• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      例談高中數(shù)學解題策略

      2017-01-06 22:16:46楊敏
      未來英才 2016年17期
      關(guān)鍵詞:經(jīng)驗交流高中數(shù)學

      楊敏

      摘要:數(shù)學教學中,解題作為最重要的一環(huán),一直是我們關(guān)注的熱點,從而培養(yǎng)學生的解題技巧和思考方法也是我們關(guān)注的重要方向。數(shù)學的解題技巧和日常數(shù)學教學活動密切聯(lián)系,因此,如何在教學中了解學生的解題經(jīng)驗積累、教師如何設(shè)置教學情境和教學內(nèi)容,對保證學生對數(shù)學解題的興趣提高有著重要的意義。

      關(guān)鍵詞:高中數(shù)學;解題例談;經(jīng)驗交流

      高中數(shù)學不同于語文、英語、歷史這類文科課程,背誦記憶這種學習方法是不適用數(shù)學學科的,它更注重變通,需要靈活運用所學知識的同時還要掌握一定的解題方法和技巧。學生在掌握了數(shù)學解題技巧后,不但解題速度可以得到有效提升,還有助于數(shù)學素養(yǎng)的提高,能夠運用數(shù)學知識、思維獨立思考,解決問題。

      一、重視審題訓練

      想要有效提高解題的效率并保證解題的正確性,最為關(guān)鍵的就是審題。要求學生應(yīng)該在準備解題之前,首先對題型進行認真分析,能夠找到問題的關(guān)鍵點與重要的條件,并且找到與問題有關(guān)的信息,將其進行收集,之后進行正確地分析研究,最終找到問題的突破口。

      例如我們在學習函數(shù)基偶性的判斷之后,對有關(guān)題目進行解析時,如函數(shù)y=x3,x∈[-1,3],判斷此函數(shù)的奇偶性。往往許多的同學在面對這類問題時,都沒有進行仔細地審題,因此就注意不到x的取值范圍,只機械套用函數(shù)的奇偶性,最終將公式進行化簡后得到y(tǒng)=x3,最后直接定義此函數(shù)為奇函數(shù);但是如果學生在解題前能夠仔細解題,最后在判斷函數(shù)的奇偶性時就會參考x的取值范圍來進行解題,首先要判斷此函數(shù)的圖像是否關(guān)于坐標原點中心對稱,如果不對稱則說明此類函數(shù)不具有奇偶性,所以正確的解題過程應(yīng)該為:因為2滿足定義域,但是-2不在定義域的范圍內(nèi),所以可以判斷此函數(shù)圖像關(guān)于坐標原點不對稱,最后判斷此函數(shù)為非奇非偶函數(shù)。

      在針對這種類型題的解題時,一定要注意首先要仔細進行審題,在進行審題的過程中不僅能給解題帶來一定的思路,更能挖掘出問題的關(guān)鍵與隱含的重要條件。所以對學生進行審題訓練顯得至關(guān)重要,只有這樣才能夠有效提高學生的解題能力。

      二、具體策略

      策略1:回到“定義”去。

      掌握定義的本質(zhì)是學好數(shù)學的關(guān)鍵,熟悉定義的數(shù)學模型、方程形式等,則能在解題時獲得解題思路。

      例1.已知一動圓外切于已知圓C:x2+y2-2ax=0 (a>0),且與y軸相切,求動圓圓心M的軌跡方程。

      解:如圖,設(shè)動圓圓心為M(x,y)。

      (1)若圓M在y軸的右側(cè),且與y軸相切于A,與圓C外切與B,則有|MA|=|MB|。因為|MA|=|MB|=|MC|-|BC|=|MC|-a,所以|MA|+a=|MC|。點M到直線x=-a和定點C的距離相等,根據(jù)拋物線的定義,則圓心M的軌跡方程為y2=4ax。

      (2)若圓M在y軸的左側(cè),且與y軸相切、與圓C外切,則圓心M的軌跡方程為y=0 (x<0)。

      綜上所述,動圓圓心M的軌跡方程為y2=4ax和y=0(x<0)。

      點評:數(shù)學中的定義是反映數(shù)學對象本質(zhì)屬性的思維形式,是構(gòu)成判斷、推理的基礎(chǔ)。學好數(shù)學,一定要把數(shù)學定義理解得生動、形象、具體,要從數(shù)、形、式等各方面深入淺出地理解,才能使用起來得心應(yīng)手。

      策略2:化抽象為具體。

      數(shù)學題有時很抽象,總讓我們感到無法入手。這時,我們要將抽象的問題化為具體的表達式,建立一個數(shù)學模型,使問題得到合理解決。

      例2.已知函數(shù)f(x)為偶函數(shù),將函數(shù)f(x)的圖像向右平移1個單位,得到一個奇函數(shù)。若f(2)=-1,求f(1)+f(2)+…+f(2013)的值。

      解:構(gòu)造函數(shù)f(x)=cosωx (ω>0),由f(2)=-1,取ω= 。

      所以f(x)=cos x,最小正周期為4,且f(1)+f(2)+f(3)+f(4)=0,f(1)+f(2)+…+f(2013)=cos[f(1)+f(2)+f(3)+f(4)]+f(1)=cos =0。

      點評:將一個抽象的數(shù)學問題,通過構(gòu)造一個具體的數(shù)學模型,使問題得到簡化,從而得到了有效解決。

      策略3:數(shù)、形轉(zhuǎn)換。

      數(shù)與形是數(shù)學的兩個不同側(cè)面,形具有直觀、形象、感性的特點,但不夠準確、嚴密;數(shù)具有理性、抽象的特點,數(shù)量關(guān)系具有準確、嚴密的特點。但兩者不能偏廢,數(shù)形結(jié)合是我們解題的有力工具,要真正做到由“數(shù)”想“形”、見“形”思“數(shù)”。

      例3.求函數(shù)y= 在[0,π]上的最值。

      解:將比值 看作兩個點A(2,1)、B(cosx,sinx)連線的斜率,點B是單位圓x2+y2=a的上半圓的一動點,如圖,斜率的最小值為 =0,最大值為 =1,所以函數(shù)y=的最大值為1,最小值為0。

      點評:由分式型聯(lián)想到直線的斜率、由根式聯(lián)想到兩點之間的距離等,體現(xiàn)了由“數(shù)”想“形”的思想。

      三、解題后的反思

      大部分的人在做題的時候,往往只關(guān)心答案。大部分老師的講解或例題講解,往往也是主要講計算過程或答案。但是對整個解題思考過程,往往講解的并不夠清楚細致。只是讓我們知道了計算過程,卻不知道思考的過程——而這才是解題最重要的方面。這就和我們梳理知識體系一樣,如果只看到表面的知識本身,而沒有把握知識內(nèi)在的聯(lián)系,就不能夠真正的做到徹底理解,也就不可能取得長足的進步。?解題后的反思是指解題后對審題過程和解題方法及解題所用知識的回顧與思考,是提高解題能力的一個重要途徑,只有這樣,才能有效地深化對知識的理解,提高思維能力。假如解數(shù)學題解一道扔一道,這樣將無助于解題能力的提高。

      解題后的反思必須做到以下兩點:(1)總結(jié)經(jīng)驗與方法。解題后,可以從解題方法、解題規(guī)律、解題策略等方面進行總結(jié),從而為以后解題積累經(jīng)驗,培養(yǎng)解題能力;(2)善于推廣引申。解完一題后,要善于將原來題目的題設(shè)、結(jié)論改變一下,或者互換一下,把特殊條件一般化,把一般條件特殊化,嘗試舉一反三,觸類旁通,從而提高解題的能力。

      解題策略的構(gòu)建是一個極為復雜的課題,以上只是本人一些粗淺的想法。在課堂教學中教師不僅要講清楚如何解決一個問題,更重要的是要講透為什么這樣解。引導學生從常規(guī)常法、由特殊到一般法、從模型化的思想方法等幾個方面尋找“解題策略”這一過程性思維必不可少。當然學生多練、多思、多歸納總結(jié)是培養(yǎng)學尋求“解題策略”的不二法門。

      參考文獻

      [1] 張泉.世紀金榜:高中全程復習方略.福建教育出版社,2014-03.

      猜你喜歡
      經(jīng)驗交流高中數(shù)學
      經(jīng)驗交流 南寧
      汽車與安全(2016年5期)2016-12-01 05:21:55
      高中數(shù)學教學中的“情景—問題”教學模式研究
      考試周刊(2016年77期)2016-10-09 11:01:00
      分層教學在高中數(shù)學中的研究
      考試周刊(2016年77期)2016-10-09 10:59:20
      高中數(shù)學數(shù)列教學中的策略選取研究
      考試周刊(2016年77期)2016-10-09 10:58:31
      調(diào)查分析高中數(shù)學課程算法教學現(xiàn)狀及策略
      考試周刊(2016年76期)2016-10-09 08:54:54
      基于新課程改革的高中數(shù)學課程有效提問研究
      考試周刊(2016年76期)2016-10-09 08:20:33
      數(shù)學歸納法在高中數(shù)學教學中的應(yīng)用研究
      成才之路(2016年25期)2016-10-08 10:15:46
      2013年全國關(guān)工委工作會議經(jīng)驗交流摘登
      中國火炬(2013年3期)2013-07-24 14:15:07
      更 正
      全國關(guān)心下一代宣傳工作會議經(jīng)驗交流摘登
      中國火炬(2009年10期)2009-10-17 03:25:22
      襄城县| 仁怀市| 柘城县| 安图县| 洪泽县| 太原市| 田阳县| 探索| 伊川县| 凤冈县| 南岸区| 天祝| 鱼台县| 巴楚县| 崇义县| 革吉县| 临安市| 万盛区| 泗阳县| 从江县| 肥乡县| 高唐县| 彩票| 文水县| 临泉县| 溆浦县| 天长市| 黎川县| 郁南县| 仙桃市| 淮北市| 漳平市| 永顺县| 黄龙县| 西宁市| 洛川县| 大竹县| 湛江市| 怀柔区| 苗栗市| 田东县|