趙博,王佳偉
缺血性卒中是世界范圍內(nèi)致死和致殘的主要原因之一[1],免疫因素及炎癥反應(yīng)在缺血性卒中的病理生理過程中起重要作用[2]。卒中介導(dǎo)損傷可能對免疫系統(tǒng)產(chǎn)生影響,反之,免疫和炎癥也參與急性腦損傷和康復(fù)[3-4]。炎癥因子[如損傷相關(guān)模式分子(damage-associated molecular patterns,DAMPs)、C-反應(yīng)蛋白(C-reaction protein,CRP)、白細胞介素(interleukin,IL)-1、IL-6、腫瘤壞死因子(tumor necrosis factor,TNF)、干擾素(interferon,IFN)等]和細胞信號通路(如CD3+T細胞、CD3+CD4+T細胞、CD3+CD8+T細胞及CD4+CD25+FoxP3+Tregs細胞等)通過多種途徑來調(diào)節(jié)機體免疫反應(yīng),這為腦缺血性損害的治療提供了廣闊的前景[5]。近幾年,免疫調(diào)節(jié)劑作為卒中后治療的輔助用藥,其對卒中后免疫系統(tǒng)的影響逐漸被重視。多項研究發(fā)現(xiàn),缺血性卒中后針對免疫通路的治療可以延長溶栓時間窗,并且改善患者的遠期預(yù)后。本文主要對近幾年缺血性卒中后免疫機制及免疫調(diào)節(jié)劑應(yīng)用的相關(guān)研究進展進行綜述。
1.1 固有免疫反應(yīng) 缺血性卒中可使補體激活以及發(fā)生氧化應(yīng)激反應(yīng),直接損害局部的血管系統(tǒng),導(dǎo)致血管內(nèi)皮下抗原的暴露、血管內(nèi)皮細胞死亡和血腦屏障(blood brain barrier,BBB)完整性的破壞。機體調(diào)動固有免疫系統(tǒng),使免疫細胞附著于血管壁,上調(diào)趨化因子和黏附分子的表達,使其滲透入腦實質(zhì)。中性粒細胞、單核細胞和巨噬細胞等固有免疫細胞進一步導(dǎo)致血管損傷和炎癥反應(yīng)。免疫細胞通過釋放基質(zhì)金屬蛋白酶(matrix metallo-proteinases,MMP)-9等炎性介質(zhì),導(dǎo)致BBB的破壞和梗死面積的擴大[6]。在腦實質(zhì)中,星形膠質(zhì)細胞和小膠質(zhì)細胞也被炎癥和死亡神經(jīng)元釋放的DAMPs激活。DAMPs與免疫細胞表面的Toll樣受體(toll-like receptors,TLRs)結(jié)合激活和放大固有免疫反應(yīng),加重缺血性損傷,但短暫激活TLRs可以誘導(dǎo)免疫耐受[7-8]。這些反應(yīng)性星形膠質(zhì)細胞和小膠質(zhì)細胞進一步刺激白細胞的聚集,釋放促炎趨化因子,形成一個血管損傷、炎癥和細胞死亡的惡性循環(huán)[9]。
1.2 適應(yīng)性免疫反應(yīng) 適應(yīng)性免疫反應(yīng)主要由效應(yīng)T細胞介導(dǎo),后者是由死亡的神經(jīng)元釋放的DAMPs和腦組織特異性的抗原刺激產(chǎn)生[10]。這些T細胞聚集到缺血性損傷的大腦區(qū)域,穿過受損的BBB后,于腦實質(zhì)內(nèi)釋放炎性細胞因子,包括CRP、IL-1、IL-6、TNF、IFN等,導(dǎo)致遲發(fā)性神經(jīng)毒性反應(yīng)[11-12]。最終炎癥過程結(jié)束是通過調(diào)節(jié)性T細胞(Tregs)和巨噬細胞產(chǎn)生的IL-10及轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)聯(lián)合作用,抑制輔助T細胞介導(dǎo)的炎癥反應(yīng),促進神經(jīng)元的修復(fù)[13-14]。Tregs主要起免疫負調(diào)節(jié)作用,有抑制抗原特異性T細胞增殖及抗原呈遞細胞的功能,在免疫耐受中發(fā)揮重要作用。動物試驗觀察到,在缺血性卒中后的3 d,Tregs在缺血側(cè)大腦半球累積,脾臟T淋巴細胞中Tregs百分比升高[15]。Tregs在病程后期(14~30 d)在缺血側(cè)大腦半球明顯累積和擴散[16]。在Tregs治療腦梗死動物的研究中觀察到,Tregs可使腦梗死體積減小且減輕大腦炎癥反應(yīng)[17]。擴增體內(nèi)Tregs可減輕炎癥反應(yīng)和改善預(yù)后[18]。
1.3 卒中后免疫抑制綜合征 2005年,Meisel等[19]提出了卒中誘導(dǎo)的免疫抑制綜合征(strokeinduced immunodepression syndrome,SIDS),其特征是急性卒中后出現(xiàn)快速和持續(xù)的細胞免疫反應(yīng)抑制,主要表現(xiàn)為廣泛的淋巴細胞凋亡和功能障礙。SIDS實質(zhì)為神經(jīng)-內(nèi)分泌-免疫調(diào)節(jié)機制:①缺血性卒中→應(yīng)激→下丘腦-垂體-腎上腺軸活動增強→腎上腺皮質(zhì)激素分泌增加→外周血T淋巴細胞數(shù)下降;②缺血性卒中→交感神經(jīng)系統(tǒng)活動增強→腎上腺及交感神經(jīng)末梢釋放兒茶酚胺類激素增加→外周血、肝臟、脾臟T淋巴細胞數(shù)下降[20]。
SIDS對于機體具有雙向調(diào)節(jié)作用。一方面,卒中后免疫抑制是一種適應(yīng)性反應(yīng),阻止中樞神經(jīng)系統(tǒng)不必要的自身免疫抗體,從而起到神經(jīng)保護作用[21]。動物試驗及臨床試驗證明,削弱固有免疫和適應(yīng)性免疫反應(yīng)可改善卒中預(yù)后。動物實驗表明,抑制性CD8+及CD4+T細胞遷移到中樞神經(jīng)系統(tǒng)和直接破壞細胞毒性CD8+T細胞可使梗死體積減小及缺血后炎癥反應(yīng)減弱[22]。Zierath等[23]在大鼠實驗中發(fā)現(xiàn),在再灌注時分別給予細菌脂多糖(lipopoly-saccharide,LPS)能模擬炎癥刺激,與其他各組比較,卒中后感染組大鼠死亡率更高,神經(jīng)功能評分更差,表明炎性反應(yīng)可使卒中結(jié)局惡化,還會增加腦梗死后腦萎縮程度。另一方面,卒中后免疫抑制將會導(dǎo)致感染如肺炎和尿路感染等發(fā)病率的增加[21]。卒中發(fā)病后7 d內(nèi)發(fā)生的感染為卒中相關(guān)性感染(strokeassociated infection,SAI)[24]。亞急性皮質(zhì)醇增多癥與卒中后24 h不良預(yù)后[25]及死亡率增高相關(guān)[26]。Vogelgesang等[27]發(fā)現(xiàn),腦梗死后外周血淋巴細胞、CD3+T細胞、CD3+CD4+T細胞、CD3+CD8+T細胞絕對值在發(fā)病當(dāng)天即下降,之后逐漸上升,于發(fā)病后14 d恢復(fù)至與健康對照組無差異,卒中后感染者的T淋巴細胞亞群下降較非感染者下降更為明顯。Urra等[28]通過觀察46例急性缺血性卒中及腦出血患者發(fā)現(xiàn),外周血中淋巴細胞、CD3+T細胞、CD3+CD4+T細胞、CD3+CD8+T細胞及CD4+CD25+FoxP3+Tregs細胞在發(fā)病后當(dāng)天開始下降,第2天降至最低,后逐漸回升;肺部感染者細胞數(shù)明顯低于非感染者。T淋巴細胞減少可能作為卒中后感染的一個預(yù)測因素,通過檢測T淋巴細胞亞群的變化,可以輔助判斷卒中患者的免疫狀態(tài),用于指導(dǎo)治療和判斷預(yù)后[29]。
對固有免疫與適應(yīng)性免疫以及炎癥的調(diào)節(jié)可以促使免疫反應(yīng)由組織損傷向神經(jīng)保護轉(zhuǎn)換[5]。卒中后針對免疫通路的治療可能延長溶栓時間窗,并且改善遠期預(yù)后。免疫調(diào)節(jié)劑作為輔助用藥,為卒中的治療開辟了一條新思路。
2.1 芬戈莫德(Fingolimod,F(xiàn)TY720) 芬戈莫德作為目前受到廣泛關(guān)注的免疫調(diào)節(jié)劑之一,2010年成為首個通過美國食品及藥物管理局(Food and Drug Administration,F(xiàn)DA)批準(zhǔn)的治療多發(fā)性硬化(multiple sclerosis,MS)的口服生物有效性藥物。其活性形式FTY720-磷酸是1-磷酸-鞘氨醇(sphingosine 1-phosphate,S1P)類似物,與細胞膜S1P受體結(jié)合。
F T Y 720的主要作用有:①免疫調(diào)節(jié):FTY720與T淋巴細胞和B淋巴細胞S1P受體結(jié)合,抑制淋巴細胞再循環(huán)從初級淋巴器官排出[30-31]。通過減少中樞神經(jīng)系統(tǒng)淋巴細胞浸潤的數(shù)量,有效地降低適應(yīng)性免疫反應(yīng)對中樞神經(jīng)系統(tǒng)的直接神經(jīng)毒性作用,降低細胞因子誘導(dǎo)的微循環(huán)系統(tǒng)周圍的缺血繼發(fā)的炎性損傷[32-34]。②血管保護作用:FTY720可誘導(dǎo)星形膠質(zhì)細胞釋放粒細胞/巨噬細胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF),減少與TNF-α和IFN-γ接觸的內(nèi)皮細胞的死亡[35]。GMCSF也可降低白細胞在血管壁的黏附和局部血小板的激活,抑制血栓形成和炎癥反應(yīng),改善微血管功能[32,36]。此外,S1P受體也表達于血管內(nèi)皮細胞,F(xiàn)TY720與之結(jié)合可以直接提高BBB的完整性[37]。③直接神經(jīng)保護作用:FTY720通過直接與神經(jīng)元受體相互作用,促進抗凋亡因子的產(chǎn)生,且增加缺血性損傷的恢復(fù)力,從而起到神經(jīng)保護作用[38]。
Liu等[39]回顧總結(jié)了2013年之前的9項關(guān)于FTY720對缺血性卒中治療的動物試驗,其中8項研究結(jié)果均顯示FTY720能減少腦梗死體積且改善功能預(yù)后。2014年天津市神經(jīng)病學(xué)研究所進行了一項臨床試驗,發(fā)現(xiàn)急性缺血性卒中患者發(fā)病72 h內(nèi)口服FTY720可限制腦缺血繼發(fā)損傷,降低微血管通透性,減輕神經(jīng)損傷,并且促進神經(jīng)功能恢復(fù)[40-41]。鑒于FTY720對內(nèi)皮屏障的保護功能,重組組織型纖溶酶原激活物(recombinant tissue plasminogen activator,rt-PA)聯(lián)合FTY720療法為溶栓時間窗內(nèi)的缺血性卒中開辟了一條新的治療思路[42]。在血栓栓塞性腦梗死小鼠模型中觀察到,F(xiàn)TY720可減低rt-PA治療所致的出血轉(zhuǎn)換并促進神經(jīng)功能恢復(fù)[43]。臨床試驗發(fā)現(xiàn),在急性缺血性卒中患者溶栓后第1天,F(xiàn)TY720聯(lián)合rt-PA治療與單獨rt-PA治療組相比,可以抑制病灶的擴大,減少出血和提高神經(jīng)功能評分[44]。
2.2 他汀類藥物 除了調(diào)節(jié)血脂代謝的作用,他汀類藥物在缺血性卒中中的抗炎作用逐漸被重視。動物實驗發(fā)現(xiàn),預(yù)防性他汀治療可以減輕缺血性腦損傷,促進腦灌注及神經(jīng)功恢復(fù),并且可以延長rt-PA治療缺血性卒中的時間窗[45-46]。
臨床試驗觀察到,缺血性卒中發(fā)病24 h內(nèi)應(yīng)用辛伐他汀治療的患者較發(fā)病7 d后加用辛伐他汀治療的患者,血清中的TNF-α水平輕度降低[47]。一項對臨床前研究的薈萃分析顯示,服用他汀類藥物后大腦中動脈阻塞所致腦梗死體積平均減小11.2%[48]。他汀類藥物減慢動脈粥樣化形成的作用一部分源于調(diào)節(jié)脂質(zhì)代謝,但在低動脈硬化風(fēng)險患者中也發(fā)現(xiàn)其可降低心肌梗死和缺血性卒中風(fēng)險[49]。臨床試驗觀察到,在無高脂血癥但高敏C-反應(yīng)蛋白水平升高的健康人群中,瑞舒伐他汀也可顯著降低主要心血管事件的發(fā)生率[50]。
綜上所述,免疫系統(tǒng)在缺血性卒中病理過程中發(fā)揮的重要作用正逐漸得到揭示,但其機制復(fù)雜,還有待更加深入的研究。卒中會打破神經(jīng)系統(tǒng)與免疫系統(tǒng)之間的平衡,造成內(nèi)穩(wěn)態(tài)失衡。因此,適當(dāng)?shù)拿庖哒{(diào)節(jié)治療是需要的。未來需要更多的大樣本臨床試驗,進一步闡明免疫調(diào)節(jié)劑對于缺血性卒中的有效性及安全性。相信在不久的將來可以看到免疫調(diào)節(jié)劑在臨床中的廣泛應(yīng)用。
1 Sacco RL,Chong JY,Prabhakaran S,et al.Experimental treatments for acute ischemic stroke[J].Lancet,2007,369:331-341.
2 Matthew D. Hammond,Youxi Ai,et al. Gr1+macrophages and dendritic cells dominate the in fl ammatory in fi ltrate 12 h after experimental intracerebral hemorrhage[J]. Transl Stroke Res,2012,3:125-131.
3 Emsley HC,Hopkins SJ. Post-stroke immunodepression and infection:an emerging concept[J]. Infect Disord Drug Targets,2010,10:91-97.
4 Fathali N,Ostrowski RP,Hasegawa Y,et al. Splenic immune cells in experimental neonatal hypoxiaischemia[J]. Transl Stroke Res,2013,4:208-219.
5 Picascia A,Grimaldi V,Iannone C,et al. Innate and adaptive immune response in stroke:Focus on epigenetic regulation[J]. J Neuroimmunol,2015,289:111-120.
6 Chaturvedi M,Kaczmarek L. MMP-9 inhibition:a therapeutic strategy in ischemic stroke[J]. Mol Neurobiol,2014,49:563-573.
7 Famakin BM,Mou Y,Johnson K,et al. A new role for downstream Toll-like receptor signaling in mediating immediate early gene expression during focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2014,34:258-267.
8 Fadakar K,Dadkhahfar S,Esmaeili A,et al. The role of Toll-like receptors (TLRs) in stroke[J]. Rev Neurosci,2014,25:699-712.
9 Iadecola C,Anrather J. The immunology of stroke:from mechanisms to translation[J]. Nat Med,2011,17:796-808.
10 Chamorro A,Meisel A,Planas AM,et al. The immunology of acute stroke[J]. Nat Rev Neurol,2012,8:401-410.
11 Yilmaz G,Arumugam TV,Stokes KY,et al. Role of T lymphocytes and interferon-gamma in ischemic stroke[J]. Circulation,2006,113:2105-2112.
12 Planas AM,Gomez-Choco M,Urra X,et al. Brainderived antigens in lymphoid tissue of patients with acute stroke[J]. J Immunol,2012,188:2156-2163.
13 Kamel H,Iadecola C. Brain-immune interactions and ischemic stroke:clinical implications[J]. Arch Neurol,2012,69:576-581.
14 Ziv Y,Ron N,Butovsky O,et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood[J]. Nat Neurosci,2006,9:268-275.
15 Gelderblom M,Leypoldt F,Steinbach K,et al.Temporal and spatial dynamics of cerebral immune cell accumulation in stroke[J]. Stroke,2009,40:1849-1857.
16 Stubbe T,Ebner F,Richter D,et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO[J]. J Cereb Blood Flow Metab,2013,33:37-47.
17 Brea D,Agulla J,Rodriguez-Yanez M,et al.Regulatory T cells modulate in fl ammation and reduce infarct volume in experimental brain ischaemia[J]. J Cell Mol Med,2014,18:1571-1579.
18 Na SY,Mracsko E,Liesz A,et al. Ampli fi cation of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice[J]. Stroke,2015,46:212-220.
19 Meisel C,Schwab JM,Prass K,et al. Central nervous system injury-induced immune de fi ciency syndrome[J].Nat Rev Neurosci,2005,6:775-786.
20 Gill D,Veltkamp R. Dynamics of T cell responses after stroke[J]. Curr Opin Pharmacol,2016,26:26-32.
21 Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression:a focused review[J]. Aging Dis,2014,5:307-326.
22 Liesz A,Zhou W,Mracsko E,et al. Inhibition of lymphocyte traf fi cking shields the brain against deleterious neuroin fl ammation after stroke[J]. Brain,2011,134:704-720.
23 Zierath D,Thullbery M,Hadwin J,et al. CNS immune responses following experimental stroke[J].Neurocrit Care,2010,12:274-284.
24 Vargas M,Horcajada JP,Obach V,et al. Clinical consequences of infection in patients with acute stroke:is it prime time for further antibiotic trials?[J]. Stroke,2006,37:461-465.
25 Weidenfeld J,Leker RR,Gai N,et al. The function of the adrenocortical axis in permanent middle cerebral artery occlusion:effect of glucocorticoids on the neurological outcome[J]. Brain Res,2011,1407:90-96.
26 Marklund N,Peltonen M,Nilsson TK,et al. Low and high circulating cortisol levels predict mortality and cognitive dysfunction early after stroke[J]. J Intern Med,2004,256:15-21.
27 Vogelgesang A,Grunwald U,Langner S,et al.Analysis of lymphocyte subsets in patients with stroke and their in fl uence on infection after stroke[J]. Stroke,2008,39:237-241.
28 Urra X,Cervera A,Villamor N,et al. Harms and bene fi ts of lymphocyte subpopulations in patients with acute stroke[J]. Neuroscience,2009,158:1174-1183.
29 Shim R,Wong CH. Ischemia,immunosuppression and infection--tackling the predicaments of post-stroke complications[J]. Int J Mol Sci,2016,17.
30 Thangada S,Khanna KM,Blaho VA,et al. Cellsurface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics[J]. J Exp Med,2010,207:1475-1483.
31 Hunter SF,Bowen JD,Reder AT. The direct effects of fi ngolimod in the central nervous system:implications for relapsing multiple sclerosis[J]. CNS Drugs,2016,30:135-147.
32 Kraft P,G?b E,Schuhmann MK,et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-in fl ammation but not by direct neuroprotection[J]. Stroke,2013,44:3202-3210.
33 Czech B,Pfeilschifter W,Mazaheri-Omrani N,et al. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia[J]. Biochem Biophys Res Commun,2009,389:251-256.
34 Wei Y,Yemisci M,Kim HH,et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia[J]. Ann Neurol,2011,69:119-129.
35 Spampinato SF,Obermeier B,Cotleur A,et al.Sphingosine 1 phosphate at the blood brain barrier:can the modulation of S1P receptor 1 in fl uence the response of endothelial cells and astrocytes to in fl ammatory stimuli?[J]. PLoS One,2015,10:e0133392.
36 Kleinschnitz C,Kraft P,Dreykluft A,et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature[J]. Blood,2013,121:679-691.
37 Prager B,Spampinato SF,Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier[J].Trends Mol Med,2015,21:354-363.
38 Hasegawa Y,Suzuki H,Sozen T,et al. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats[J]. Stroke,2010,41:368-374.
39 Liu J1,Zhang C,Tao W,Liu M. Systematic review and meta-analysis of the ef fi cacy of sphingosine-1-phosphate (S1P) receptor agonist FTY720 ( fi ngolimod)in animal models of stroke[J]. Int J Neurosci,2013,123:163-169.
40 Fu Y,Zhang N,Ren L,et al. Impact of an immune modulator fi ngolimod on acute ischemic stroke[J]. Proc Natl Acad Sci,2014,111:18 315-18 320.
41 Aoki T,Sumii T,Mori T,et al. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury:mechanical versus embolic focal ischemia in spontaneously hypertensive rats[J].Stroke,2002,33:2711-2717.
42 Cai A,Schlunk F,Bohmann F,et al. Coadministration of FTY720 and rt-PA in an experimental model of large hemispheric stroke-no in fl uence on functional outcome and blood-brain barrier disruption[J]. Exp Transl Stroke Med,2013,5:11.
43 Campos F,Qin T,Castillo J,et al. Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model[J]. Stroke,2013,44:505-511.
44 Zhu Z,F(xiàn)u Y,Tian D,et al. Combination of the immune modulator fi ngolimod with alteplase in acute ischemic stroke:a pilot trial[J]. Circulation,2015,132:1104-1112.
45 Kawashima S,Yamashita T,Miwa Y,et al. HMG-CoA reductase inhibitor has protective effects against stroke events in stroke-prone spontaneously hypertensive rats[J]. Stroke,2003,34:157-163.
46 Chen J,Zhang ZG,Li Y,et al. Statins induce angiogenesis,neurogenesis,and synaptogenesis after stroke[J]. Ann Neurol,2003,53:743-751.
47 Szczepanska-Szerej A,Kurzepa J,Wojczal J,et al. Simvastatin-induced prevention of the increase in TNF-alpha level in the acute phase of ischemic stroke[J]. Pharmacol Rep,2007,59:94-97.
48 Baryan HK,Allan SM,Vail A,et al. Systematic review and meta-analysis of the ef fi cacy of statins in experimental stroke[J]. Int J Stroke,2012,7:150-156.
49 Smith CJ,Denes A,Tyrrell PJ,et al. Phase II antiin fl ammatory and immune-modulating drugs for acute ischaemic stroke[J]. Expert Opin Investig Drugs,2015,24:623-643.
50 Ridker PM,Danielson E,F(xiàn)onseca FA,et al.Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein[J]. N Engl J Med,2008,359:2195-207.
【點睛】缺血性卒中后免疫反應(yīng)激活或抑制的機制復(fù)雜,針對性的免疫調(diào)節(jié)劑臨床研究結(jié)果尚不確定,但前景較廣。