyce D, et al. Characterization of chlorophyll degradation in banana and plantain during ripening at high temperature[J]. Food Chemistry, 2009, 114(2):383-390.
[25]Tang Y, Li M, Chen Y, et al. Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice[J]. Journal of Plant Physiology, 2011, 168(16):1952-1959.
[26]Sakuraba Y, Park SY, Paek NC. The divergent roles of STAYGREEN(SGR)homologs in chlorophyll degradation[J]. Molecules and Cells, 2015, 38(5):390-395.
[27]Sakuraba Y, Schelbert S, Park SY, et al. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis[J]. The Plant Cell, 2012, 24(2):507-518.
[28]Mecey C, Hauck P, Trapp M, et al. A critical role of STAYGREEN/Mendel’s I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis[J]. Plant Physiology, 2011, 157(4):1965-1974.
[29]Sakuraba Y, Kim D, Kim YS, et al. Arabidopsis STAYGREENLIKE(SGRL)promotes abiotic stress-induced leaf yellowing during vegetative growth[J]. FEBS Letters, 2014, 588(21):3830-3837.
[30]Barry CS, McQuinn RP, Chung MY, et al. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper[J]. Plant Physiology, 2008, 147(1):179-187.
[31]Sakuraba Y, Park SY, Kim YS, et al. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence[J]. Molecular Plant, 2014, 7(8):1288-1302.
[32]Balazadeh S. Stay-green not always stays green[J]. Molecular Plant, 2014, 7(8):1264-1266.
[33]Miao Y, Laun T, Zimmermann P, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis[J]. Plant Molecular Biology, 2004, 55(6):853-867.
[34]Hinderhofer K, Zentgraf U. Identification of a transcription factor specifically expressed at the onset of leaf senescence[J]. Planta, 2001, 213(3):469-473.
[35]Xie Y, Huhn K, Brandt R, et al. REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis[J]. Development, 2014, 141(24):4772-4783.
[36] Miao Y, Zentgraf U. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium[J]. The Plant Cell, 2007, 19(3):819-830.
[37]Sakuraba Y, Jeong J, Kang M, et al. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis[J]. Nature Communications, 2014, 5:4636.
[38] Kim Y, Sakuraba Y, Han S, et al. Mutation of the Arabidopsis NAC-016 transcription factor delays leaf senescence[J]. Plant and Cell Physiology, 2013, 54(10):1660-1672.
[39]Sakuraba Y, Kim YS, Han SH, et al. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP[J]. The Plant Cell, 2015, 27(6):1771-1787.
[40]Liang C, Wang Y, Zhu Y, et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice[J]. Proc Natl Acad Sci USA, 2014, 111(27):10013-10018.
[41]Charoenchongsuk N, Ikeda K, Itai A, et al. Comparison of the expression of chlorophyll-degradation-related genes during ripening between stay-green and yellow-pear cultivars[J]. Scientia Horticulturae, 2015, 181:89-94.
[42]Cheng Y, Guan J. Involvement of pheophytinase in ethylene-mediated chlorophyll degradation in the peel of harvested ‘Yali’pear[J]. J Plant Growth Regul, 2014, 33(2):364-372.
[43]Yin X, Xie X, Xia X, et al. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening[J]. The Plant Journal, 2016, 86(5):403-412.
[44]Rauf M, Arif M, Dortay H, et al. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription[J]. EMBO Reports, 2013, 14(4):382-388.
[45]Balazadeh S, Siddiqui H, Allu AD, et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ ORE1 during salt promoted senescence[J]. The Plant Journal, 2010, 62(2):250-264.
[46]Oda YC, Mitsuda N, Sakamoto S, et al. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves[J]. Scientific Reports, 2016, 6:23609.
[47]Qiu K, Li Z, Yang Z, et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis[J]. PLoS Genetics, 2015, 11(7):e1005399.
[48]Schommer C, Palatnik JF, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology, 2008, 6(9):e230.
[49]Wang Y, Sun S, Zhu W, et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching[J]. Developmental Cell, 2013, 27(6):681-688.
[50]Yin Y, Wang Z, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J]. Cell, 2002, 109(2):181-191.
[51]Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry, 2009, 47(1):1-8.
[52]Sun Y, Fan XY, Cao DM, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Developmental Cell, 2010, 19(5):765-777.
[53]Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional network revealed by genome wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant J, 2011, 65(4):634-646.
[54]Jiang Y, Liang G, Yang S, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid-and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. The Plant Cell, 2014, 26(1):230-245.
[55]Cheng Y, Dong Y, Yan H, et al. Effects of 1-MCP on chlorophyll degradation pathway-associated genes expression and chloroplast ultrastructure during the peel yellowing of Chinese pear fruits in storage[J]. Food Chemistry, 2012, 135(2):415-422.
[56]Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light:cause of the degradation of chlorophyll after returning to normal growth temperature[J]. Planta, 2002, 215(4):541-548.
[57]Cheng D, Zhang Z, Sun X, et al. Photoinhibition and photoinhibition-like damage to the photosynthetic apparatus in tobacco leaves induced by Pseudomonas syringae pv. Tabaci under light and dark conditions[J]. BMC Plant Biology, 2016, 16(1):1-11.
[58]Lee E, Ahn H, Choe E. Effects of light and lipids on chlorophyll degradation[J]. Food Science and Biotechnology, 2014, 23(4):1061-1065.
[59]Momose T, Ozeki Y. Regulatory effect of stems on sucrose-induced chlorophyll degradation and anthocyanin synthesis in Egeria densa leaves[J]. Journal of Plant Research, 2013, 126(6):859-867.
[60]Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves[J]. Scientia Horticulturae, 2004, 103(1):93-99.
[61]Wang Y, Luo Z, Du R. Nitric oxide delays chlorophyll degradation and enhances antioxidant activity in banana fruits after cold storage[J]. Acta Physiologiae Plantarum, 2015, 37(4):1-10.
[62] Rolando JL, Ramírez DA, Yactayo W, et al. Leaf greenness as a drought tolerance related trait in potato(Solanum tuberosum L. )[J]. Environmental and Experimental Botany, 2015, 110:27-35.
[63]Tollenaar M, Ahmadzadeh A, Lee E. Physiological basis of heterosis for grain yield in maize[J]. Crop Science, 2004, 44(6):2086-2094.
[64]Thomas H, Ougham H. The stay-green trait[J]. Journal of Experimental Botany, 2014, 65(14):3889-3900.
[65]Crafts-Brandner SJ, Below FE, Wittenbach VA, et al. Differential senescence of maize hybrids following ear removal:II. Selectedleaf[J]. Plant Physiology, 1984, 74(2):360-367.
[66]Guiamét JJ, Teeri JA, Noodén LD. Effects of nuclear and cytoplasmic genes altering chlorophyll loss on gas exchange during monocarpic senescence in soybean[J]. Plant and Cell Physiology, 1990, 31(8):1123-1130.
[67]Crafts Brandner SJ, Leggett JE, Sutton TG, et al. Effect of root system genotype and nitrogen fertility on physiological differences between burley and flue-cured tobacco. I. Single leaf measurements[J]. Crop Science, 1987, 27(3):535-539.
[68]Davies TG, Thomas H, Thomas BJ, et al. Leaf senescence in a nonyellowing mutant of festuca pratensis:Metabolism of cytochrome f[J]. Plant Physiology, 1990, 93(2):588-595.
[69]Yoo S, Cho S, Zhang H, et al. Quantitative trait loci associated with functional stay-green SNU-SG1 in rice[J]. Molecules and Cells, 2007, 24(1):83-94.
[70]Kim J, Chung K, Woo H. Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways[J]. Genes and Genomics, 2011, 33(4):373-381.
[71]Gong Y, Ji X, Gao J. Grain sink strength related to carbon staying in the leaves of hybrid wheat XN901[J]. Agricultural Sciences in China, 2009, 8(5):546-555.
[72]Wang Q, Sullivan RW, Kight A, et al. Deletion of the chloroplastlocalized Thylakoid Formation1 Gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves[J]. Plant Physiology, 2004, 136(3):3594-3604.
[73]Fang C, Li C, Li W, et al. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean[J]. The Plant Journal, 2014, 77(5):700-712.
[74]Yamatani H, Sato Y, Masuda Y, et al. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyllprotein complexes during leaf senescence[J]. The Plant Journal, 2013, 74(4):652-662.
[75]Hilditch PI, Thomas H, Thomas BJ, et al. Leaf senescence in a nonyellowing mutant of Festuca pratensis:proteins of photosystem II[J]. Planta, 1989, 177(2):265-272.
[76]Guiamét JJ, Pichersky E, Nooden LD. Mass exodus from senescing soybean chioroplasts[J]. Plant and Cell Physiology, 1999, 40(9):986-992.
[77]Oh M, Safarova RB, Zulfugarov IS, et al. ORE10, a protein that regulates stay-greenness in Arabidopsis[J]. Korean Journal o Crop Science, 2006, 51(2):143-143.
[78]Pru?inská A, Tanner G, Aubry S, et al. Chlorophyll breakdown in senescent Arabidopsis leaves. characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction[J]. Plant Physiol, 2005, 139(1):52-63.
[79]Greenberg JT, Ausubel FM. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging[J]. The Plant Journal, 1993, 4(2):327-341.
[80]Tanaka R, Hirashima M, Satoh S, et al. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a:Inhibition of the pheophorbide a oxygenase activity does not lead to the “Stay-Green” phenotype in Arabidopsis[J]. Plant and Cell Physiology, 2003, 44(12):1266-1274.
[81]Gray J, Janick-Buckner D, Buckner B, et al. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts[J]. Plant Physiology, 2002, 130(4):1894-1907.
[82]Gray J, Close PS, Briggs SP, et al. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize[J]. Cell, 1997, 89(1):25-31.
[83]張恒善, 程硯喜, 王大秋, 等. 大豆結莢期品種間葉綠素含量差異與產量相關分析[J]. 大豆科學, 2001, 20(4):275-279.
[84]朱寶國, 張春峰, 王囡囡, 等. 不同追氮方式對寒地玉米相關性狀及產量的影響[J]. 核農學報, 2015, 29(9):1806-1812.
[85]邢才, 王貴學, 黃俊麗, 等. 植物葉綠素突變體及其分子機理的研究進展[J]. 生物技術通報, 2008(5):10-12.
(責任編輯 狄艷紅)
Research Advance on Chlorophyll Degradation in Plants
DING Yue WU Gang GUO Chang-kui
(The Laboratory of Plant Molecular and Developmental Biology,Zhejiang Agriculture and Forestry University,Hangzhou 311300)
Chlorophyll degradation is closely related to crop production. Delayed chlorophyll degradation in crops increases photosynthetic capacity at late stages,leading to the increase of crop production. With the development of structural biology,genome sequencing and bioinformatics in recent years,the regulatory mechanism of plant chlorophyll degradation pathway has witnessed some great progresses;especially PAO(Pheide a oxygenase)pathway,the primary chlorophyll degradation pathway,has been largely elucidated. In this review,we summarized the advances on 3 aspects of chlorophyll degradation pathways,the regulatory mechanism and stay-green mutants,and we also discussed some future research directions,aim to supply idea for the crop breeding and efficient use of light in crop.
chlorophyll;degradation;stay-green;PAO pathway
10.13560/j.cnki.biotech.bull.1985.2016.11.001
2016-03-09
浙江省自然科學基金項目(LY15C020004),浙江農林大學啟動項目(2013FR083)
丁躍,男,碩士研究生,研究方向:水稻葉綠素代謝調控;E-mail:790098827@qq.com
郭長奎,男,博士,研究方向:植物發(fā)育生物學;E-mail:guock@zafu.edu.cn