• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      先心病中microRNA對(duì)DNA甲基化的調(diào)控及其應(yīng)用前景*

      2016-12-26 07:03:02桂永浩
      中國(guó)病理生理雜志 2016年11期
      關(guān)鍵詞:先心病甲基化心肌細(xì)胞

      楊 倩, 桂永浩, 李 強(qiáng)

      (復(fù)旦大學(xué)附屬兒科醫(yī)院兒科研究所,上海 201102)

      ?

      先心病中microRNA對(duì)DNA甲基化的調(diào)控及其應(yīng)用前景*

      楊 倩, 桂永浩△, 李 強(qiáng)△

      (復(fù)旦大學(xué)附屬兒科醫(yī)院兒科研究所,上海 201102)

      先天性心臟??; 微小RNA; DNA甲基化

      先天性心臟病是最常見(jiàn)的出生缺陷,在活產(chǎn)嬰兒中的總體發(fā)病率為0.8%[1],居非感染原因死亡率第1位。先心病發(fā)病機(jī)制至今仍未完全闡明,目前認(rèn)為主要是由于遺產(chǎn)因素、環(huán)境因素單獨(dú)或者共同作用導(dǎo)致的。近年來(lái),表觀遺傳學(xué)在先心病中的作用越來(lái)越被人們所認(rèn)識(shí)。表觀遺傳學(xué)是指在DNA序列不變的情況下,可決定基因表達(dá)與否并可穩(wěn)定遺傳下去的調(diào)控方式,包括 DNA甲基化、非編碼RNA、基因組印記、染色質(zhì)組蛋白修飾等。DNA甲基化和微小RNA(microRNA,miRNA)是最重要的表觀遺傳調(diào)控機(jī)制之一,不僅調(diào)節(jié)機(jī)體正常生長(zhǎng)發(fā)育,而且可以介導(dǎo)環(huán)境因素影響疾病的發(fā)生發(fā)展。除此以外,miRNA還可作用于DNA甲基化,形成調(diào)控網(wǎng)絡(luò),影響先心病發(fā)生發(fā)展。

      1 miRNA對(duì)心臟發(fā)育起著重要作用

      miRNA是一類廣泛存在于真核細(xì)胞中并且高度保守的約22個(gè)核苷酸組成的內(nèi)源性非編碼單鏈小分子RNA。成熟miRNA選擇性整合入RNA誘導(dǎo)沉默復(fù)合物(RNA-induced silencing complex,RISC)后,靶向結(jié)合于mRNA,進(jìn)而抑制翻譯甚至引發(fā)mRNA降解。它們廣泛參與器官發(fā)育、細(xì)胞增殖分化、腫瘤發(fā)生及心血管疾病等生理和病理過(guò)程,近年來(lái)其在心臟發(fā)育及致病中越來(lái)越得到重視。

      許多miRNA在心臟發(fā)育中起著重要作用。miR-1靶向作用于組蛋白脫乙酰酶4(histone deacetylase 4,HDAC4)、心臟和神經(jīng)嵴衍生物表達(dá)的蛋白2(heart- and neural crest derivatives-expressed protein 2,Hand2)、縫隙連接α1蛋白(gap junction alpha-1 protein, GJA1;又稱connexin 43,Cx43)、鉀電壓門控通道亞家族J成員2(potassium voltage-gated channel subfamily J member 2,KCNJ2)等心臟發(fā)育相關(guān)基因,促進(jìn)胚胎干細(xì)胞向心肌細(xì)胞分化,而miR-133起著相反作用。Zhao等[2]在胚胎鼠心臟過(guò)表達(dá)miR-1,胚胎于13.5 d死于心肌細(xì)胞缺失。Liu 等[3]聯(lián)合敲除小鼠miR-133a-1 與miR-133a-2,約半數(shù)在胚胎期或出生早期發(fā)生致死性室間隔缺損(ventricular septal defect,VSD),存活至成年的小鼠也易進(jìn)展為擴(kuò)張型心肌病和心力衰竭,進(jìn)一步實(shí)驗(yàn)證實(shí)其致病可能與miR-133a靶基因血清反應(yīng)因子(serum response factor,SRF)和cyclin D2表達(dá)增加相關(guān)。Myo-miRNAs包括miR-208a、miR-208b和miR-499,它們分別位于Myh7、Myh7b和Myh6的內(nèi)含子中。在心臟發(fā)育過(guò)程中,其表達(dá)水平與宿主基因表達(dá)水平相一致,出生后miR-208a/Myh7表達(dá)水平迅速降低,miR-208b/Myh7b和miR-499/Myh6表達(dá)水平增加。此外miR-17~92簇、miR-138、miR-218、miR-15家族等對(duì)心臟發(fā)育都有重要作用。

      在法洛四聯(lián)癥(tetralogy of Fallot,TOF)患兒中,Zhang等[4]發(fā)現(xiàn)47個(gè)表達(dá)顯著變化的miRNAs,他們認(rèn)為表達(dá)異常的miRNAs可能通過(guò)靶向結(jié)合有絲分裂活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路基因,導(dǎo)致心室肥厚。在綜合征性先心病中,21三體綜合征中21號(hào)染色體上5種miRNAs在心臟中過(guò)表達(dá)[5];DiGeorge綜合征中,22號(hào)染色體部分缺失導(dǎo)致RISC的組分表達(dá)缺失[6]。綜上所述,散發(fā)性先心病和綜合征性先心病的發(fā)生發(fā)展都與miRNAs異常表達(dá)有著密切關(guān)系。本文總結(jié)了與心肌細(xì)胞增殖、凋亡,心臟發(fā)育和致病相關(guān)miRNA,見(jiàn)表1[2,7-25]。

      表1 心臟發(fā)育相關(guān)miRNA

      目前研究表明血漿中 miRNAs水平與心臟疾病密切相關(guān),根據(jù)其表達(dá)特異性,臨床上可以將miRNAs作為分子標(biāo)記物早期診斷或者鑒別診斷疾病[26]。通過(guò)擬miRNA技術(shù)和抗miRNA反義寡核苷酸(anti-miRNA antisense oligonucleotides,AMO)技術(shù),外源性補(bǔ)充或者抑制miRNA,可在一定程度上發(fā)揮治療作用[27]。

      2 DNA甲基化異常導(dǎo)致先心病發(fā)生

      DNA甲基化是在DNA甲基轉(zhuǎn)移酶(DNA me-thyltransferase,DNMT)的催化下,以S-腺苷蛋氨酸為供體,將甲基轉(zhuǎn)移到胞嘧啶的5位碳原子上。DNA甲基化修飾主要發(fā)生在富含CpG島的啟動(dòng)子區(qū),其高甲基化會(huì)阻礙轉(zhuǎn)錄激活因子與序列的結(jié)合,直接抑制基因表達(dá),而去甲基化則使沉默的基因重新激活,出現(xiàn)高表達(dá)甚至基因組的不穩(wěn)定。DNA甲基化參與動(dòng)物胚胎發(fā)育、基因印跡和X染色體失活等生理過(guò)程,也在疾病發(fā)生中起重要作用。

      許多研究表明,心臟發(fā)育與疾病和DNA甲基化密切相關(guān)。心肌細(xì)胞發(fā)育、成熟和疾病過(guò)程中DNA甲基化呈動(dòng)態(tài)變化。大鼠出生后心肌細(xì)胞DNA甲基化水平開(kāi)始增高,DNA甲基轉(zhuǎn)移酶1(DNA methyltransferase 1,DNMT1)、甲基化CpG結(jié)合結(jié)構(gòu)域蛋白1~3(methyl-CpG-binding domain 1~3,MBD1~3)和甲基化CpG結(jié)合蛋白2(methyl-CpG-binding protein 2,MeCP2)的表達(dá)也隨之增高[28]。用5-氮雜胞苷處理胚胎干細(xì)胞,可誘導(dǎo)心肌細(xì)胞分化,并增加其DNA合成[29]。與成人相比,新生兒心肌細(xì)胞去甲基化程度更明顯,其去甲基化區(qū)域主要位于心臟轉(zhuǎn)錄因子肌細(xì)胞增強(qiáng)因子2C(myocyte enhancer factor 2C,MEF2C)、GATA結(jié)合蛋白1~4(GATA-binding protein 1~4,GATA1~4)等的結(jié)合位點(diǎn)和心肌細(xì)胞基因體內(nèi)。慢骨骼肌肌鈣蛋白I(slow skeletal troponin I,ssTnI)基因啟動(dòng)子上游100 bp至2 000 bp間存在CpG島,其甲基化水平調(diào)控ssTnI的表達(dá)[30]。Chamberlain等[31]發(fā)現(xiàn)DNA甲基轉(zhuǎn)移酶3b調(diào)控透明質(zhì)酸合成酶2(hyaluronan synthase 2,Has2)的表達(dá),從而影響心臟瓣膜的形成。DNA甲基化水平隨著心臟發(fā)育的階段、細(xì)胞種類和基因的不同,呈現(xiàn)不同的表達(dá)模式,其在心臟發(fā)育中的作用還需要進(jìn)一步探索。

      葉酸代謝關(guān)鍵酶甲硫氨酸合成酶(methionine synthase,MTR)和胱硫醚β-合酶(cystathionine beta-synthase,CBS)的基因多態(tài)性與先心病易感性有關(guān),它們的轉(zhuǎn)錄受到甲基化調(diào)控,其本身又在甲基代謝中起著關(guān)鍵作用[32]。在TOF患者心臟組織中,心臟相關(guān)轉(zhuǎn)錄因子NKX2.5和HAND1甲基化狀態(tài)異常,全基因組甲基化水平相對(duì)正常心臟組織下降,DNMT1/3B表達(dá)降低,這可能是TOF發(fā)病機(jī)制之一[33]。在另一項(xiàng)研究中,Yuan等[34]發(fā)現(xiàn)TOF患者VANGEL2基因啟動(dòng)子區(qū)域甲基化水平顯著高于健康對(duì)照組,VANGEL2的mRNA表達(dá)下降。Serra-Juhe等[35]在2015年發(fā)現(xiàn)先心病患者不同組織DNA甲基化有差異,在血標(biāo)本中,其異常富集于免疫反應(yīng)相關(guān)通路;在心臟組織中,異常富集于肌肉收縮與心肌疾病相關(guān)通路。以上研究表明DNA甲基化模式在先心病發(fā)病中起著重要作用,異常甲基化可能導(dǎo)致心臟發(fā)育畸形。

      3 內(nèi)源性miRNA表達(dá)異常影響DNA甲基化水平,導(dǎo)致疾病發(fā)生

      隨著研究的不斷深入,人們發(fā)現(xiàn)miRNA作為表觀遺傳的重要內(nèi)容,參與了DNA甲基化的調(diào)控。2007年,F(xiàn)abbri等[36]首次在腫瘤中發(fā)現(xiàn)miR-29a和miR-29b表達(dá)下降,相反地,DNMT3a和DNMT3b表達(dá)增高,經(jīng)證實(shí),miR-29與DNMT3a/b的3’-UTR端高度互補(bǔ),直接導(dǎo)致其表達(dá)減少。Garzon等[37]進(jìn)一步證實(shí)在急性髓細(xì)胞白血病(acute myelocytic leukemia,AML)細(xì)胞系中miR-29b表達(dá)增加,直接抑制DNMT3a和DNMT3b,間接抑制DNMT1,誘導(dǎo)基因組DNA低甲基化及抑癌基因p15和雌激素受體1(estrogen receptor 1,ESR1)的表達(dá)。

      Qin等[38]在系統(tǒng)性紅斑狼瘡(systemic lupus erythematosus,SLE)患者CD4+T細(xì)胞中也證實(shí)了miR-29b可通過(guò)作用于轉(zhuǎn)錄因子Sp1,間接抑制DNMT1的表達(dá)。SLE患者CD4+T細(xì)胞miR-126表達(dá)也升高。miR-148和miR-126都作用于DNMT1,其抑制劑可恢復(fù)CD4+T細(xì)胞DNMT表達(dá)。在SLE患者中miR-126啟動(dòng)子區(qū)域低甲基化,表達(dá)升高,說(shuō)明miR-126與DNMT1之間存在反饋機(jī)制[39]。

      不僅如此,miRNA對(duì)DNA甲基化的調(diào)控在心血管疾病中也得到證實(shí)。在高同型半胱氨酸血癥中,miR-133a和miR-499表達(dá)下降。用同型半胱氨酸處理心肌細(xì)胞HL-1,過(guò)表達(dá)miR-133a時(shí),DNMT1表達(dá)下降;抑制miR-133a時(shí),DNMT1表達(dá)升高[40]。Chavali等[41]在糖尿病性心肌病中發(fā)現(xiàn),miR-133a表達(dá)減少,DNMT1和DNMT3b表達(dá)增加,DNMT3a表達(dá)降低。在正常心肌細(xì)胞中過(guò)表達(dá)miR-133a,DNMT1/3a/3b表達(dá)都降低。在25 mmol/L葡萄糖培養(yǎng)的心肌細(xì)胞中,DNMT1表達(dá)增高;轉(zhuǎn)染miR-133a進(jìn)入細(xì)胞,DNMT1表達(dá)趨于正常,表明在糖尿病性心肌病中,miR-133調(diào)節(jié)DNA甲基化的作用。影響心臟發(fā)育的miRNA很多,通過(guò)TargetScanHuman、PicTar等網(wǎng)站進(jìn)行預(yù)測(cè),發(fā)現(xiàn)數(shù)種可調(diào)控DNMTs表達(dá)的miRNA,詳見(jiàn)表2。

      表2 調(diào)控DNMTs的心臟發(fā)育相關(guān)miRNA

      Table 2.DNMTs-modulating miRNAs with relevance to heart development

      miRNADNMT1DNMT3ADNMT3BmiR-133a+miR-30+miR-19b+miR-22+miR-34a+miR-101+miR-125b+miR-206+miR-487-3P+miR-29++

      大量體內(nèi)外實(shí)驗(yàn)表明,miRNA可通過(guò)3種方式調(diào)節(jié)DNA甲基化狀態(tài)。(1) miRNA直接結(jié)合于DNMTs的3’-UTR影響DNMTs的表達(dá),如miR-29[42]、miR-152[43]等。(2) miRNA直接結(jié)合于DNMTs的編碼區(qū),影響DNA甲基化水平。在HeLa細(xì)胞中,miR-148結(jié)合于DNMT3B編碼區(qū),而非通常的3’-UTR。表明miR-148在調(diào)節(jié)DNMT3B剪接變異體的多樣性起著調(diào)控作用。(3) miRNAs還可通過(guò)調(diào)節(jié)與DNMTs相關(guān)的轉(zhuǎn)錄因子,間接影響DNA甲基化水平。Dicer缺陷小鼠胚胎干細(xì)胞DNMT1表達(dá)下降,造成DNA甲基化水平降低。其可能機(jī)制為DNMT抑制物RBL2上調(diào),而RBL2為miR-290的靶點(diǎn)。用miR-290轉(zhuǎn)染Dicer敲除的胚胎干細(xì)胞,DNMT1表達(dá)恢復(fù)正常,DNA甲基化水平亦恢復(fù)正常,表明在胚胎干細(xì)胞miR-290通過(guò)間接調(diào)節(jié)DNMT1表達(dá)來(lái)調(diào)控DNA甲基化[44]。

      4 外源性調(diào)控miRNA表達(dá),使靶基因異常甲基化狀態(tài)恢復(fù)正常,可干預(yù)先心病發(fā)生發(fā)展

      miRNAs與許多疾病的發(fā)生發(fā)展具有密切聯(lián)系,它不僅可以直接作用于靶基因,還可以通過(guò)影響DNA甲基化水平間接改變靶基因表達(dá)水平。miRNA作為藥物研發(fā)的重要靶點(diǎn),可設(shè)計(jì)相應(yīng)的藥物,通過(guò)上調(diào)或者下調(diào)miRNA使靶基因的表達(dá)恢復(fù)正常。

      目前,基于microRNA的分子藥物設(shè)計(jì)尚處于起步階段,研究主要集中于模擬miRNA(如miRNA mimics)增強(qiáng)其對(duì)靶基因的作用效能和拮抗miRNA的小分子物質(zhì)(如AMO和antagomir)。microRNAs參與DNMTs轉(zhuǎn)錄后修飾,也可能通過(guò)調(diào)節(jié)與DNMTs相關(guān)的轉(zhuǎn)錄因子直接或間接影響DNMTs的表達(dá),從而影響疾病發(fā)生發(fā)展。在先心病動(dòng)物模型與病人中已經(jīng)發(fā)現(xiàn)DNMTs表達(dá)紊亂導(dǎo)致心臟發(fā)育關(guān)鍵轉(zhuǎn)錄因子GATA-4、NKX2.5和HAND1甲基化狀態(tài)異常[33],可通過(guò)尋找特異性作用于DNMTs的miRNA,外源性過(guò)表達(dá)或者低表達(dá)miRNA,降低DNMTs導(dǎo)致的甲基化效應(yīng),使DNA甲基化維持于正常水平,促使其下游基因表達(dá)恢復(fù)正常,可能達(dá)到治療疾病和改善預(yù)后的目的。

      miRNA廣泛表達(dá)于全身,其靶基因有多個(gè),且其靶基因可受到多個(gè)miRNA的調(diào)控,miRNA如何靶向改變DNMTs的表達(dá)還存在困難。此外,miRNA在體內(nèi)容易降解,外源性給藥后很難維持較好的血藥濃度,如何富集于靶器官也需要解決,其有效性和安全性均需進(jìn)一步證實(shí)。

      5 miRNA作為藥物治療先心病具有廣闊前景,需深入研究探索

      綜上所述,miRNA對(duì)DNA甲基化的調(diào)節(jié)在先心病致病中起著重要作用。通過(guò)外源性調(diào)節(jié)miRNAs,改變體內(nèi)致病基因甲基化狀態(tài),探索治療先心病的新路徑將成為未來(lái)研究的熱點(diǎn)?;趍iRNA的治療方法還處在探索階段,深入研究 miRNA 在先心病中復(fù)雜的調(diào)控機(jī)制,顯得尤為重要。隨著干預(yù) miRNA 表達(dá)技術(shù)不斷進(jìn)步,基于 miRNA 的治療策略將成為先心病治療的一個(gè)重要方向,將其應(yīng)用于臨床具有廣闊的前景。

      [1] Reller MD, Strickland MJ, Riehle-Colarusso T, et al. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005[J]. J Pediatr, 2008, 153(6):807-813.

      [2] Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2):303-317.

      [3] Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart[J]. Genes Dev, 2008, 22(23):3242-3254.

      [4] Zhang HS, Wu QY, Xu M, et al. Mitogen-activated protein kinase signal pathways play an important role in right ventricular hypertrophy of tetralogy of Fallot[J]. Chin Med J (Engl), 2012, 125(13):2243-2249.

      [5] Kuhn DE, Nuovo GJ, Martin MM, et al. Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts[J]. Biochem Biophys Res Commun, 2008, 370(3):473-477.

      [6] Latronico MV, Catalucci D, Condorelli G. MicroRNA and cardiac pathologies[J]. Physiol Genomics, 2008, 34(3):239-242.

      [7] Li X, Wang J, Jia Z, et al. MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1[J]. PLoS One, 2013, 8(9):e74504.

      [8] Zhang Y, Matsushita N, Eigler T, et al. Targeted microRNA interference promotes postnatal cardiac cell cycle re-entry[J]. J Regen Med, 2013, 2:2.

      [9] Mollova M, Bersell K, Walsh S, et al. Cardiomyocyte proliferation contributes to heart growth in young humans[J]. Proc Natl Acad Sci U S A, 2013, 110(4):1446-1451.

      [10]Li J, Li Y, Jiao J, et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis[J]. Mol Cell Biol, 2014, 34(10):1788-1799.

      [11]Liu J, van Mil A, Vrijsen K, et al. MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1[J]. J Cell Mol Med, 2011, 15(7):1474-1482.

      [12]王 玨, 黃偉聰, 鄭亮承,等. MicroRNA-24對(duì)心肌梗死后心肌細(xì)胞凋亡的調(diào)控作用[J].中國(guó)病理生理雜志,2013,29(4):590-596.

      [13]Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci U S A, 2008, 105(36):13421-13426.

      [14]Frank D, Gantenberg J, Boomgaarden I, et al. Micro-RNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3[J]. J Mol Cell Cardiol, 2012, 52(3):711-717.

      [15]Du W, Pan Z, Chen X, et al. By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion[J]. Cell Physiol Biochem, 2014, 34(3):955-965.

      [16]Forini F, Kusmic C, Nicolini G, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis[J]. Endocrinology, 2014, 155(11):4581-4590.

      [17]Xu C, Hu Y, Hou L, et al. β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression[J]. J Mol Cell Cardiol, 2014, 75:111-121.

      [18]Chiavacci E, Dolfi L, Verduci L, et al. MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development[J]. PLoS One, 2012, 7(11):e50536.

      [19]Morton SU, Scherz PJ, Cordes KR, et al. microRNA-138 modulates cardiac patterning during embryonic development[J]. Proc Natl Acad Sci U S A, 2008, 105(46):17830-17835.

      [20]Wilson KD, Hu S, Venkatasubrahmanyam S, et al. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499[J]. Circ Cardiovasc Genet, 2010, 3(5):426-435.

      [21]Xin M, Small EM, Sutherland LB, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury[J]. Genes Dev, 2009, 23(18):2166-2178.

      [22]Kim GH, Samant SA, Earley JU, et al. Translational control of FOG-2 expression in cardiomyocytes by microRNA-130a[J]. PLoS One, 2009, 4(7):e6161.

      [23]Latronico MV, Catalucci D, Condorelli G. MicroRNA and cardiac pathologies[J]. Physiol Genomics, 2008, 34(3):239-242.

      [24]Li D, Ji L, Liu L, et al. Characterization of circulating microRNA expression in patients with a ventricular septal defect[J]. PLoS One, 2014, 9(8):e106318.

      [25]Zhu S, Cao L, Zhu J, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects[J]. Clin Chim Acta, 2013, 424:66-72.

      [26]Fang L, Ellims AH, Moore XL, et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy[J]. J Transl Med, 2015, 13:314.

      [27]郭 敏, 李育敏, 費(fèi) 嘉, 等.以microRNA-21為靶標(biāo)的反義寡核苷酸對(duì)人白血病K562細(xì)胞的抑制作用[J].中國(guó)病理生理雜志,2009,25(6):1127-1131.

      [28]Kou CY, Lau SL, Au KW, et al. Epigenetic regulation of neonatal cardiomyocytes differentiation[J]. Biochem Biophys Res Commun, 2010, 400(2):278-283.

      [29]Abbey D, Seshagiri PB. Aza-induced cardiomyocyte differentiation of P19 EC-cells by epigenetic co-regulation and ERK signaling[J]. Gene, 2013, 526(2):364-373.

      [30]Xu Y, Liu L, Pan B, et al. DNA methylation regulates mouse cardiac myofibril gene expression during heart development[J]. J Biomed Sci, 2015, 22:88.

      [31]Chamberlain AA, Lin M, Lister RL, et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis[J]. J Am Heart Assoc, 2014, 3(3):e000976.

      [32]Zhao JY, Qiao B, Duan WY, et al. Genetic variants reducingMTRgene expression increase the risk of congenital heart disease in Han Chinese populations[J]. Eur Heart J, 2014, 35(11):733-742.

      [33]Sheng W, Qian Y, Wang H, et al. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of Fallot[J]. BMC Med Genomics, 2013, 6:46.

      [34]Yuan Y, Gao Y, Wang H, et al. Promoter methylation and expression of theVANGL2 gene in the myocardium of pediatric patients with tetralogy of Fallot[J]. Birth Defects Res A Clin Mol Teratol, 2014, 100(12):973-984.

      [35]Serra-Juhe C, Cusco I, Homs A, et al. DNA methylation abnormalities in congenital heart disease[J]. Epigene-tics, 2015, 10(2):167-177.

      [36]Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J]. Proc Natl Acad Sci U S A, 2007, 104(40):15805-15810.

      [37]Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1[J]. Blood, 2009, 113(25):6411-6418.

      [38]Qin H, Zhu X, Liang J, et al. MicroRNA-29b contributes to DNA hypomethylation of CD4+T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1[J]. J Dermatol Sci, 2013, 69(1):61-67.

      [39]Zhao S, Wang Y, Liang Y, et al. MicroRNA-126 regulates DNA methylation in CD4+T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1[J]. Arthritis Rheum, 2011, 63(5):1376-1386.

      [40]Chaturvedi P, Kalani A, Givvimani S, et al. Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcyinvitroandinvivo: an epigenetic mechanism[J]. Physiol Genomics, 2014, 46(7):245-255.

      [41]Chavali V, Tyagi SC, Mishra PK. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes[J]. Biochem Biophys Res Commun, 2012, 425(3):668-672.

      [42]Pandi G, Nakka VP, Dharap A, et al. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage[J]. PLoS One, 2013, 8(3):e58039.

      [43]Miao CG, Yang YY, He X, et al. MicroRNA-152 modulates the canonical Wnt pathway activation by targeting DNA methyltransferase 1 in arthritic rat model[J]. Biochimie,2014,106:149-156.

      [44]Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases[J]. Nat Struct Mol Biol,2008,15(9):998.

      (責(zé)任編輯: 陳妙玲, 羅 森)

      Advances in modulation of microRNA and DNA methylation in congenital heart diseases

      YANG Qian, GUI Yong-hao, LI Qiang

      (InstituteofPediatrics,Children’sHospitalofFudanUniversity,Shanghai201102,China.E-mail:liq@fudan.edu.cn)

      Aberrations in microRNA (miRNA) expression and DNA methylation are causal factors for congenital heart diseases (CHD), which belongs to epigenetic mechanisms. Complex modulation of miRNA on DNA methylation is a critical regulator of gene expression, leading to disease development. The aim of this review is to provide recent progress in the regulation of miRNA and DNA methylation in CHD.

      Congenital heart diseases; MicroRNA; DNA methylation

      1000- 4718(2016)11- 2101- 06

      2016- 04- 18

      2016- 08- 16

      國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81470442)

      R363

      A

      10.3969/j.issn.1000- 4718.2016.11.032

      雜志網(wǎng)址: http://www.cjpp.net

      △通訊作者 Tel: 021-64931066; E-mail: liq@fudan.edu.cn

      猜你喜歡
      先心病甲基化心肌細(xì)胞
      11 366例新生兒先天性心臟病篩查和檢出情況分析▲
      左歸降糖舒心方對(duì)糖尿病心肌病MKR鼠心肌細(xì)胞損傷和凋亡的影響
      活血解毒方對(duì)缺氧/復(fù)氧所致心肌細(xì)胞凋亡的影響
      先心病患兒營(yíng)養(yǎng)評(píng)估及營(yíng)養(yǎng)干預(yù)效果評(píng)價(jià)
      早孕期超聲心動(dòng)圖在胎兒嚴(yán)重先心病中的應(yīng)用
      心肌細(xì)胞慢性缺氧適應(yīng)性反應(yīng)的研究進(jìn)展
      槲皮素通過(guò)抑制蛋白酶體活性減輕心肌細(xì)胞肥大
      鼻咽癌組織中SYK基因啟動(dòng)子區(qū)的甲基化分析
      延吉市296例先心病分析
      胃癌DNA甲基化研究進(jìn)展
      昌宁县| 进贤县| 衡阳县| 凤阳县| 邢台市| 玉溪市| 荆门市| 三河市| 堆龙德庆县| 宁海县| 台南县| 阜城县| 绥江县| 东乌珠穆沁旗| 浪卡子县| 密山市| 岳普湖县| 长沙县| 称多县| 抚顺市| 宜都市| 昭觉县| 靖边县| 乌拉特前旗| 赤壁市| 荥经县| 西畴县| 柏乡县| 锡林浩特市| 安宁市| 钟山县| 共和县| 格尔木市| 仙居县| 滕州市| 卢龙县| 满洲里市| 潮安县| 沅江市| 景德镇市| 诸城市|