郭方亮 李濤
?
·綜 述·
帕金森病患者黑質(zhì)的磁共振成像研究進(jìn)展
郭方亮 李濤
帕金森病是一種常見于中老年人的神經(jīng)退行性疾病,中腦黑質(zhì)多巴胺能神經(jīng)元的緩慢變性丟失是其特征性的病理變化。理論上黑質(zhì)的病理學(xué)改變會(huì)在磁共振成像上產(chǎn)生不同的變化,但目前帕金森病尚未引入磁共振成像改變作為診斷依據(jù),隨著影像學(xué)和磁共振技術(shù)的不斷發(fā)展,越來越多的研究表明磁共振成像能發(fā)現(xiàn)帕金森病患者黑質(zhì)致密部寬度、黑質(zhì)體積、黑質(zhì)信號(hào)、黑質(zhì)磁化傳遞率、黑質(zhì)各向異性值以及黑質(zhì)能量代謝的改變,本研究從黑質(zhì)解剖結(jié)構(gòu)特征和帕金森病患者黑質(zhì)的病理改變?nèi)胧?,結(jié)合正常人和帕金森病患者黑質(zhì)的磁共振成像特點(diǎn)作一綜述。
在解剖和功能上黑質(zhì)可以被細(xì)分為2個(gè)部分:黑質(zhì)網(wǎng)狀部(Substantia nigra pars reticulata,SNr)和黑質(zhì)致密部(Substantia nigra pars compacta,SNc)。黑質(zhì)網(wǎng)狀部位于腹側(cè),其所含神經(jīng)元數(shù)目較少,排列稀疏,細(xì)胞內(nèi)無黑色素。黑質(zhì)致密部位于背側(cè),它由緊密排列的多巴胺能神經(jīng)元組成,細(xì)胞內(nèi)含有黑色素,內(nèi)側(cè)丘系與其背側(cè)邊界相鄰[1]。中腦多巴胺能神經(jīng)元分布于3個(gè)細(xì)胞群,它們分別是A8(紅核后細(xì)胞群)、A9(黑質(zhì)細(xì)胞群)和A10(腹側(cè)被蓋細(xì)胞群)[2]。紋狀體-黑質(zhì)傳入纖維主要投射到黑質(zhì)網(wǎng)狀部所在的區(qū)域,而鈣結(jié)合蛋白D28k只表達(dá)于傳入纖維,所以Damier等[3]使用免疫組化染色來區(qū)分黑質(zhì)的亞結(jié)構(gòu)。他們發(fā)現(xiàn)鈣結(jié)合蛋白陽性區(qū)域中有明顯的陰性區(qū)存在。將連續(xù)的層面一起分析后發(fā)現(xiàn),這些陰性區(qū)相互連接形成三維簇狀結(jié)構(gòu)。鈣結(jié)合蛋白陽性區(qū)被命名為基質(zhì)區(qū),5個(gè)鈣結(jié)合蛋白陰性區(qū)被命名為黑質(zhì)小體。其中,黑質(zhì)小體-1最大,位于黑質(zhì)的背部。多巴胺能神經(jīng)元形成簇狀結(jié)構(gòu)深穿入黑質(zhì)網(wǎng)狀部,所以很難界限人類黑質(zhì)網(wǎng)狀部和黑質(zhì)致密部。
色素沉著或神經(jīng)黑素的積聚是黑質(zhì)多巴胺能神經(jīng)元的一個(gè)突出特點(diǎn)。長(zhǎng)期以來神經(jīng)黑素被認(rèn)為是多巴胺或其他兒茶酚胺類物質(zhì)氧化所形成的代謝產(chǎn)物。Bisaglia等[4]認(rèn)為它可能是α-突觸核蛋白參與調(diào)控的代謝產(chǎn)物。神經(jīng)黑素能和許多重金屬離子比如鐵、鋅、銅、錳、鉻等物質(zhì)反應(yīng),而它與鐵離子結(jié)合尤為牢固,這使得神經(jīng)黑素具有調(diào)節(jié)神經(jīng)細(xì)胞內(nèi)鐵穩(wěn)態(tài)和神經(jīng)保護(hù)的作用[5]。在正常人用普魯士藍(lán)染色(只對(duì)Fe3+敏感)可以發(fā)現(xiàn)蒼白球、黑質(zhì)網(wǎng)狀部和紅核的Fe3+含量較高[6],而丘腦底核Fe3+含量相對(duì)較低[7]。黑質(zhì)的鐵含量隨著年齡而增加,其存在形式是以Fe3+與鐵蛋白結(jié)合[8]。鐵也存在于含有神經(jīng)黑素的神經(jīng)元中,它作為酪氨酸羥化酶的輔因子參與多巴胺合成[9]。
晚期帕金森病患者多巴胺能神經(jīng)元丟失最明顯的地方是尾層和背外側(cè)層,而腹側(cè)層保留的最好[10]。因?yàn)楹谫|(zhì)小體位于黑質(zhì)的背部,其內(nèi)多巴胺能神經(jīng)元丟失相對(duì)較多,其中最高位于黑質(zhì)小體-1,可達(dá)98%[11]。其它黑質(zhì)小體、黑質(zhì)致密部背側(cè)區(qū)、基質(zhì)區(qū)也有神經(jīng)細(xì)胞的丟失,其中基質(zhì)區(qū)受影響最小。多巴胺能神經(jīng)元的丟失也會(huì)波及鄰近的A8、A10細(xì)胞群,據(jù)估計(jì)這兩者的丟失率高達(dá)50%[12]。正常人黑質(zhì)致密部Fe2+和Fe3+含量之比為2∶1,而在帕金森病患者中這一比值變?yōu)?∶2,這說明鐵穩(wěn)態(tài)失衡可能與帕金森病的發(fā)病機(jī)制有關(guān)[13]。Jellinger等[14]等發(fā)現(xiàn)鐵主要存在于神經(jīng)黑素顆粒中。帕金森病患者的神經(jīng)黑素減少導(dǎo)致神經(jīng)細(xì)胞內(nèi)鐵穩(wěn)態(tài)失衡,因而使細(xì)胞受氧化應(yīng)激損傷的可能性增加[15]。
早在上世紀(jì)八十年代,有研究人員就注意到黑質(zhì)在T2加權(quán)像上是低信號(hào),并在組織學(xué)研究中將低信號(hào)與鐵的存在聯(lián)系在一起[16]。在層厚約5 mm的情況下圖像空間分辨率很低,因此很難區(qū)分黑質(zhì)致密部和黑質(zhì)網(wǎng)狀部。黑質(zhì)在T1加權(quán)自旋回波和質(zhì)子密度加權(quán)圖像上呈高信號(hào),而在T2加權(quán)和3D T1加權(quán)圖像上呈低信號(hào)[17]。這表明黑質(zhì)在核磁對(duì)比度不同的情況下呈現(xiàn)不同的信號(hào)強(qiáng)度。
因?yàn)榻M織學(xué)上黑質(zhì)網(wǎng)狀部鐵含量更高,所以有學(xué)者認(rèn)為T2加權(quán)像上的低信號(hào)是黑質(zhì)網(wǎng)狀部[18-21]。黑質(zhì)致密部則被定義為紅核與低信號(hào)強(qiáng)度的黑質(zhì)網(wǎng)狀部之間的高信號(hào)區(qū)[18,20-22]。然而,這些研究因組織學(xué)與核磁圖像之間的對(duì)應(yīng)關(guān)系并不明確,所以結(jié)果的可靠性有待進(jìn)一步驗(yàn)證。Sasaki等[23]發(fā)現(xiàn)自旋回波T1加權(quán)像上高信號(hào)區(qū)和大體標(biāo)本中黑質(zhì)致密部的位置重合,提示這一序列可將黑質(zhì)致密部顯示出來。事實(shí)上神經(jīng)黑素敏感序列是通過高分辨率自旋回波T1加權(quán)而獲得的。與金屬結(jié)合的神經(jīng)黑素有順磁效應(yīng),能縮短T1時(shí)間[24],因而神經(jīng)黑素含量高的區(qū)域(黑質(zhì)致密部)在3T高分辨率T1加權(quán)圖像上呈高信號(hào)[23,25]。
近年來7T 核磁成像的出現(xiàn)使得研究人員能夠更加精確地研究黑質(zhì)的精細(xì)結(jié)構(gòu)。7T核磁成像與低場(chǎng)強(qiáng)核磁成像相比有2個(gè)主要優(yōu)勢(shì)。第一,它的信噪比、空間分辨率更高,因此可以增加體積測(cè)量的準(zhǔn)確性;第二,它的對(duì)比度更高,這是因含鐵區(qū)域磁敏感性增加所致[26]。這些特性能觀察到3T核磁成像中觀察不到的解剖細(xì)節(jié),比如黑質(zhì)背外側(cè)圓形的高信號(hào)區(qū)[27-30]。Kwon等[30]認(rèn)為T2*加權(quán)圖像上高信號(hào)的圓形區(qū)和黑質(zhì)小體有關(guān),這是因?yàn)楹谫|(zhì)小體-1是帕金森病患者最易受累的部位,且該部位和黑質(zhì)小體-1相符[11]。隨后,Blazejewska等[27]在7T核磁成像中研究了黑質(zhì)組織學(xué)-影像解剖的對(duì)應(yīng)關(guān)系,證明了這個(gè)圓形區(qū)的確與黑質(zhì)小體-1相對(duì)應(yīng)。該研究也表明依據(jù)核磁圖像信號(hào)可以區(qū)分黑質(zhì)致密部(T1加權(quán)像上是高信號(hào))和黑質(zhì)網(wǎng)狀部(T2*加權(quán)像上是低信號(hào))[27]。之后不久Schwarz等[31]使用3D磁敏感加權(quán)成像(Susceptibility weighted imaging,SWI)在正常人中也觀察到了黑質(zhì)小體-1的存在和帕金森病患者中黑質(zhì)小體-1的丟失。由于3T磁共振儀在全球廣泛使用,這將有利于臨床大規(guī)模研究黑質(zhì)小體-1丟失對(duì)診斷帕金森病的意義。
結(jié)構(gòu)性核磁成像主要研究黑質(zhì)的精細(xì)結(jié)構(gòu)及其與鄰近結(jié)構(gòu)的關(guān)系。在7T T2*加權(quán)圖像上帕金森病患者的黑質(zhì)有3個(gè)最主要的形態(tài)學(xué)改變:異常的黑質(zhì)輪廓、黑質(zhì)體積的增加以及黑質(zhì)小體-1高信號(hào)丟失。具體來看,正常人黑質(zhì)與大腦腳之間的邊界是光滑的,但在帕金森病患者中黑質(zhì)的外側(cè)面呈現(xiàn)出波浪狀,而這一現(xiàn)象主要出現(xiàn)在運(yùn)動(dòng)癥狀更嚴(yán)重的對(duì)側(cè)黑質(zhì)[30]。Kwon等[30]發(fā)現(xiàn)帕金森病患者黑質(zhì)低信號(hào)區(qū)的體積相對(duì)于正常人是增加的。這一現(xiàn)象可被黑質(zhì)致密部和黑質(zhì)小體-1中鐵的沉積所解釋:鐵有順磁效應(yīng)可導(dǎo)致低信號(hào)區(qū)面積的增大。在帕金森病患者中T2*加權(quán)像上高信號(hào)丟失是因?yàn)楹谫|(zhì)小體-1內(nèi)鐵的沉積所致[27,29-30]。這一現(xiàn)象說明帕金森病患者T2*加權(quán)像上中腦的低信號(hào)區(qū)不僅包括黑質(zhì)網(wǎng)狀部也包括黑質(zhì)致密部。目前許多研究都將T2加權(quán)像上紅核與黑質(zhì)網(wǎng)狀部之間高信號(hào)區(qū)的寬度作為重點(diǎn),因其可能是反映帕金森病患者黑質(zhì)致密部退變的標(biāo)志。許多研究表明帕金森病患者黑質(zhì)致密部的寬度相對(duì)于正常人是減小的[20-22]。該減小被認(rèn)為是黑質(zhì)致密部鐵的沉積[32]和多巴胺能神經(jīng)元丟失[22]所致。僅有一項(xiàng)研究表明黑質(zhì)致密部寬度的減小與統(tǒng)一帕金森病評(píng)分(UPDRS)有關(guān),因此該測(cè)量值可能并不能準(zhǔn)確反映運(yùn)動(dòng)癥狀的嚴(yán)重程度[20]。
許多測(cè)量體積的研究所報(bào)道的結(jié)果并不一致,但他們所使用的核磁對(duì)比度并不相同。常規(guī)的核磁序列比如快速短時(shí)反轉(zhuǎn)恢復(fù)序列和快速自旋回波序列顯示黑質(zhì)體積正常[33-34]。也有研究報(bào)道在T2*加權(quán)圖像上黑質(zhì)體積正常[34-35]。但是,也有研究顯示黑質(zhì)體積在反轉(zhuǎn)恢復(fù)T1加權(quán)像上和磁敏感加權(quán)像上是減少的[36-38]。最近,有研究人員將T1加權(quán)、T2加權(quán)、質(zhì)子密度加權(quán)和T2液體衰減反轉(zhuǎn)恢復(fù)序列結(jié)合,他們發(fā)現(xiàn)黑質(zhì)致密部體積減小[39]。Menke等[40]使用彌散張量成像和T1加權(quán)成像顯示帕金森病患者黑質(zhì)體積減小,以右側(cè)為著。這些研究采用了不同的成像序列,得到的結(jié)果也不盡相同,未來還需要更多核磁成像與病理相結(jié)合的研究來闡明這些信號(hào)改變的意義。
事實(shí)上神經(jīng)黑素敏感成像是通過高分辨率自旋回波T1加權(quán)而獲得的。帕金森病患者的神經(jīng)黑素減少導(dǎo)致神經(jīng)細(xì)胞內(nèi)鐵穩(wěn)態(tài)失衡,因而使細(xì)胞受氧化應(yīng)激損傷的可能性增加。Sasaki等[23]使用神經(jīng)黑素敏感成像技術(shù)發(fā)現(xiàn)黑質(zhì)體積減小。同樣是使用T1加權(quán)成像,Schwarz等[41]發(fā)現(xiàn)帕金森病患者黑質(zhì)的信號(hào)強(qiáng)度隨病情的進(jìn)展而降低。Ohtsuka等[42]也發(fā)現(xiàn)早期帕金森病患者黑質(zhì)致密部外側(cè)份和藍(lán)斑的對(duì)比度相對(duì)于正常人有明顯降低。
磁敏感加權(quán)成像將T2*和相位信息相結(jié)合,增加了對(duì)鐵的敏感性[43]。Zhang等[44]發(fā)現(xiàn)磁敏感加權(quán)成像可用來反映帕金森病患者黑質(zhì)鐵的含量。Schwarz等[31]在正常人中可以看到黑質(zhì)背外側(cè)區(qū)高信號(hào)的存在,即“燕尾征”,而帕金森病患者此特征消失,在回顧性和前瞻性研究中據(jù)此診斷帕金森病的準(zhǔn)確性可高達(dá)90%以上。由于磁敏感加權(quán)成像對(duì)黑質(zhì)有較高的分辨力,隨著核磁成像技術(shù)的發(fā)展和研究的不斷深入,黑質(zhì)細(xì)微結(jié)構(gòu)上的改變將成為以后的研究方向和趨勢(shì)。
磁化傳遞快速成像是一種較新核磁技術(shù)。Anik等[45]發(fā)現(xiàn)早期帕金森病患者黑質(zhì)的磁化傳遞率明顯降低。Tambasco等[46]發(fā)現(xiàn)磁化傳遞率可用來反映帕金森病患者黑質(zhì)形態(tài)學(xué)的改變。Eckert等[47]發(fā)現(xiàn)帕金森病患者黑質(zhì)等部位的磁化傳遞率改變,且這可以提示相應(yīng)部位的退變,因而該技術(shù)可能會(huì)對(duì)診斷帕金森病有幫助。
彌散張量成像依據(jù)水分子的移動(dòng)而制圖,主要用來衡量組織的微觀結(jié)構(gòu)和神經(jīng)纖維束的完整性。通過檢測(cè)帕金森病患者腦組織內(nèi)水分子擴(kuò)散特性變化來評(píng)價(jià)組織結(jié)構(gòu)的完整性,因而可在宏觀改變之前顯示出微觀結(jié)構(gòu)損害。許多研究者都發(fā)現(xiàn)帕金森病患者黑質(zhì)的各向異性值明顯降低[48-49],這提示黑質(zhì)的各向異性的改變可以反映黑質(zhì)的退變。
磁共振波譜成像是近年來發(fā)展的新技術(shù),可以提供腦內(nèi)組織能量代謝、生化變化等信息。3T波譜成像研究表明N-乙酰天門冬氨酸/肌酸(NAA/CR)比值在黑質(zhì)頭側(cè)減少,而在黑質(zhì)尾側(cè)增加[50]。 Choe等[51]也發(fā)現(xiàn)在帕金森病患者黑質(zhì)中NAA/CR比值降低。因?yàn)镹AA/CR比值降低可能作為帕金森病患者黑質(zhì)神經(jīng)元損傷的標(biāo)志,因而波譜成像可能有助于研究帕金森病的發(fā)病機(jī)制。另外,有研究者發(fā)現(xiàn)帕金森病患者黑質(zhì)γ-氨基丁酸/葡萄糖(GABA/Glu)比值比大腦皮層高[52]。這些研究說明研究帕金森患者黑質(zhì)的能量代謝和生化改變等信息可能對(duì)闡明潛在的病理生理過程有一定的幫助。
在7T 核磁成像中Cosottini等[29]使用磁敏感血管成像(susceptibility weighted angiography,SWAN)發(fā)現(xiàn)黑質(zhì)小體-1丟失診斷帕金森病的準(zhǔn)確性較高:敏感性(100%)、特異性(96.2%)。因而,使用超高場(chǎng)核磁成像評(píng)估黑質(zhì)形態(tài)學(xué)變化將有助于帕金森病的診斷。而3T磁敏感加權(quán)像中的診斷準(zhǔn)確性為91%~96%,其敏感性為85.7%~100%,特異性為95%~100%。這些研究提示黑質(zhì)小體-1丟失可能會(huì)有助于臨床區(qū)分帕金森病患者和正常人[31,54]。近年來Reiter等[55]發(fā)現(xiàn)黑質(zhì)小體-1丟失不僅出現(xiàn)在帕金森病患者中,也出現(xiàn)在多系統(tǒng)萎縮、進(jìn)行性核上性眼肌麻痹中。
綜上所述,帕金森病患者黑質(zhì)磁共振成像存在改變,其改變主要表現(xiàn)為黑質(zhì)致密部寬度減小、黑質(zhì)輪廓改變、黑質(zhì)體積改變、黑質(zhì)小體-1高信號(hào)丟失、黑質(zhì)磁化傳遞率降低、黑質(zhì)各向異性值降低以及黑質(zhì)NAA/CR比值降低。盡管不同的研究得到的結(jié)果尚不完全一致,但隨著磁共振技術(shù)的進(jìn)一步發(fā)展和更多研究的開展,引入磁共振成像改變作為帕金森病的診斷依據(jù)將成為可能。
[1] 傅文玉,黃巖.黑質(zhì),紋狀體與帕金森病[J].解剖科學(xué)進(jìn)展,1997,3(1):51-56.
[2] Bjorklund A,Dunnett SB.Dopamine neuron systems in the brain:an update[J].Trends Neurosci,2007,30(5):194-202.
[3] Damier P,Hirsch EC,Agid Y,et al.The substantia nigra of the human brain - I.Nigrosomes and the nigral matrix,a compartmental organization based on calbindin D-28K immunohistochemistry[J].Brain,1999,122(8):1421-1436.
[4] Bisaglia M,Mammi S,Bubacco L.Kinetic and structural analysis of the early oxidation products of dopamine:analysis of the interactions with alpha-synuclein[J].J Biol Chem,2007,282(21):15597-15605.
[5] Zareba M,Bober A,Korytowski W,et al.The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems[J].Biochim Biophys Acta,1995,1271(2/3):343-348.
[6] Morris CM,Candy JM,Oakley AE,et al.Histochemical distribution of non-haem Iron in the human brain[J].Acta Anat (Basel),1992,144(3):235-257.
[7] Dormont D,Ricciardi KG,Tand D,et al.Is the subthalamic nucleus hypointense on T2-weighted images?A correlation study using Mr imaging and stereotactic Atlas data[J].AJNR Am J Neuroradiol,2004,25(9):1516-1523.
[8] Zecca L,Youdim MB,Riederer P,et al.Iron,brain ageing and neurodegenerative disorders[J].Nat Rev Neurosci,2004,5(11):863-873.
[9] Fedorow H,Tribl F,Halliday G,et al.Neuromelanin in human dopamine neurons:comparison with peripheral melanins and relevance to Parkinson's disease[J].Prog Neurobiol,2005,75(2):109-124.
[10]Jellinger KA.Neuropathology of sporadic parkinson's disease:evaluation and changes of concepts[J].Movement Disorders,2012,27(1):8-30.
[11]Damier P,Hirsch EC,Agid Y,et al.The substantia nigra of the human brain - II.Patterns of loss of dopamine-containing neurons in Parkinson's disease[J].Brain,1999,122(8):1437-1448.
[12]Mcritchie DA,Cartwright HR,Halliday GM.Specific a10 dopaminergic nuclei in the midbrain degenerate in parkinson's disease[J].Exp Neurol,1997,144(1):202-213.
[13]Sofic E,Paulus W,Jellinger K,et al.Selective increase of Iron in substantia nigra zona compacta of parkinsonian brains[J].J Neurochem,1991,56(3):978-982.
[14]Jellinger K,Kienzl E,Rumpelmair G,et al.Iron-melanin complex in substantia nigra of parkinsonian brains:an x-ray microanalysis[J].J Neurochem,1992,59(3):1168-1171.
[15]Double KL,Halliday GM.New face of neuromelanin[J].Journal of Neural Transmission-supplement,2006,70)(70):119-123.
[16]Hirsch WL,Kemp SS,Martinez AJ,et al.Anatomy of the brain-stem-correlation of invitro mr images with histologic sections[J].American Journal of Neuroradiology,1989,10(5):923-928.
[17]Flannigan BD,Bradley WG,Jr,et al.Magnetic resonance imaging of the brainstem:normal structure and basic functional anatomy[J].Radiology,1985,154(2):375-383.
[18]Braffman BH,Grossman RI,Goldberg HI,et al.Mr imaging of Parkinson disease with spin-echo and gradient-echo sequences[J].AJR Am J Roentgenol,1989,152(1):159-165.
[19]Drayer BP,Olanow W,Burger P,et al.Parkinson plus syndrome:diagnosis using high field Mr imaging of brain Iron[J].Radiology,1986,159(2):493-498.
[20]Pujol J,Junque C,Vendrell P,et al.Reduction of the substantia nigra width and motor decline in aging and Parkinson's disease[J].Arch Neurol,1992,49(11):1119-1122.
[21]Stern MB,Braffman BH,Skolnick BE,et al.Magnetic-resonance imaging in parkinsons-disease and parkinsonian syndromes[J].Neurology,1989,39(11):1524-1526.
[22]Duguid JR,Delapaz R,Degroot J.Magnetic-resonance-imaging of the midbrain in parkinsons-disease[J].Ann Neurol,1986,20(6):744-747.
[23]Sasaki M,Shibata E,Tohyama K,et al.Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease[J].Neuroreport,2006,17(11):1215-1218.
[24]Enochs WS,Petherick P,Bogdanova A,et al.Paramagnetic metal scavenging by melanin:Mr imaging[J].Radiology,1997,204(2):417-423.
[25]Keren NI,Lozar CT,Harris KC,et al.In vivo mapping of the human locus coeruleus[J].Neuroimage,2009,47(4):1261-1267.
[26]Yao B,Li TQ,Van Gelderen P,et al.Susceptibility contrast in high field MRI of human brain as a function of tissue Iron content[J].Neuroimage,2009,44(4):1259-1266.
[27]Blazejewska AI,Schwarz ST,Pitiot A,et al.Visualization of nigrosome 1 and its loss in PD:pathoanatomical correlation and in vivo 7 T MRI[J].Neurology,2013,81(6):534-540.
[28]Cho ZH,Oh SH,Kim JM,et al.Direct visualization of parkinson's disease by in vivo human brain imaging using 7.0T magnetic resonance imaging[J].Movement Disorders,2011,26(4):713-718.
[29]Cosottini M,Frosini D,Pesaresi I,et al.MR imaging of the substantia nigra at 7 T enables diagnosis of parkinson disease[J].Radiology,2014,271(3):831-838.
[30]Dae-Hyuk KM,Phd JM,Oh SH,et al.Seven-tesla magnetic resonance images of the substantia nigra in Parkinson disease[J].Ann Neurol,2012,71(2):267-277.
[31]Schwarz ST,Afzal M,Morgan PS,et al.The `swallow tail' appearance of the healthy nigrosome - A new accurate test of parkinson's disease:a Case-Control and retrospective Cross-Sectional MRI study at 3T[J].PLoS One,2014,9(4):e93814-e93814.
[32]Fearnley JM,Lees AJ.Ageing and parkinson's disease:substantia nigra regional selectivity[J].Brain,1991,114(Pt 5):2283-2301.
[33]Oikawa H,Sasaki M,Tamakawa Y,et al.The substantia nigra in Parkinson disease:proton density-weighted spin-echo and fast short inversion time inversion-recovery Mr findings[J].American Journal of Neuroradiology,2002,23(10):1747-1756.
[34]Peran P,Cherubini A,Assogna F,et al.Magnetic resonance imaging markers of Parkinson's disease nigrostriatal signature[J].Brain,2010,133(11):3423-3433.
[35]Lehericy S,Sharman MA,Dos Santos CL,et al.Magnetic resonance imaging of the substantia nigra in Parkinson's disease[J].Movement Disorders,2012,27(7):822-830.
[36]Hutchinson M,Raff U,Lebedev S.MRI correlates of pathology in parkinsonism::segmented inversion recovery ratio imaging(SIRRIM)[J].Neuroimage,2003,20(3):1899-1902.
[37]Menke RA,Scholz J,Miller KL,et al.MRI characteristics of the substantia nigra in Parkinson's disease:A combined quantitative T1 and DTI study[J].Neuroimage,2009,47(2):435-441.
[38]Minati L,Grisoli M,Carella F,et al.Imaging degeneration of the substantia nigra in Parkinson disease with inversion-recovery MR imaging[J].American Journal of Neuroradiology,2007,28(2):309-313.
[39]Ziegler DA,Wonderlick JS,Ashourian PA,et al.Substantia nigra volume loss before basal forebrain degeneration in early parkinson disease[J].JAMA Neurol,2013,70(2):241-247.
[40]Menke RA,Jbabdi S,Miller KL,et al.Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson's disease[J].Neuroimage,2010,52(4):1175-1180.
[41]Schwarz ST,Rittman T,Gontu V,et al.T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson's disease[J].Mov Disord,2011,26(9):1633-1638.
[42]Ohtsuka C,Sasaki M,Konno K,et al.Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson's disease using neuromelanin-sensitive Mr imaging[J].Neurosci Lett,2013,541:93-98.
[43]Haacke EM,Makki M,Ge Y,et al.Characterizing Iron deposition in multiple sclerosis lesions using susceptibility weighted imaging[J].J Magn Reson Imaging,2009,29(3):537-544.
[44]Zhang JQ,Zhang YL,Wang J,et al.Characterizing Iron deposition in Parkinson's disease using susceptibility-weighted imaging:An in vivo Mr study[J].Brain Res,2010,1330:124-130.
[45]Anik Y,Iseri P,Demirci A,et al.Magnetization transfer ratio in early period of Parkinson disease[J].Acad Radiol,2007,14(2):189-192.
[46]Tambasco N,Belcastro V,Sarchielli P,et al.A magnetization transfer study of mild and advanced Parkinson's disease[J].European Journal of Neurology,2011,18(3):471-477.
[47]Eckert T,Sailer M,Kaufmann J,et al.Differentiation of idiopathic Parkinson's disease,multiple system atrophy,progressive supranuclear palsy,and healthy controls using magnetization transfer imaging[J].Neuroimage,2004,21(1):229-235.
[48]Du G,Lewis MM,Styner M,et al.Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson's disease[J].Mov Disord,2011,26(9):1627-1632.
[49]Vaillancourt DE,Spraker MB,Prodoehl J,et al.High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease[J].Neurology,2009,72(16):1378-1384.
[50]Groeger A,Chadzynski G,Godau J,et al.Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson's disease[J].Eur Radiol,2011,21(9):1962-1969.
[51]Choe BY,Park JW,Lee KS,et al.Neuronal laterality in Parkinson's disease with unilateral symptom by in vivo 1H magnetic resonance spectroscopy[J].Invest Radiol,1998,33(8):450-455.
[52]Oz G,Terpstra M,Tkac I,et al.Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla:Detection of high GABA concentrations[J].Magnetic Resonance in Medicine,2006,55(2):296-301.
[53]Mueller C,Pinter B,Reiter E,et al.Visualization of nigrosome 1 and its loss in pd:pathoanatomical correlation and in vivo 7t mri[J].Neurology,2014,82(19):1752.
[54]Reiter E,Mueller C,Pinter B,et al.Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism[J].Movement Disorders,2015,30(8):1068-1076.
(2016-09-20收稿 2016-11-02修回)
430060 武漢大學(xué)人民醫(yī)院神經(jīng)內(nèi)科[郭方亮 李濤(通信作者)]
R742.5
A
1007-0478(2017)01-0065-04
10.3969/j.issn.1007-0478.2017.01.0019