程 莎 高基民
(浙江省立同德醫(yī)院,杭州310012)
ICOS在健康人外周血調(diào)節(jié)性T細(xì)胞上的生物學(xué)特征初探①
程 莎 高基民
(浙江省立同德醫(yī)院,杭州310012)
目的:研究ICOS在健康人外周血Treg離體培養(yǎng)中的作用,了解mTOR對離體培養(yǎng)Treg ICOS表達(dá)的調(diào)控。方法:MACS分選Treg后經(jīng)anti-CD3+anti-CD28磁珠刺激后第3、7天流式檢測Treg表面ICOS表達(dá)情況;anti-CD3+anti-CD28抗體或anti-CD3+ICOSL-Fc刺激3 d,流式檢測Treg ICOS表達(dá)情況;雷帕霉素處理離體培養(yǎng)Treg,流式分析其對Treg ICOS表達(dá)作用。CFSE標(biāo)記人PBMC細(xì)胞,并與離體培養(yǎng)Treg混合培養(yǎng),流式檢測Treg的接觸抑制活性。結(jié)果:anti-CD3+anti-CD28磁珠刺激Treg 3 d,ICOS+Treg中活、死細(xì)胞的比例分別為(92.00±2.69)%和(2.20±0.56)%,在ICOS-Treg中比例為(90.30±3.53)%和(1.77±0.78)%,兩者無顯著差異;培養(yǎng)第7天,ICOS+Treg細(xì)胞比例從第3天(40.20±1.83)%降至(11.60± 1.10)%;anti-CD3 +ICOSL-FC刺激Treg 3 d后,ICOS MFI為(403.30±74.42),anti-CD3+anti-CD28刺激組為(2 410.0±746.4),anti-CD3+ICOSL-FC刺激后Treg ICOS表達(dá)相比anti-CD3+anti-CD28組顯著下降;雷帕霉素處理離體培養(yǎng)Treg細(xì)胞3 d后, ICOS表達(dá)下調(diào)。此外,雷帕霉素處理的離體培養(yǎng)Treg均能有效抑制PBMC中Tcon的分裂增殖。結(jié)論:ICOS表達(dá)高低對人外周血Treg存活率影響無顯著差異,mTOR信號并非調(diào)控人Treg離體培養(yǎng)ICOS表達(dá)的唯一因素,CD28協(xié)同信號對調(diào)控離體培養(yǎng)人Treg 。表達(dá)比ICOSL信號更為重要,雷帕霉素處理的離體培養(yǎng)人Treg 仍具有細(xì)胞接觸抑制活性。
人調(diào)節(jié)性T細(xì)胞;雷帕霉素;可誘導(dǎo)共刺激分子;可誘導(dǎo)共刺激分子配體
調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)是T細(xì)胞的一個(gè)亞群,約占CD4+T細(xì)胞的5%~10%,表達(dá)CD4、CD25、GITR/AITR、CTLA-4、ICOS和轉(zhuǎn)錄因子Foxp3,其中Foxp3為Treg的主要標(biāo)志蛋白[1,2]。Treg能抑制對自身或外源抗原有害的免疫反應(yīng),在維持免疫耐受和預(yù)防自身免疫性疾病中起著重要的作用[3]。
可誘導(dǎo)共刺激分子(Inducible costimulator,ICOS)是CD28家族的第3成員,由德國學(xué)者Hutloff于1999年在人活化后的外周血T細(xì)胞表面發(fā)現(xiàn),由于ICOS-ICOSL提供正向刺激信號,有許多研究通過阻斷ICOS-ICOSL共刺激通路誘導(dǎo)受體對移植物免疫耐受或治療自身免疫病[4,5]。然而,ICOS不但表達(dá)于效應(yīng)T細(xì)胞,在Treg細(xì)胞也有表達(dá),有研究表明 ICOS缺陷的病人體內(nèi)Treg功能明顯缺陷,且易發(fā)生自身免疫性疾病[6]。在小鼠體內(nèi),高表達(dá)ICOS的Treg細(xì)胞具有存活率高、接觸抑制功能和分裂增殖能力強(qiáng)的特點(diǎn)[7]。而在小鼠哮喘模型中,ICOS-ICOSL通過調(diào)節(jié)Treg的功能引起呼吸道免疫耐受[8]。并且近年來越來越多的數(shù)據(jù)顯示,ICOS-ICOSL對Treg免疫抑制的功能起著不可或缺的作用[9]。但以往的研究結(jié)果主要集中在闡明ICOS在CD4+T細(xì)胞上的表達(dá)變化及ICOS-ICOSL共刺激途徑對CD4+T細(xì)胞的功能作用。在本研究中觀察健康人外周血中Treg細(xì)胞體外刺激時(shí)ICOS的表達(dá)變化,為ICOS-ICOSL共刺激途徑對Treg功能作用的進(jìn)一步研究提供實(shí)驗(yàn)依據(jù)。
1.1 實(shí)驗(yàn)材料、試劑 健康人外周血100 ml/人,共20例,本研究經(jīng)過浙江省立同德醫(yī)院倫理委員會批準(zhǔn),所有受試者均知情并簽署知情同意書;淋巴細(xì)胞分離液購于TBD公司;Treg Expansion Kit、CD4+CD25+CD127dim/-Regulatory T Cell Isolation Kit Ⅱ human、MACS Buffer購自美天旎公司;標(biāo)準(zhǔn)胎牛血清、IMDM培養(yǎng)基、β-巰基乙醇購于Gibco公司;重組人ICOSL-FC購于R&D公司;重組人IL-2購自Peprotech公司;anti-human CD3單抗和anti-human CD28單抗購自BioLegend公司;PE-anti-human Foxp3、APC-anti-human ICOS、FITC-anti-human CD4、Hu-man Regulatory T cell Staining Kit購自eBios-cience公司;LIVE/DEAD Fixable Violet Dead Cell Stain Kit(L/D)購于Invitrogen公司。 儀器:CO2細(xì)胞培養(yǎng)箱(美國Thermo公司);FACS Aria流式細(xì)胞儀(美國BD公司)。
1.2 實(shí)驗(yàn)方法
1.2.1 外周血Treg的體外分離與流式抗體熒光染色 抽取健康人外周血100 ml,密度梯度離心法提取外周血單個(gè)核細(xì)胞,MASC法分離CD4+CD25+CD127dim/-調(diào)節(jié)性T細(xì)胞,按MACS磁珠分選試劑盒說明書操作。取一小部分分選后的Treg細(xì)胞重懸后加入CD4-FITC、ICOS-APC流式抗體和L/D染料,4℃避光孵育30 min,PBS洗滌2遍。胞內(nèi)核轉(zhuǎn)錄因子Foxp3按照eBioscience Treg染色試劑盒說明染色,將上述PBS洗滌后的細(xì)胞中加入新鮮配置的破膜固定緩沖液,4℃避光破膜固定2 h,再將細(xì)胞用1×破膜緩沖液洗滌2遍,并重懸于1×破膜緩沖液,加入Foxp3-PE流式抗體4℃避光孵育30~60 min后,1×破膜緩沖液洗滌2遍,細(xì)胞重懸于PBS中,流式細(xì)胞術(shù)檢測磁珠分選效果。
1.2.2 ICOS在調(diào)節(jié)性T細(xì)胞表面表達(dá)情況檢測 分選得到的Treg細(xì)胞以1×105/孔接種于96孔板(平底),培養(yǎng)體積為200 μl/孔。培養(yǎng)液為IMDM完全培養(yǎng)基(含有10%胎牛血清,青、鏈霉素各50 U/ml,β-巰基乙醇55 μmol/L,IL-2:500 U/ml)。anti-CD3+anti-CD28抗體 MACSiBead與細(xì)胞的比例為 4∶1。分別取體外培養(yǎng)3、7 d Treg細(xì)胞,進(jìn)行CD4、ICOS、L/D和Foxp3染色后,流式細(xì)胞儀檢測ICOS在Treg細(xì)胞表面表達(dá)情況。流式抗體和L/D染料染色方法同上。
1.2.3 ICOSL Fc對離體培養(yǎng)Treg中ICOS表達(dá)的影響 將1 μg/ml anti-human CD3+ 0.5 μg/ml anti-human CD28或1 μg/ml anti-human CD3+ 5 μg/ml ICOSL FC預(yù)包板過夜(4℃)。分選后Treg細(xì)胞以1×105/孔接種于包被有anti-human CD3+anti-human CD28或anti-human CD3+ ICOSL-FC的96孔培養(yǎng)板中,培養(yǎng)方法同1.2.2。將實(shí)驗(yàn)分為anti-human CD3+anti-human CD28刺激組和anti-human CD3+ ICOSL-FC刺激組。第3天,收集細(xì)胞,進(jìn)行CD4、ICOS、L/D和Foxp3染色,流式細(xì)胞儀檢測ICOS在Treg細(xì)胞表面表達(dá)情況。
1.2.4 雷帕霉素對外周血離體培養(yǎng)Treg中ICOS表達(dá)的影響 分選后Treg培養(yǎng)方法同1.2.2,anti-CD3+anti-CD28抗體 MACSiBead與細(xì)胞的比例為 4∶1。培養(yǎng)第1天,在上述培養(yǎng)細(xì)胞中加入雷帕霉素,分為雷帕霉素處理組(1、10和100 nmol/L雷帕霉素)和未處理組。收集培養(yǎng)第3天的細(xì)胞,進(jìn)行CD4、ICOS、L/D和Foxp3染色,流式細(xì)胞儀檢測ICOS在Treg細(xì)胞表面表達(dá)情況。
1.2.5 雷帕霉素處理后離體培養(yǎng)的Treg接觸抑制活性檢測 將新鮮分離的PBMC與5 μmol/L CFSE 37℃ 避光孵育9 min,加入1 ml 胎牛血清終止反應(yīng),并用IMDM完全培養(yǎng)液洗滌2遍后,收集以1 nmol/L雷帕霉素?cái)U(kuò)增培養(yǎng)14 d的Treg,按4∶1、8∶1、16∶1比例(PBMC/Treg)混合,并加入1 μg/ml anti-human CD3刺激4 d。同時(shí),設(shè)立PBMC單獨(dú)刺激組為陽性對照組,以PBMC未刺激組為陰性對照。
1.3 統(tǒng)計(jì)學(xué)分析 流式細(xì)胞數(shù)據(jù)用Tree star Flowjo 7.5軟件進(jìn)行分析處理,分析后實(shí)驗(yàn)數(shù)據(jù)采用GraphPad Prism 5.0 軟件進(jìn)行統(tǒng)計(jì)分析和作圖。雙側(cè)P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 ICOS在健康人外周血Treg上的表達(dá)與細(xì)胞生存之間的關(guān)系 為研究健康人外周血Treg在刺激活化后ICOS的表達(dá)與Treg細(xì)胞在體外存活之間的關(guān)系,我們對10例健康人外周血的Treg離體培養(yǎng)結(jié)果進(jìn)行分析發(fā)現(xiàn),刺激3 d后ICOS+Treg細(xì)胞中活細(xì)胞比例為(92.00±2.69)%,死細(xì)胞比例為(2.20±0.56)%,而ICOS+Treg細(xì)胞中活細(xì)胞比例為(90.30±3.53)%,死細(xì)胞比例為(1.77±0.78)%。ICOS+Treg細(xì)胞與ICOS-Treg細(xì)胞在細(xì)胞存活率上并無顯著差異(圖1A~C)。此外,在新鮮分離的健康人外周血Treg細(xì)胞中,ICOS+Treg與ICOS-Treg細(xì)胞的存活率之間也無顯著性差異(圖1D~F)。
圖1 健康人外周血Treg中ICOS表達(dá)及細(xì)胞存活率檢測Fig.1 Detection of cell survival and ICOS expression level on human blood Treg cellsNote:A-C.The viability of Treg was stimulated with anti-CD3+anti-CD28 beads for 3 days;D-F.The viability of fresh isolated Treg from human PBMC with MACS protocol were analyzed by flow cytomertry.
2.2 ICOS在健康人外周血Treg細(xì)胞表面表達(dá)的時(shí)效性 為研究Treg體外刺激活化后ICOS的表達(dá)變化情況,分選得到的Treg用anti-CD3+anti-CD28磁珠刺激培養(yǎng)后,分別在第3天和第7天檢測Treg細(xì)胞表面ICOS的表達(dá)情況。結(jié)果表明,刺激后的第3天ICOS+Treg比例為(40.20±1.83)%,而在第7天, ICOS+Treg 細(xì)胞比例下降為(11.60± 1.10)%,相對于第3天顯著降低(P=0.000 2),見圖2。
2.3 ICOSL對健康人Treg細(xì)胞ICOS表達(dá)的影響 分選后的 Treg,分別用anti-CD3+anti-CD28單抗和anti-CD3單抗+ICOSL-FC刺激,第3天流式細(xì)胞術(shù)檢測ICOS表達(dá)水平發(fā)現(xiàn),刺激3 d后, anti-CD3+anti-CD28刺激組中Treg細(xì)胞ICOS MFI(2 410.0±746.4,n=3),而加入anti-CD3+ICOSL-FC刺激后Treg細(xì)胞的ICOS MFI為(403.30±74.42,n=3),相對于anti-CD3+anti-CD28 刺激組顯著下降(P=0.027 7),見圖3。
2.4 雷帕霉素處理離體培養(yǎng)的Treg接觸抑制功能檢測 將雷帕霉素處理的離體培養(yǎng)Treg細(xì)胞與CFSE標(biāo)記的新鮮分離人外周血PBMC混合刺激培養(yǎng)4 d,分析CFSE陽性細(xì)胞群PBMC中CD4、CD8 T細(xì)胞的分裂增殖峰發(fā)現(xiàn),未混有Treg的PBMC中,CD4和CD8刺激4 d后均產(chǎn)生3個(gè)分裂峰。在Treg和PBMC混合培養(yǎng)的細(xì)胞中,PBMC細(xì)胞的分裂增殖能力隨著Treg細(xì)胞比例的增加而逐漸降低,1∶4和1∶8的混合比例中,Treg仍然具有較好的抑制活性,尤其對CD8 T細(xì)胞的抑制作用更為顯著(圖4A、B)。
2.5 雷帕霉素處理離體培養(yǎng)的Treg中ICOS表達(dá)的檢測 分選后的Treg離體培養(yǎng)時(shí)經(jīng)1、10、100 nmol/L,雷帕霉素處理,培養(yǎng)3 d后流式細(xì)胞分析發(fā)T現(xiàn),三種不同的雷帕霉素濃度均能導(dǎo)致離體培養(yǎng)后Treg中ICOS表達(dá)的下調(diào),但兩者并未呈劑量依賴的關(guān)系。該結(jié)果表明,mTOR信號通路與離體培養(yǎng)中Treg細(xì)胞ICOS表達(dá)有關(guān),但并非唯一的調(diào)控信號(圖5)。
圖2 離體培養(yǎng)的Treg中ICOS表達(dá)的時(shí)效性Fig.2 Effectiveness of ICOS expression on in vitro cultured Treg cellsNote:A.ICOS expression on purified Treg was stimulated with anti-CD3+anti-CD28 beads on day 3 and day 7;B.The ICOS+ Treg-cell percentage.
圖3 ICOSL Fc對分選后離體培養(yǎng)的Treg中ICOS表達(dá)的影響Fig.3 Influence of ICOS expression on in vitro cultured Treg cells by ICOSL FcNote:A.ICOS expression on purified Treg was stimulated with anti-CD3+anti-CD28 or anti-CD3+ICOSLFc on day 3;B.The MFI of ICOS+ Treg.
圖4 Treg 接觸抑制活性檢測Fig.4 Test of Treg cells suppress capacityNote:A. PBMC proliferation assay;B.Treg/Tcon contact inhibition assay were analyzed by FACS via Rapamycin treatment.
圖5 不同濃度雷帕霉素處理對離體培養(yǎng)Treg細(xì)胞ICOS表達(dá)的影響Fig.5 Influence of ICOS expression on in vitro cultured Treg cells by treatment of different concentration of rapamycin
ICOS為兩個(gè)同源二聚體同源跨膜蛋白,分為胞外區(qū)和胞漿區(qū),其胞外區(qū)能與ICOSL結(jié)合,而胞漿區(qū)含有YMFM基序,能與PI3K激酶結(jié)合,啟動下游信號通路[10-12]。ICOS為誘導(dǎo)表達(dá),常見于活化后的T細(xì)胞和記憶性T細(xì)胞表面, 而在初始T細(xì)胞表面無表達(dá)。ICOS的配體ICOSL在B細(xì)胞表面持續(xù)表達(dá),在單核細(xì)胞和抗原遞呈細(xì)胞表面一般為可誘導(dǎo)表達(dá),且表達(dá)水平較低[13,14]。
目前有關(guān)ICOS與Treg的作用關(guān)系尚未被闡明,Chen等[7]發(fā)現(xiàn)小鼠外周Treg中,存在高表達(dá)ICOS和低表達(dá)ICOS兩種Treg分群,前者能增強(qiáng)Treg細(xì)胞的免疫抑制活性和分裂增殖能力,提高Treg細(xì)胞的存活率。而Ito等[15]發(fā)現(xiàn)在人外周血中胸腺發(fā)育來源天然Treg分為ICOS+和ICOS-兩群,兩類Treg細(xì)胞在接觸抑制功能方面存在不同。而我們也發(fā)現(xiàn)在體外刺激的Treg中也存在ICOS+/ICOS-兩類Treg細(xì)胞,但進(jìn)一步研究發(fā)現(xiàn)上述兩類Treg的存活率未存在顯著的差異。Chen等[7]在其報(bào)道中雖然指出小鼠外周高表達(dá)ICOS的Treg細(xì)胞與低表達(dá)ICOS的Treg細(xì)胞存在功能差異,但我們并不確定這種差異也存在人外周血Treg。至此,我們的研究結(jié)果進(jìn)一步驗(yàn)證和完善了Ito[15]和Chen[7]這兩個(gè)研究小組的發(fā)現(xiàn),即小鼠脾臟和淋巴結(jié)Treg細(xì)胞和人外周血Treg細(xì)胞可能存在功能上的差異,并且在體外刺激培養(yǎng)的Treg中也是如此。Hu等[16]發(fā)現(xiàn)Treg細(xì)胞中特異性敲除Raptor導(dǎo)致Treg中ICOS表達(dá)下調(diào),mTORC1對小鼠Treg細(xì)胞的發(fā)育和功能有重要作用。我們對人外周血調(diào)節(jié)性T細(xì)胞經(jīng)mTOR抑制劑雷帕霉素處理并離體培養(yǎng)后發(fā)現(xiàn),Treg細(xì)胞的ICOS表達(dá)下調(diào),因此,mTOR信號通路不僅對小鼠脾臟和淋巴結(jié)中Treg細(xì)胞ICOS表達(dá)有關(guān)[17,18],同樣在離體培養(yǎng)的人外周血Treg中,雷帕霉素能部分抑制Treg細(xì)胞ICOS的表達(dá),表明除mTOR信號外還有其他的通路參與調(diào)控離體培養(yǎng)人外周血Treg細(xì)胞ICOS的表達(dá)。ICOSL是ICOS的特異配體,Colbeck[19]和Miller[20]等研究團(tuán)隊(duì)發(fā)現(xiàn),ICOSL/ICOS信號途徑對Treg細(xì)胞抑制功能的發(fā)揮和維持及Treg誘導(dǎo)的腫瘤免疫耐受有重要作用,其具體機(jī)制尚未明確。我們研究發(fā)現(xiàn)ICOSL-Fc代替CD28刺激離體人外周血Treg細(xì)胞發(fā)現(xiàn),與CD28刺激組相比,Treg細(xì)胞ICOS表達(dá)下調(diào),表明雖然ICOSL為ICOS的特異配體,能刺激ICOS的表達(dá),但與CD28信號相比還不足以完全上調(diào)離體培養(yǎng)的人外周血Treg細(xì)胞ICOS的表達(dá)。此外,我們還發(fā)現(xiàn)雷帕霉素處理后離體培養(yǎng)的人外周血Treg細(xì)胞仍然具有細(xì)胞接觸抑制活性,且相比CD4 T細(xì)胞,對CD8 T細(xì)胞的抑制作用更為顯著,其原因可能是由于CD8 T細(xì)胞對Treg細(xì)胞更為敏感,另外也可能是健康人PBMC中CD8 T細(xì)胞比例低于CD4 T細(xì)胞所引起的。
綜上所述,ICOS 對調(diào)節(jié)人Treg細(xì)胞功能有重要作用,而有關(guān)機(jī)制尚不清楚。本研究發(fā)現(xiàn)mTOR信號是離體培養(yǎng)的人Treg細(xì)胞ICOS表達(dá)的重要調(diào)控信號,但并非唯一調(diào)控因素,而ICOS表達(dá)在離體培養(yǎng)的人Treg細(xì)胞存活率無顯著作用,且CD28協(xié)同信號比單一ICOSL信號對ICOS的表達(dá)更為重要。因此,本研究對進(jìn)一步闡明mTOR-ICOS/ICOSL信號在人外周血Treg細(xì)胞中的作用和影響有重要意義,并為推動以ICOS和Treg切入點(diǎn),對自身免疫性疾病和腫瘤開展靶向治療提供科學(xué)依據(jù)。
[1] Laurence P,Jennifer AJ,Philippe B,etal.Regulatory T cells and their roles in immune dysregulation and allergy [J].Immunol Res,2014,58(2-3):358-368.
[2] Sakaguehi S,Sakaguehi N,Asano M,etal.Immunologic Self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol,1995,155(3):1151-1164.
[3] Imanguli MM,Cowen EW,Rose J,etal.Comparative analysis of FoxP3(+) regulatory T cells in the target tissues and blood in chronic graft versus host disease[J].Leukemia,2014,28(10):2016-2027.
[4] Hutloff A,Dittrich AM,Beier KC,etal.ICOS is an inducible T-cell co-stimulat or structurally and functionally related to CD28[J].Nature,1999,397(6716):263-266.
[5] Scott GB,Carter C,Parrish C,etal.Downregulation of myeloma-induced ICOS-L and regulatory T cell generation by lenalidomide and dexamethasone therapy[J].Cell Immunol,2015,297(1):1-9.
[6] Navarro S,Lazzari A,Kanda A,etal.Bystander immunotherapy as a strategy to control allergen-driven airway inflammation[J].Mucosal Immunol,2015,8(4):841-845.
[7] Chen Y,Shen SD,Gorentla BK,etal.Murine regulatory T cells contain hyperproliferative and death-prone subsets with differential ICOS expression[J].Immunol,2012,188:1698-1707.
[8] Busse M,Krech M,Meyer-Bahlburg A,etal.ICOS mediates the generation and function of CD4+CD25+Foxp3+regulatory T cells conveying respiratory tolerance [J].J Immunol,2012,189(4):1975-1982.
[9] Sakthivel P,Grunewald J,Eklund A,etal.Pulmonary sarcoidosis is associated with high-level inducible co-stimulator (ICOS) expression on lung regulatory T cells-possible implications for the ICOS/ICOS-ligand axis in disease course and resolution[J].Clin Exp Immunol,2016,183(2):294-306.
[10] Redpath SA,van der Werf N,Cervera AM,etal.ICOS controls Foxp3(+) regulatory T-cell expansion,maintenance and IL-10 production during helminth infection[J].Eur J Immunol,2013,43(3):705-715.
[11] Wagner MI,J?st M,Spratte J,etal.Differentiation of ICOS(+) and ICOS(-) recent thymic emigrant regulatory T cells (RTE Tregs) during normal pregnancy,pre-eclampsia and HELLP syndrome[J].Clin Exp Immunol,2016,183(1):129-142.
[12] Leavenworth JW,Verbinnen B,Yin J,etal.A p85α-osteopontin axis couples the receptor ICOS to sustained Bcl-6 expression by follicular helper andregulatory T cells[J].Nat Immunol,2015,16(1):96-106.
[13] Sim GC,Martin-Orozco N,Jin L,etal.IL-2 therapy promotes suppressive ICOS+Treg expansion in melanoma patients[J].J Clin Invest,2014,124(1):99-110.
[14] Huang XM,Liu XS,Lin XK,etal.Role of plasmacytoid dendritic cells and inducible costimulator-positive regulatory T cells in the immunosuppression microenvironment of gastric cancer[J].Cancer Sci,2014,105(2):150-158.
[15] Ito T,Hanabuchi S,Wang YH,etal.Two functional subsets of FOXP3+regulatory T cells in human thymus and periphery[J].Cell,2008,28:870-880.
[16] Hu Z,Kai Y,Caryn C,etal.mTORC1 couples immune signals and metabolic programming to establish Treg-cell function[J].Nature,2013,499(7459):485-490.
[17] Dong M,Wang X,Liu J,etal.Rapamycin combined with immature dendritic cells attenuates obliterative bronchiolitis in trachea allograft rats by regulating the balance of regulatory and effector T cells[J].Int Arch Allergy Immunol,2015,167(3):177-185.
[18] Li N,Xie WP,Kong H,etal.Enrichment of regulatory T-cells in blood of patients with multidrug-resistant tuberculosis[J].Int J Tuberc Lung Dis,2015,19(10):1230-1238.
[19] Colbeck EJ,Hindley JP,Smart K,etal.Eliminating roles for T-bet and IL-2 but revealing superior activation and proliferation as mechanisms underpinning dominance of regulatory T cells in tumors[J].Oncotarget,2015,6(28):24649-24659.
[20] Miller AM1,Lundberg K,Ozenci V,etal.CD4+CD25highT cells are enriched in the tumor and peripheral blood of prostate cancer patients[J].J Immunol,2006,177(10):7398-7405.
[收稿2015-12-29 修回2016-04-20]
(編輯 倪 鵬)
Role of ICOS on in-vitro cultured human PBMC Treg
CHENG Sha,GAO Ji-Min.
Tongde Hospital of Zhejiang Province,Hangzhou 310012,China
Objective:To investigate the role of mTOR in regulation of ICOS expression in human blood regulatory T cells.Methods:Isolation of Treg cells from human PBMC using MACS beads.We detected the ICOS expression on purified Treg cells and Treg cells viability using flow cytometry in anti-CD3 plus anti-CD28 (antibody or beads) or anti-CD3 plus ICOSL-Fc for 3 days and 7 days.CFSE labeling human PBMC cells and in vitro cultured Treg mixed,Treg contact inhibition activity was detected by flow analysis.Results:After in vitro stimulation of Treg cells in the presence of anti-CD3+anti-CD28 for 3 days,there was no significant statistic difference in viability between ICOS+(92.00±2.69)% and ICOS-(90.30±3.53)% Treg-cells.After cultured for 7 days,the decreased ICOS+Treg cells percentage within total Treg cells from(40.20±1.83)% to (11.60± 1.10)% compared with that of 3 days.Further more,the ICOS expression level between stimulated with anti-CD28 or ICOSL-Fc condition group,compared with the ICOS MFI in the condition of anti-CD3 plus anti-CD28 treatment for 3 days was (2410.0±746.4) obviously higher than (403.30±74.42),that of the group treated with anti-CD3 plus ICOSL-FC.Rapamycin could partially suppress Treg cells ICOS expression,but unaffected the Treg suppression ability.Conclusion:ICOS expression level may not important for in vitro cultured human PBMC Treg cells survival although mTOR signling is important for regulation ICOS expression on in-vitro cultured Treg cells,but the ICOS expression on Treg regulated by multiply signaling pathways.CD28 signaling is the key stimulation factor for ICOS upregulation on in-vitro cultured Treg cells compared to ICOSL signaling.
Human regulatory T-cell;Rapamycin;ICOS;ICOSL
10.3969/j.issn.1000-484X.2016.12.005
①本文受浙江省醫(yī)藥衛(wèi)生科技計(jì)劃(2014KYA237)資助。
程 莎 (1982年-),女,碩士,檢驗(yàn)師,主要從事調(diào)節(jié)性T細(xì)胞發(fā)育調(diào)控及其在自身免疫性疾病中的作用研究。
及指導(dǎo)教師:高基民 (1964年-),男,教授,博士生導(dǎo)師,主要從事T淋巴細(xì)胞發(fā)育調(diào)控及其在腫瘤、器官移植和自身免疫性疾病中的作用研究,E-mail:jimingao64@163.com。
R932.1
A
1000-484X(2016)12-1753-05