張洪亮 董天崴 張磊藝
[摘要] 目的 研究miR-21-5p在肺動(dòng)脈高壓發(fā)病中的調(diào)控機(jī)制。 方法 應(yīng)用qRT-PCR方法檢測(cè)miR-21-5p在正常人和先天性心臟病伴肺動(dòng)脈高壓患者血清,以及常氧和缺氧處理肺動(dòng)脈平滑肌細(xì)胞中的表達(dá);利用Edu滲入法以及劃痕實(shí)驗(yàn)研究miR-21-5p對(duì)肺動(dòng)脈平滑肌細(xì)胞增殖及遷移的影響;應(yīng)用Targetscan軟件進(jìn)行靶基因預(yù)測(cè)并在肺動(dòng)脈平滑肌細(xì)胞中進(jìn)行驗(yàn)證。 結(jié)果 肺動(dòng)脈高壓患者血清miR-21-5p水平顯著高于正常人血清(P < 0.001);與常氧相比,缺氧處理肺動(dòng)脈平滑肌細(xì)胞明顯促進(jìn)miR-21-5p表達(dá)(P < 0.01);miR-21-5p能夠促進(jìn)缺氧條件下的肺動(dòng)脈平滑肌細(xì)胞增殖、遷移;雙熒光素酶報(bào)告系統(tǒng)證明miR-21-5p能夠結(jié)合骨形成蛋白Ⅱ型受體(BMPR2)的3UTR;鑒定miR-21-5p在肺動(dòng)脈平滑肌細(xì)胞中靶向BMPR2基因。 結(jié)論 miR-21-5p調(diào)控靶基因BMPR2參與肺動(dòng)脈高壓發(fā)病。
[關(guān)鍵詞] 肺動(dòng)脈高壓;microRNA;骨形成蛋白Ⅱ型受體;調(diào)控
[中圖分類號(hào)] R543.2 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1674-4721(2016)10(b)-0012-04
[Abstract] Objective To reveal the role of miR-21-5p in the development of pulmonary arterial hypertention (PAH). Methods qRT-PCR method was used to detect the expression of miR-21-5p in the serum of healthy donors and patients with PAH associated with congenital heart disease (CHD-PAH), and the pulmonary artery smooth muscle cells (PASMC) exposed to normoxia and hypoxia. The effects of miR-21-5p on hypoxia-induced PASMC proliferation and migration were detected by Edu incorporation and wound assay. The target gene of miR-21-5p was predicted by targetscan and validated by luciferase report assay. Results miR-21-5p level was significantly increased in the serum of CHD-PAH patient as compared with healthy donors (P < 0.001). In addition, the expression of miR-21-5p was significantly induced in PASMC treated by hypoxic as compared with normoxia (P < 0.01). Functional analysis revealed that miR-21-5p significantly enhanced hypoxia-induced PASMC proliferation and migration. Finally, dual-luciferase reporter system proved miR-21-5p could integrate with BMPR2 3UTR, then BMPR2 was identified as a direct target of miR-21-5p. Conclusion The study demonstrates that miR-21-5p is involved in regulating PAH by targeting BMPR2.
[Key words] Pulmonary arterial hypertension; microRNA; BMPR2; Regulation
肺動(dòng)脈高壓是以肺動(dòng)脈壓力持續(xù)升高、肺血管阻力增加和肺小血管重構(gòu)為特征的肺血管疾病[1]。肺動(dòng)脈平滑肌細(xì)胞的增殖和遷移,使得肺小動(dòng)脈內(nèi)徑變細(xì),最終肺動(dòng)脈阻力增加,壓力升高為其病理學(xué)特征[2-3]。
microRNA(miRNA)是一類高度保守、長(zhǎng)度為20~25個(gè)核苷酸的非編碼單鏈小RNA[4]。miRNA通過(guò)與靶基因mRNA 3′非翻譯區(qū)(3′-UTR)特異結(jié)合,在轉(zhuǎn)錄后水平對(duì)基因進(jìn)行調(diào)控[5]。研究表明,miRNA參與肺動(dòng)脈高壓的發(fā)生發(fā)展進(jìn)程[6-7]。miRNA通過(guò)促進(jìn)肺動(dòng)脈平滑肌細(xì)胞的分化和抗凋亡效應(yīng)來(lái)參與肺動(dòng)脈高壓的進(jìn)程[8-9]。本研究對(duì)miR-21-5p調(diào)控BMPR2參與肺動(dòng)脈高壓的發(fā)病機(jī)制進(jìn)行初步探索。
1 材料與方法
1.1 患者血清標(biāo)本采集
血清標(biāo)本來(lái)源于北京阜外醫(yī)院先天性心臟病伴有肺動(dòng)脈高壓(CHD-PAH)患者及健康人各24例。肺動(dòng)脈高壓的診斷標(biāo)準(zhǔn)為在海平面靜息狀態(tài)下右心導(dǎo)管檢查肺動(dòng)脈收縮壓>4 kPa(30 mmHg)和/或肺動(dòng)脈平均壓>3.33 kPa(25 mmHg)。血液樣本在室溫下靜置1 h,4℃離心機(jī)3000 r/min離心10 min,上清液保存于-80℃冰箱。
1.2 miR-21-5p實(shí)時(shí)熒光定量檢測(cè)
應(yīng)用qRT-PCR檢測(cè)試劑盒(深圳盎然生物)進(jìn)行檢測(cè)。miRNA經(jīng)加poly A后立即逆轉(zhuǎn)錄反應(yīng)形成cDNA,snoRNA44作為內(nèi)參。每個(gè)樣本PCR反應(yīng)做3個(gè)復(fù)孔,引物如下:miR-21-5p 5′-GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAATTTTTTTTTTTCAACAT-3′(RT),5′-TTCGGTAGCTTACAGACTGA-3′(Forward); SNORD44:5′ -GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAATTTTTTTTTTTAGTCAG-3′(RT),5′-TGGCCTGGATGATGATAAGCA-3′ (Forward)。
1.3 肺動(dòng)脈平滑肌細(xì)胞的分離和培養(yǎng)
人肺動(dòng)脈平滑肌細(xì)胞(HPASMC)購(gòu)自美國(guó)Science Cell公司,大鼠肺動(dòng)脈平滑肌原代細(xì)胞(RPASMC)分離自SD大鼠[北京市維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,合格證號(hào):SCXK(京)2011-0011]肺動(dòng)脈。
1.4 靶基因3-UTR熒光素酶載體及其突變載體的構(gòu)建
以大鼠的基因組DNA為模板,將pGL3-ccdb載體經(jīng)雙酶切后與基因的3-UTR產(chǎn)物連接。BMPR2的3-UTR突變引物,擴(kuò)增產(chǎn)物連接到雙酶切后的pGL3-ccdb載體,連接后轉(zhuǎn)化酶切鑒定后進(jìn)行測(cè)序分析。
1.5 BMPR2蛋白表達(dá)檢測(cè)
采用Western blot法進(jìn)行蛋白檢測(cè)。4%~10%的預(yù)制膠電泳分離蛋白質(zhì),經(jīng)濕轉(zhuǎn)法將蛋白轉(zhuǎn)移至硝酸纖維素膜上,一抗4℃搖床孵育過(guò)夜,用Totallab TL100圖像分析軟件對(duì)特異條帶進(jìn)行灰度掃描,并用相對(duì)灰度值表示蛋白相對(duì)含量。一抗?jié)舛确謩e為:抗BMPR2(Abcam)1∶1000,抗β-Tubulin(Santa Cruz)1∶2000;二抗?jié)舛葹?∶2000。
1.6 細(xì)胞增殖實(shí)驗(yàn)
根據(jù)試劑盒(廣州銳博生物),接種細(xì)胞于48孔板,加入20 μmol/L EdU繼續(xù)培養(yǎng)24 h后,用4%多聚甲醛室溫固定30 min,0.5%Triton X-100透化10 min,每孔細(xì)胞加入150 μL染色反應(yīng)液反應(yīng)30 min。DNA用1×Hochest (150 μL/孔)染色5 min,在熒光顯微鏡下拍照。
1.7 細(xì)胞遷移實(shí)驗(yàn)
細(xì)胞密度達(dá)到90%以上時(shí)進(jìn)行劃痕(每組劃3~5個(gè)位置),更換成含0.5%FBS的SmGM-2培養(yǎng)基進(jìn)行饑餓處理,并標(biāo)記和拍照,所有細(xì)胞遷移實(shí)驗(yàn)重復(fù)3次。
1.8 統(tǒng)計(jì)學(xué)方法
采用SPSS 17.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間比較采用t檢驗(yàn);以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 miR-21-5p在CHD-PAH患者血清中及缺氧條件下肺動(dòng)脈平滑細(xì)胞中的表達(dá)
RT-PCR檢測(cè)結(jié)果顯示:miR-21-5p在CHD-PAH血清中表達(dá)升高,與正常人血清樣本比較,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.001);RPASMC和HPASMC分別在常氧條件下培養(yǎng)48 h以及缺氧條件下分別培養(yǎng)12、24、48 h,收集細(xì)胞后檢測(cè)miR-21-5p的表達(dá),結(jié)果顯示缺氧條件下miR-21-5p的表達(dá)升高最明顯,與常氧比較在24 h達(dá)到高峰值(P < 0.001)。
2.2 miR-21-5p對(duì)人肺動(dòng)脈平滑肌細(xì)胞增殖的影響
觀察在缺氧條件下分別轉(zhuǎn)染miRNA-control、miR-21-5p mimic、anti-cnotrol、anti-miR-21-5p后對(duì)HPASMC增殖影響。從圖2(封四)結(jié)果可見(jiàn),與對(duì)照組相比,過(guò)表達(dá)miR-21-5p能促進(jìn)HPASMC增殖(P < 0.01),相反,當(dāng)轉(zhuǎn)染miR-21-5p拮抗物后抑制了HPASMC增殖(P < 0.01)。
2.3 miR-21-5p在人肺動(dòng)脈平滑肌細(xì)胞遷移過(guò)程中的作用
實(shí)驗(yàn)表明,在缺氧24 h條件下miR-21-5p具有促進(jìn)HPASMC遷移作用(P < 0.01);應(yīng)用miR-21-5p抑制物缺氧24 h后,anti-21-5p抑制了HPASMC的遷移功能(P < 0.01)。
2.4 miR-21-5p靶基因預(yù)測(cè)及3-UTR熒光素酶報(bào)告系統(tǒng)驗(yàn)證
TargetScan在線軟件預(yù)測(cè)候選靶基因中BMPR2的3-UTR與miR-21-5p結(jié)合位點(diǎn)(圖4A)。雙熒光素酶檢測(cè)結(jié)果顯示,過(guò)表達(dá)miR-21-5p使野生型BMPR2報(bào)告載體熒光素酶活性下降,與野生型對(duì)照組比較,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01),突變的熒光素酶報(bào)告基因的活性與對(duì)照組比較大致不變(P > 0.05)(圖4B)。
2.5 miR-21-5p抑制內(nèi)源性BMPR2的表達(dá)
與對(duì)照組比較,轉(zhuǎn)染miR-21-5p mimic組中BMPR2表達(dá)水平明顯上調(diào)(P < 0.001),轉(zhuǎn)染miR-21-5p inhibitor組BMPR2表達(dá)水平明顯降低(P < 0.001)(圖5A、B)。應(yīng)用Western blot檢測(cè)BMPR2蛋白表達(dá)水平,結(jié)果顯示,與mimic-control相比,過(guò)表達(dá)miR-21-5p BMPR2蛋白表達(dá)下降;抑制miR-21-5p的表達(dá),能使HPASMC中BMPR2蛋白表達(dá)水平上調(diào)(圖5C)。
3 討論
既往研究證明miRNA參與肺動(dòng)脈高壓的發(fā)病機(jī)制[10-11]。本研究檢測(cè)肺動(dòng)脈高壓患者血清及缺氧誘導(dǎo)的肺動(dòng)脈平滑肌細(xì)胞中miR-21-5p表達(dá)升高,細(xì)胞功能實(shí)驗(yàn)在缺氧條件下miR-21-5p具有促進(jìn)細(xì)胞增殖和遷移功能,應(yīng)用Target scan在線軟件預(yù)測(cè)miR-21-5p靶基因?yàn)锽MPR2,實(shí)驗(yàn)證實(shí)miR-21-5p通過(guò)靶向BMPR2參與肺動(dòng)脈高壓的細(xì)胞增殖和血管重構(gòu)過(guò)程。
肺動(dòng)脈高壓發(fā)病機(jī)制中BMPR2基因突變會(huì)引發(fā)肺動(dòng)脈高壓易感性[12-13]。BMPR2是轉(zhuǎn)錄生長(zhǎng)因子-β家族的重要成員,很早就有實(shí)驗(yàn)證實(shí)BMPR2基因雜合子突變是肺動(dòng)脈高壓家族患者人群的重要遺傳易感因素[14]。在肺動(dòng)脈高壓患者的家族人群檢測(cè)結(jié)果顯示:大約有75%的家庭中檢測(cè)到BMPR2基因突變[15]。實(shí)驗(yàn)證明,BMPR2和其下游信號(hào)途徑在肺血管重構(gòu)中扮演著重要角色,通過(guò)激活BMPR2基因阻止細(xì)胞周期從而抑制肺動(dòng)脈平滑肌細(xì)胞的分化[16-17]。
microRNA參與肺動(dòng)脈高壓的調(diào)控機(jī)制已經(jīng)在多個(gè)研究中得到證實(shí),miR-145通過(guò)靶向BMPR2參與肺動(dòng)脈高壓[18],抑制miR-20a導(dǎo)致BMPR2下游基因Id-1和Id-2的激活,從而抑制肺動(dòng)脈平滑肌細(xì)胞的增殖[19]。miR-21在肺動(dòng)脈高壓的動(dòng)物模型肺組織中高表達(dá),通過(guò)激活RhoB信號(hào)途徑促進(jìn)肺動(dòng)脈高壓的發(fā)生[20]。本研究發(fā)現(xiàn)缺氧條件下,過(guò)表達(dá)miR-21-5P具有促進(jìn)肺動(dòng)脈平滑肌細(xì)胞的遷移和增殖功能。說(shuō)明在缺氧條件下,miR-21-5p對(duì)肺動(dòng)脈的重構(gòu)過(guò)程具有重要的作用。
本研究只探討了miR-21-5p通過(guò)BMPR2基因?qū)PASMC增殖和遷移的影響,Target scan軟件預(yù)測(cè)miR-21-5p同時(shí)靶向多個(gè)靶基因,其他靶基因是否同時(shí)參與了肺動(dòng)脈高壓的調(diào)控需要下一步驗(yàn)證。
[參考文獻(xiàn)]
[1] Leopold JA,Maron BA. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension [J]. Int J Mol Sci,2016,17(5):761-775.
[2] Archer SL,Weir EK,Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians:new concepts and experimental therapies [J]. Circulation,2010,121 (18):2045-2066.
[3] Humbert M,Morrel NW,Archer SL,et al. Cellular and molecular pathobiology of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2004,43(12):108-124.
[4] Chen CZ,Li L,Lodish,et al. MicroRNAs modulate hematopoietic lineage differentiation [J]. Science,2004,303(56):83–86.
[5] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell,2004,116(2):281-297.
[6] Dang LT,Lawson ND,F(xiàn)ish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development [J]. Arterioscler Thromb Vasc Biol,2013,33(2):193-200.
[7] Joshi SR,McLendon JM,Comer BS,et al. MicroRNAs-control of essential genes: Implications for pulmonary vascular disease [J]. Pulm Circ,2011,1 (3):357-364.
[8] Brock M,Trenkmann M,Gay RE,et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway [J]. Circ Res,2009,104(10):1184-1191.
[9] Jin Y,Chen B,Tipple TE,et al. Arginase II is a target of miR-17-5p and regulates miR-17-5p expression in human pulmonary artery smooth muscle cells [J]. Am J Physiol Lung Cell Mol Physiol,2014,307(2):197-204.
[10] Caruso P,Maclean MR,Khanin R,et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline [J]. Arterioscler Thromb Vasc Biol,2010, 30(4):716-723.
[11] Zeng Y,Liu HT, Gou DM,et al. Hypoxia inducible factor-1 mediates expression of miR-322:potential role in proliferation and migration of pulmonary arterial smooth muscle cells [J].Scientific Repotrs,2015,5(3):12098-120109.
[12] Jones PL,Cowan KN,Rabinovitch M,et al. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease [J]. Am J Pathol,1997, 150(4):1349-1360.
[13] Malenfant S,Neyron AS,Paulin R,et al. Signal transduction in the development of pulmonary arterial hypertension [J]. Pulm Circ,2013,3(2):278-293.
[14] Deng Z,Morse JH,Slager SL,et al. Familial primary pulmonary hypertension(gene PPH1)is caused by mutations in the bone morphogenetic protein receptor-II gene [J]. Am J Hum Genet,2000,67(3):737-744.
[15] Soubrier F,Chung WK,Machado R,et al. Genetics and genomics of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2013,62(25):13-21.
[16] Wang J,Song Y,Zhang Y,et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice [J]. Cell Res,2012,22(3):516-527.
[17] Yang J,Li X,AlLamki RS,et al. Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo [J]. Circ Res,2010, 107(2):252-262.
[18] Caruso P,Dempsie Y,Stevens HC,et al. A Role for miR-145 in Pulmonary Arterial Hypertension:Evidence From Mouse Models and Patient Samples[J]. Circ Res,2012,111(3):290-300.
[19] Brock M,Samillan VJ,Trenkmann M,et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension [J]. European Heart Journal,2014,35(45):3203-3211.
[20] Parikh VN,Jin RC,Rabello S,et al. MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary Hypertension: Results of a Network Bioinformatics Approach [J]. Circulation,2012,125(12):1520-1532.
(收稿日期:2016-07-13 本文編輯:程 銘)