常文利 張英澤 陳偉
. 綜述 Review .
脛骨中下段骨折不愈合原因的研究進展
常文利 張英澤 陳偉
脛骨骨折;骨折,不愈合;延遲愈合;綜述
成人脛骨干骨折占全部成人脛腓骨骨折的 24.75%[1]。臨床中脛骨干骨折不愈合的發(fā)生率為 5%,開放性脛骨骨折延遲愈合的發(fā)生率為 6.80%,其中脛骨中段 1 / 3 延遲愈合的發(fā)生率高達 92.40%,給臨床治療帶來很多困難[2-7]。明確脛骨中下段的解剖及臨床特質有助于全面認識脛骨中下段骨折,對其發(fā)生率、危險因素、相應的治療措施的認識有助于對骨折進行評估并判斷預后,以指導臨床。通過檢索現(xiàn)有文獻,將脛骨延遲愈合或不愈合的原因和相關治療措施綜述如下。
隨著經濟、交通運輸業(yè)、建筑業(yè)的蓬勃發(fā)展,高能致傷的脛骨骨折發(fā)生率也日漸增長。脛腓骨作為人體重要的負重骨,其遭受直接暴力打擊、壓軋的機會也相對較多,再加上脛骨前內側緊鄰皮下,軟組織覆蓋少,因此開放性骨折較多見,且常為大創(chuàng)面污染傷口,軟組織銼滅,骨折粉碎嚴重。間接暴力如高處墜落、旋轉、滑倒等所致的骨折,骨折線多呈斜形或螺旋形[6-7],雖然組織損傷較輕,但骨折多移位且尖端極易穿破皮膚形成開放傷。
血供差是骨折延遲愈合和不愈合的主要原因[8-10]。脛骨干的血供由滋養(yǎng)動脈系統(tǒng)、骨膜血管系統(tǒng)和骨骺干骺端血管系統(tǒng)組成[11]。其中任一血管損傷,骨折延遲愈合和不愈合率可達 3 倍以上[12]。脛骨滋養(yǎng)動脈作為三大血管之一,其主要源自脛后動脈,通過脛后肌群的近端,于比目魚肌線下脛骨中段 1 / 3 后外側面的滋養(yǎng)孔進入骨皮質[11,13]。發(fā)生在滋養(yǎng)孔周圍的脛骨干骨折易導致滋養(yǎng)動脈損傷,骨質的血供大為減少,從而影響骨折的愈合。此外,軟組織覆蓋不足也會引起不愈合[14]。小腿肌肉中僅趾長伸肌、脛骨后肌、趾長屈肌、拇長屈肌部分起自脛骨遠端 1 / 2,無一直接止于脛骨中下 1 / 3 的肌肉。脛骨下段多只由肌腱及皮膚所包裹,一旦發(fā)生骨折直接破壞其骨膜結構,血液供應不足加之貧瘠的血管床,直接導致脛骨中下段骨折延遲愈合或不愈合。
患者的年齡、吸煙史、既往病史、合并用藥及手術等危險因素都會影響骨折的愈合。與年齡相關的信號分子和間充質細胞功能的變化可能會延緩骨折愈合[15]。研究表明,尼古丁通過下調纖維母細胞生長因子、血管內皮生長因子和骨形態(tài)形成蛋白影響骨折早期的血管重建,從而不利于骨折愈合[16]。Hernigou 等[17]對 1999 年 1 月至 2010年 12 月收治的股骨干、脛骨干、肱骨干骨折的患者進行多變量分析發(fā)現(xiàn),無論是閉合性還是開放性骨折,吸煙與不愈合均有密切關系并且由單一變量分析得出煙草是骨折愈合的危險因素。
內分泌代謝性疾病也是阻礙骨形成的重要因素,如糖尿病、甲狀腺疾病、甲狀旁腺病、佝僂病、骨軟化癥、維生素 D 缺乏、雌激素缺乏、庫欣病、佩吉特病和吸收不良綜合征等。維生素 D 利于腸鈣吸收,在維持鈣穩(wěn)態(tài)和骨骼的完整性方面發(fā)揮核心作用,因此,維生素 D 缺乏在難以解釋的脛骨骨折不愈合患者中很普遍,特別是在維生素 D 極其缺乏的地區(qū),這可能是導致不愈合的重要原因之一[18-20]。血管異常也同樣會導致骨折不愈合。Dickson等[21]對 1981~1991 年舊金山醫(yī)院的 114 例脛骨開放性骨折患者進行研究發(fā)現(xiàn):患有動脈阻塞的脛骨開放性骨折的患者更容易發(fā)展為延遲愈合或不愈合。動脈不正常的患者骨折延遲愈合或不愈合的幾率是動脈正?;颊叩?3 倍。
骨折愈合受到某些常見藥物的影響,如糖皮質激素、鈣通道阻滯劑、非選擇性非甾體抗炎藥、選擇性 Cox-2 抑制劑等。非選擇性非甾體抗炎藥對骨折愈合過程有抑制作用。非選擇性非甾體類抗炎藥物可降低血鈣以及羥基脯氨酸水平,同時還可抑制成骨細胞的形成作用,從而導致骨折不愈合率增加[22]。選擇性 Cox-2 抑制可能對骨愈合的炎性反應產生損害。具體來說,選擇性 Cox-2 抑制劑可以抑制骨髓間充質細胞向成骨細胞的分化,從而影響骨折愈合[23]。
手術方式的選擇同樣會影響脛骨骨折的愈合。髓內釘會直接或間接造成骨折不愈合或延遲愈合。擴髓會造成更多的骨內膜血管損傷和骨皮質壞死,從而出現(xiàn)骨折的不愈合。即使不擴髓,髓內釘也會因為鎖定不穩(wěn)而出現(xiàn)延遲愈合[24]。與髓內釘相比,應用開放復位內固定術后骨折的不愈合率顯著增高[25]。Jensen 等[26]采用 Eggers 或 Lane 鋼板內固定治療脛骨干骨折,開放性脛骨骨折常規(guī)鋼板固定的不愈合率為 8%,閉合性脛骨骨折常規(guī)鋼板固定的不愈合率高達 24%。當然,清創(chuàng)術時間、軟組織的處理、皮膚暴露時間也同樣會影響骨折愈合[14]。
基于對脛骨骨折不愈合原因的探討,現(xiàn)將幾種常見的手術治療方式作如下對比,以供參考。微創(chuàng)鋼板接骨術( minimally invasive plate osteosynthesis,MIPO )、髓內釘和外固定架是骨科常用的固定技術。MIPO 對脛骨血運及周圍軟組織破壞較少、對位和愈合較好、感染率低,優(yōu)于開放性接骨板固定術[27-28]。其中經皮 MIPO 手術時間短、血液損失少、不易感染、不愈合率低,但仍會導致骨折畸形愈合[29]。脛骨骨折不愈合還可通過髓內釘治療,獲得早期功能恢復[30]。Ohtsuka 等[31]應用抗生素浸泡過的丙烯酸水泥釘治療脛骨開放骨折,結果表明該技術除控制感染外,其穩(wěn)固作用還可促進骨折的愈合。近年來,隨著髓內釘在長骨干骨折的廣泛應用,髓內釘的治療弊端也逐漸顯現(xiàn),同樣會造成骨折不愈合或延遲愈合。擴髓會造成更多的骨內膜血管損傷和骨皮質壞死,從而出現(xiàn)骨折的不愈合。即使不擴髓,髓內釘也會因為鎖定失敗而出現(xiàn)延遲愈合[24]。早在 1991 年 Mohsen 等[32]就已采用單獨外固定架治療脛骨干骨折延遲愈合,患者無需住院即可獲得成功治愈。Ilizarov 環(huán)外固定架[33]不僅可治療脛骨骨折不愈合,還可治療復雜性脛骨開放性骨折。單邊外固定架在治療下肢骨折不愈合方面,能同時糾正成角和長度,是一種有效的手術方式[34]。外固定技術可獲得骨折端的穩(wěn)定,但太堅強的外固定也同樣會延遲愈合過程[35]。
無論何種治療方法均應盡可能減少對脛骨骨膜、周圍組織及骨折周圍血管的破壞,加速骨痂形成,促進骨折愈合[36-37]。Kadas 等[38]通過應用單一療法和聯(lián)合療法分別對352 例和 270 例患者進行對比研究得出,聯(lián)合療法在治療脛骨開放性骨折過程中,顯示出了更大的優(yōu)勢。聯(lián)合療法具有并發(fā)癥少、愈合不良率低和截骨率低等特點。因此,臨床醫(yī)生在選擇具體手術方式的時候,需綜合考慮,以實現(xiàn)骨折的盡快愈合。比如,外固定結合部分開放復位內固定術不會出現(xiàn)局部軟組織炎癥,具有適應范圍廣、軟組織并發(fā)癥少、功能恢復好的特點[39]。
除上述主要的固定技術之外,還有一些技術也可治療脛骨骨折不愈合。自體髂骨尤其適用于伴有骨缺損的感染性脛骨骨折不愈合,通過建立脛腓骨骨聯(lián)合,達到骨折愈合的目的[40-41]。一些理療技術可在骨折不愈合中扮演著重要角色,文獻報道脈沖式電磁場作為一種非侵入性的治療方法,在脛骨血液供應良好的條件下療效確切,可利用脈沖式電磁場產生微弱的電流來促進骨折愈合[42-43]。
綜上所述,脛骨中下段特殊的解剖特點和特有的損傷機制是影響脛骨骨折愈合的重要因素。除此之外,年齡、吸煙、既往病史、合并用藥、骨折類型、手術方式等因素均可引起脛骨中下段骨折不愈合。上述各影響因素并非獨立存在而是相互影響,最終導致骨折不愈合。對其發(fā)生率、危險因素、治療措施的認識有助于全面認識脛骨骨折并判斷預后,以指導臨床。
[1] Zhang YZ. Tibial diaphyseal fracture (Segment 42). Clinical epidemiology of orthopaedic trauma[M]. 2nd edition. New York: Thieme. 2016: 257.
[2] Csongradi JJ, Maloney WJ. Ununited lower limb fractures[J]. West J Med, 1989, 150(6):675-680.
[3] 丁凌志, 夏寧曉. 加壓交鎖髓內釘固定加植骨治療脛骨骨不連的臨床研究[J]. 中國骨傷, 2012, 25(4):331-334.
[4] 張朝春, 張發(fā)惠, 張志宏, 等. 脛骨中下段后路手術的解剖學基礎及臨床應用[J]. 中國骨與關節(jié)損傷雜志, 2003, 18(9): 141-142.
[5] Rommens P, Schmit-Neuerburg KP. Ten years of experiences with the operative management of tibial shaft fractures[J]. J Trauma, 1987, 27(8):917-927.
[6] Marsh D. Concepts of fracture union, delayed union, and nonunion[J]. Clin Orthop Relat Res, 1998, (355 Suppl):S22-30.
[7] Heppenstall RB, Brighton CT, Esterhai JL Jr, et al. Prognostic factors in nonunion of the tibia: an evaluation of 185 cases treated with constant direct current[J]. J Trauma, 1984, 24(9): 790-795.
[8] Babhulkar S, Pande K, Babhulkar S. Nonunion of the diaphysis of long bones[J]. Clin Orthop Relat Res, 2005, (431):50-56.
[9] Matuszewski PE, Mehta S. Fracture consolidation in a tibial nonunion after revascularization: a case report[J]. J Orthop Trauma, 2011, 25(2):e15-20.
[10] Lu C, Xing Z, Yu YY, et al. Recombinant human bone morphogenetic protein-7 enhances fracture healing in an ischemic environment[J]. J Orthop Res, 2010, 28(5):687-696.
[11] 李漢云, 鐘世鎮(zhèn). 脛骨血液供應的實驗和解剖學研究[J]. 第一軍醫(yī)大學學報, 1986, 6(2):138-140.
[12] Dickson KF, Katzman S, Paiement G. The importance of the blood supply in the healing of tibial fractures[J]. Contemp Orthop, 1995, 30(6):489-493.
[13] 裴麗霞. 脛骨血供的臨床解剖研究[J]. 現(xiàn)代預防醫(yī)學, 2008, 35(9):1741-1744.
[14] Yokoyama K, Itoman M, Uchino M, et al. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: A multivariate analysis of factors affecting deep infection and fracture healing[J]. Indian J Orthop, 2008, 42(4):410-419.
[15] Hobby B, Lee MA. Managing atrophic nonunion in the geriatric population: incidence, distribution, and causes[J]. Orthop Clin North Am, 2013, 44(2):251-256.
[16] Sloan A, Hussain I, Maqsood M, et al. The effects of smoking on fracture healing[J]. Surgeon, 2010, 8(2):111-116.
[17] Hernigou J, Schuind F. Smoking as a predictor of negative outcome in diaphyseal fracture healing[J]. Int Orthop, 2013, 37(5):883-887.
[18] Brinker MR, O’Connor DP, Monla YT, et al. Metabolic and endocrine abnormalities in patients with nonunions[J]. J Orthop Trauma, 2007, 21(8):557-570.
[19] Pourfeizi1 HH, Tabrizi1 A, Elmi1 A, et al. Prevalence of vitamin d deficiency and secondary hyperparathyroidism in nonunion of traumatic fractures[J]. Acta Med Iran, 2013, 51(10):705-710.
[20] Cashman KD. Calcium and vitamin D. Dietary supplements and health: novartis foundation symposium[M]. Wiley Online Library. 2007: 282:123-142.
[21] Dickson K, Katzman S, Delgado E, et al. Delayed Unions and Nonunions of Open Tibial Fractures. Correlation with arteriography results[J]. Clin Orthop Relat Res, 1994, (302): 189-193.
[22] Busti AJ, Hooper JS, Amaya CJ, et al. Effects of perioperative antiinflammatory and immunomodulating therapy on surgical wound healing[J]. Pharmacotherapy, 2005, 25(11):1566-1591.
[23] Zhang X, Schwarz EM, Young DA, et al. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair[J]. J Clin Invest, 2002, 109(11):1405-1415.
[24] Oh CW, Bae SY, Jung DY, et al. Treatment of open tibial shaft fractures using tightly fitted interlocking nailing[J]. Int Orthop, 2006, 30(5):333-337.
[25] Avilucea FR, Sathiyakumar V, Greenberg SE, et al. Open distal tibial shaft fractures: a retrospective comparison of medial plate versus nail fixation[J]. Eur J Trauma Emerg Surg, 2016, 42(1):101-106.
[26] Jensen JS, Hansen FW, Johansen J. Tibial shaft fractures. A comparison of conservative treatment and internal fixation with conventional plates or AO compression plates[J]. Acta Orthop Scand, 1977, 48(2):204-212.
[27] Newman SD, Mauffrey CP, Krikler S. Distal metadiaphyseal tibial fractures[J]. Injury, 2011, 42(10):975-984.
[28] Borrelli J, Prickett W, Song E, et al. Extraosseous blood supply of the tibia and the effects of different plating techniques: A human cadaveric study[J]. J Orthop Trauma, 2002, 16(10): 691-695.
[29] Zhang QX, Gao FQ, Sun W, et al. Minimally invasive percutaneous plate osteosynthesis versus open reduction and internal fixation for distal tibial fractures in adults: a metaanalysis[J]. Zhongguo Gu Shang, 2015, 28(8):757-762.
[30] Alho A, Ekeland A, Stromsoe K, et al. Nonunion of tibial shaft fractures treated with locked intramedullary nailing without bone grafting[J]. J Trauma, 1993, 34(1):62-67.
[31] Ohtsuka H, Yokoyama K, Higashi K, et al. Use of antibioticimpregnated bone cement nail to treat septic nonunion after open tibial fracture[J]. J Orthop Trauma, 2002, 52(2):364-366.
[32] Mohsen AM, Foss MV. Day case treatment of delayed union of fracture of the shaft of the tibia with an external fixator[J]. Injury, 1991, 22(1):51-53.
[33] Hasankhani E, Payvandi MT, Birjandinejad A. The ilizarov ring external fixator in complex open fractures of the tibia[J]. Eur J Trauma Emerg Surg, 2006, 32(1):63-68.
[34] Harshwal RK, Sankhala SS, Jalan D. Management of nonunion of lower-extremity long bones using mono-lateral external fixator--report of 37 cases[J]. Injury, 2014, 45(3):560-567.
[35] 魯迪, 巴克利, 莫蘭. 復位、入路及固定技術. 骨折治療的AO 原則. 2 版[M]. 上海: 上??茖W技術出版社. 2010: 229.
[36] 姚國仕, 李冀, 張麗. 脛骨骨折的手術治療進展[J]. 華北煤炭醫(yī)學院學報, 2011, 13(2):185-187.
[37] Jack MC, Newman MI, Barnavon Y. Islanded posterior tibial artery perforator flap for lower limb reconstruction: review of lower leg anatomy[J]. Plast Reconstr Surg, 2011, 127(2): 1014-1015.
[38] Kadas I, Magyari Z, Vendegh Z, et al. Changing the treatment to reduce complication rate in open tibial fractures[J]. Int Orthop, 2009, 33(6):1725-1731.
[39] Li Y, Jiang X, Guo Q, et al. Treatment of distal tibial shaft fractures by three different surgical methods: a randomized, prospective study[J]. Int Orthop, 2014, 38(6):1261-1267.
[40] Borrelli J Jr, Leduc S, Gregush R, et al. Tricortical bone grafts for treatment of malaligned tibias and fibulas[J]. Clin Orthop Relat Res, 2009, 467(4):1056-1063.
[41] Gulan G, Jotanovi? Z, Jurdana, et al. Treatment of infected tibial nonunion with bone defect using central bone grafting technique[J]. Coll Antropol, 2012, 36(2):617-621.
[42] Assiotis A, Sachinis NP, Chalidis BE. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature[J]. J Orthop Surg Res, 2012, 7:24.
[43] Ito H, Shirai Y. The efficacy of ununited tibial fracture treatment using pulsing electromagnetic fields[J]. J Nippon Med Sch, 2001, 68(2):149-153.
Research progress on the reasons of the middle and distal tibial fracture nonunion
CHANG Wen-li, ZHANG Ying-ze, CHEN Wei. Department of Orthopedic Surgery, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
The incidence of tibial shaft fracture accounts for 24.75% in all adults with tibiofibular fracture. The delayed union rate of open tibial fracture was 6.80%, and that for the middle third tibial fracture 92.40%. Special anatomical features of the middle and distal tibial fracture and the injury mechanism are important factors, affecting the tibial fracture healing. The blood supply of the tibial shaft is composed of three vascular systems: nutrient artery system, periosteum vascular system, and metaphyseal vascular system. If any of these blood supplies was destroyed, the rate of tibial fracture delayed union and nonunion can reach more than 3 times. Soft tissue defect with arterial damage is a risky factor for delayed union. Besides, age, smoking, previous history of fracture, drug combination, fracture types, and operation approaches also can result in the middle and distal tibial fracture nonunion. Endocrine metabolic disease is also an important factor to hinder the bone formation, such as diabetes, thyroid disease, vitamin D deficiency, and lack of estrogen. Clinical doses of nonselective NSAIDs can reduce calcium levels and hydroxyproline levels, subsequently increase the rate of nonunion. Cox-2-selective inhibitors can inhibit mesenchymal cell differentiation into osteoblasts. All the above-mentioned factors eventually lead to tibial fracture nonunion. This article reviews causes of the tibial delayed union and nonunion and their related treatment measures with the aim to improve the outcomes of clinical treatment.
Tibial fracture; Fracture, ununited; Delayed union; Review
CHEN Wei, Email: surgeonchenwei@126.com
10.3969/j.issn.2095-252X.2017.09.015
R683.4
050051 石家莊,河北醫(yī)科大學第三醫(yī)院創(chuàng)傷急救中心
陳偉,Email: surgeonchenwei@126.com
2016-10-08 )
( 本文編輯:李慧文 王永剛 )