• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      有機(jī)氯殺蟲劑致脂肪酸和膽汁酸代謝異常的研究進(jìn)展

      2017-01-16 08:35:34邵文濤顧愛華蔣兆彥
      關(guān)鍵詞:膽酸膽汁酸脂質(zhì)

      劉 倩,邵文濤,顧愛華,蔣兆彥

      (1.南京醫(yī)科大學(xué)公共衛(wèi)生學(xué)院,江蘇南京 211166;2.同濟(jì)大學(xué)附屬東方醫(yī)院膽石病中心,上海 201200)

      有機(jī)氯殺蟲劑(organochlorine pesticides,OCP)是一類以碳?xì)浠衔餅榛炯軜?gòu),并有氯原子連接在碳原子上,同時(shí)又有殺蟲效果的有機(jī)化合物。其代表性化合物包括雙對(duì)氯苯基三氯乙烷(dichlorodiphenyl trichloroethane,DDT,俗稱滴滴涕)和六氯環(huán)己烷(hexachlorocyclohexane,HCH,俗稱六六六),以及二者在環(huán)境和生物體中的主要代謝產(chǎn)物p,p’-DDE和β-HCH。OCP曾被廣泛應(yīng)用于農(nóng)業(yè)蟲害的防治,從20世紀(jì)70年代后期開始被禁用,但檢測(cè)數(shù)據(jù)顯示,OCP在環(huán)境中仍有不同程度的殘留[1],包括土壤[2-5]、空氣[6-8]和水[9],并可通過吸入或攝入污染的空氣、水和食物等途徑進(jìn)入機(jī)體[10]。由于OCP具有親脂性和難降解的特點(diǎn),易于在體內(nèi)脂質(zhì)富集組織蓄積,通過生物富集和食物鏈放大作用,最終影響高等營(yíng)養(yǎng)級(jí)生物體和人類的健康。我國人群數(shù)據(jù)顯示,OCP在脂肪組織中蓄積含量最高,在非職業(yè)暴露人群腹腔脂肪組織中可檢測(cè)到12種有機(jī)氯代謝產(chǎn)物,其中含量最高的是p,p’-DDE和β-HCH,在血清中含量次之[11],尤其值得注意的是,臍帶血中仍能檢測(cè)出較高濃度的OCP[12],提示OCP可經(jīng)血胎屏障影響子代。

      體內(nèi)蓄積的OCP與一些酶、蛋白質(zhì)、受體和轉(zhuǎn)錄因子相互作用,可導(dǎo)致代謝機(jī)制紊亂而產(chǎn)生持續(xù)毒效應(yīng),如生殖毒性[13]、誘發(fā)腫瘤[14]、神經(jīng)行為障礙[15]和免疫毒性[16]等。近期流行病學(xué)證據(jù)表明,OCP與代謝性疾病相關(guān),如血清β-HCH含量與人群身體質(zhì)量指數(shù)、腰圍、體脂百分比以及腹部皮下脂肪組織總含量均呈正相關(guān)[17];血清β-HCH濃度與肝小葉炎癥呈正相關(guān),可能與膽汁酸代謝變化有關(guān)[18];2型糖尿病患者[19]和動(dòng)脈粥樣硬化患者[20]血清p,p’-DDE含量均增高,可能與OCP慢性暴露增加葡萄糖和脂質(zhì)代謝紊亂的風(fēng)險(xiǎn)相關(guān)[21]。此外,血清高OCP殘留還與膽囊結(jié)石病的發(fā)生呈正相關(guān)[22]。這些結(jié)果表明,機(jī)體OCP殘留增加了脂質(zhì)代謝異常相關(guān)性疾病發(fā)生的風(fēng)險(xiǎn)。本文就OCP致機(jī)體脂質(zhì)代謝異常的機(jī)制進(jìn)行綜述。

      1 OCP對(duì)脂肪酸代謝的影響

      機(jī)體內(nèi)脂肪酸代謝主要通過從乙酰輔酶A開始的脂肪酸合成過程,以及以β-氧化為主的脂肪酸降解過程。脂肪酸含量的增加導(dǎo)致其合成產(chǎn)物甘油三酯和膽固醇酯含量增加。

      由于OCP具有親脂性,脂肪組織是其在體內(nèi)殘留的主要場(chǎng)所。我們檢測(cè)了膽囊切除術(shù)中獲取的患者腹腔脂肪中OCP的含量發(fā)現(xiàn):p,p’-DDE和β-HCH是人體內(nèi)殘留的2種主要OCP代謝物。高OCP殘留組患者的肝組織脂肪酸含量顯著高于低OCP殘留組,表現(xiàn)為飽和脂肪酸(saturated fatty acids,SFA)含量升高,不飽和脂肪酸含量降低。這說明OCP暴露會(huì)增加人體肝脂肪酸含量。脂肪酸是甘油三酯和膽固醇酯合成的底物,其含量增加對(duì)于后二者的增加具有重要意義。我們發(fā)現(xiàn),高OCP殘留組患者肝脂肪酸合成酶(fatty acid synthase,F(xiàn)AS)和硬脂酰輔酶A去飽和酶1(stearoyl-CoA desaturase-1,SCD1)表達(dá)增加,均高于低OCP殘留組患者[23],提示其脂肪酸合成增加。

      動(dòng)物實(shí)驗(yàn)結(jié)果顯示,混合OCP的高脂飲食可促進(jìn)大鼠肝脂肪變性[24],這種異常與激活轉(zhuǎn)錄因子固醇反應(yīng)元件結(jié)合蛋白1c表達(dá)進(jìn)而促進(jìn)脂肪酸合成有關(guān)[25]。利用動(dòng)物OCP暴露模型研究結(jié)果顯示,p,p’-DDE暴露可增加大鼠肝棕櫚酸、硬脂酸和油酸等脂肪酸含量[26];慢性低劑量 p,p’-DDE 和β-HCH暴露可增加小鼠肝SFA和單不飽和脂肪酸的含量,降低多不飽和脂肪酸的含量,導(dǎo)致肝甘油三酯含量顯著增加,肝組織病理切片鏡檢可見大量脂滴形成。這些異常與OCP上調(diào)Fas基因等有關(guān)[27]。

      線粒體是完成脂肪酸β-氧化的重要細(xì)胞器,脂肪酸β-氧化將脂酰輔酶A轉(zhuǎn)化成乙酰輔酶A以及產(chǎn)生ATP[28]。p,p’-DDE暴露減少大鼠肝線粒體數(shù)量和ATP水平[29]。我們發(fā)現(xiàn),p,p’-DDE和β-HCH暴露的小鼠肝線粒體結(jié)構(gòu)損傷,脂肪酸β-氧化的關(guān)鍵基因Cpt1α和Mcad等均有不同程度的降低。此外,線粒體損傷還影響三羧酸循環(huán)過程,導(dǎo)致延胡索酸和蘋果酸產(chǎn)物降低,而檸檬酸經(jīng)無氧酵解形成乳酸增加[27]。體外研究顯示,p,p’-DDE和β-HCH降低肝細(xì)胞線粒體數(shù)量、線粒體膜電位、氧耗量和ATP水平[27]。因此,線粒體功能障礙導(dǎo)致脂肪酸降解受抑是OCP導(dǎo)致脂質(zhì)代謝異常的另一個(gè)重要機(jī)制。

      2 OCP對(duì)膽汁酸代謝的影響

      膽汁酸由膽固醇作為底物在肝細(xì)胞合成,和?;撬峄蚋拾彼嵝纬山Y(jié)合膽汁酸被分泌到膽汁并儲(chǔ)存于膽囊中[30]。進(jìn)食后它們被釋放到腸道中參與甘油三酯、膽固醇和脂溶性維生素的吸收,進(jìn)而調(diào)節(jié)糖脂及能量代謝[31]。膽汁酸的成分及其疏水性是影響腸道膽固醇重吸收的重要因素。在回腸末端,95%的膽汁酸被重吸收回肝,形成膽汁酸的腸肝循環(huán),少量膽汁酸則進(jìn)入大腸[32]。機(jī)體將膽固醇轉(zhuǎn)化成膽汁酸也是清除過多膽固醇、維持機(jī)體膽固醇平衡的一個(gè)重要調(diào)節(jié)途徑。

      在小鼠,p,p’-DDE和β-HCH暴露導(dǎo)致膽汁酸合成限速酶膽固醇 7α-羥化酶(cholesterol 7αhydroxylase,Cyp7A1)和膽固醇12 α-羥化酶(sterol 12α-hydroxylase,Cyp8B1)的表達(dá)增加,其產(chǎn)物膽酸含量增加,而影響膽汁酸組分的構(gòu)成比[35]。Cyp7A1基因的表達(dá)受肝法尼醇X受體(farnesoid X receptor,F(xiàn)XR)通路和成纖維細(xì)胞生長(zhǎng)因子15(fibroblast growth factor 15,F(xiàn)gf15)通路的負(fù)反饋調(diào)節(jié)[34]。我們發(fā)現(xiàn),p,p’-DDE和β-HCH暴露可引起FXR通路的靶基因Abcb11和Mrp2/3表達(dá)增加,但Cyp7A1表達(dá)并未受其負(fù)反饋調(diào)節(jié)而降低;而回腸Fgf15基因表達(dá)降低時(shí),Cyp7A1表達(dá)增加,說明OCP主要是通過Fgf15通路影響Cyp7A1的表達(dá)[33]。回腸細(xì)胞頂端鈉離子依賴性膽汁酸轉(zhuǎn)運(yùn)體和有機(jī)溶質(zhì)轉(zhuǎn)運(yùn)蛋白基因表達(dá)均降低,說明腸道對(duì)膽汁酸重吸收降低[33]。我們發(fā)現(xiàn),體外培養(yǎng)的HepG2細(xì)胞OCP暴露后,膽汁酸合成相關(guān)基因Cyp7A1,Cyp8B1和膽固醇27α-羥化酶表達(dá)增加,結(jié)合體內(nèi)實(shí)驗(yàn)可推測(cè),OCP暴露減少膽汁酸在回腸的重吸收,肝細(xì)胞代償性增加膽汁酸合成以維持膽汁酸含量的平衡[33]。不同膽汁酸由于其在甾醇骨架的羥基數(shù)量和位置差異,形成了不同的親水和疏水特性,影響對(duì)脂溶性物質(zhì)的吸收能力[35]。p,p’-DDE和β-HCH暴露的小鼠疏水性膽酸含量增加,親水性β-鼠膽酸含量降低,使膽酸/β-鼠膽酸比例增加,疏水性增加,進(jìn)而可促進(jìn)腸道中膽固醇吸收[36],導(dǎo)致機(jī)體肝膽固醇負(fù)荷增加。是否在人體也有類似的調(diào)節(jié)作用目前尚無研究報(bào)道。

      3 OCP通過腸道菌群影響脂肪酸和膽汁代謝

      研究發(fā)現(xiàn),經(jīng)腸道攝入的環(huán)境污染物如農(nóng)藥狼毒素和氟環(huán)唑等,可影響腸道菌群的組成和豐度,導(dǎo)致膽固醇和膽汁酸代謝改變[37-38]。腸道中正常的腸道菌群是人體內(nèi)重要的屏障,同時(shí)也是早期接觸到經(jīng)口暴露的外源化學(xué)物的“器官”[39]。研究顯示,將高脂飼料喂養(yǎng)誘導(dǎo)脂質(zhì)代謝異常表型的小鼠的腸道菌群移植到無菌小鼠腸道中,可引起后者體質(zhì)量及肝脂肪含量的顯著增加[40]。

      腸道菌群的改變可通過以下2方面影響機(jī)體糖脂代謝:①直接影響宿主從腸道內(nèi)容物里攝取能量,造成脂肪的堆積;②改變腸壁通透性,降低緊密連接蛋白表達(dá),導(dǎo)致細(xì)菌移位,細(xì)菌產(chǎn)物內(nèi)毒素(即脂多糖)及未消化的外源物質(zhì)釋放到循環(huán)系統(tǒng),血液中脂多糖累積可激發(fā)炎癥,影響糖脂代謝[41]。有趣的是,p,p’-DDE和β-HCH也可改變腸道菌群的豐度以及結(jié)構(gòu)比[33]。因此,OCP通過影響腸道菌群促使機(jī)體糖脂代謝異常也可能是其產(chǎn)生代謝毒性效應(yīng)的一個(gè)重要機(jī)制。

      腸道菌群也是機(jī)體膽汁酸代謝調(diào)節(jié)的重要環(huán)節(jié)。腸道菌群中含膽鹽水解酶的菌群可將結(jié)合膽汁酸分解成游離膽汁酸,后者被含7α-脫羥酶的菌群通過脫羥基作用形成次級(jí)膽汁酸,如脫氧膽酸和石膽酸。腸道菌群中含BSH的菌群主要包括擬桿菌(Bacteroides),梭菌(Clostridium),腸球菌(Entero?coccus),雙岐桿菌(Bifidobacterium)和乳酸桿菌(Lactobacillus)等[44]。p,p’-DDE和β-HCH暴露可增加上述菌群豐度,特別是乳酸桿菌,推測(cè)OCP對(duì)腸道次級(jí)膽汁酸含量的增加作用可能與其干擾上述腸道菌群豐度有關(guān)[33]。腸道菌群還可經(jīng)FXR和膽汁酸膜受體調(diào)節(jié)膽汁酸的代謝,并影響脂質(zhì)代謝[43]。因此,OCP不僅直接影響肝膽汁酸合成,還可通過影響腸道菌群,改變次級(jí)膽汁酸含量,影響膽汁酸成分。

      4 結(jié)語

      綜上所述,OCP通過多渠道多通路導(dǎo)致機(jī)體脂質(zhì)代謝異常,其涉及的可能機(jī)制包括:促進(jìn)脂肪酸合成,影響線粒體脂肪酸β-氧化,導(dǎo)致脂肪酸代謝異常;抑制腸道膽汁酸重吸收,促進(jìn)肝膽汁酸合成;改變腸道菌群,影響腸道結(jié)合膽汁酸水解和次級(jí)膽汁酸的形成,從而影響膽汁酸含量,特別是增加膽酸和β-鼠膽酸比例,使之形成利于膽固醇攝取的性狀,進(jìn)而促進(jìn)脂質(zhì)攝取導(dǎo)致代謝紊亂。長(zhǎng)期OCP蓄積導(dǎo)致的脂質(zhì)代謝異常可促進(jìn)相關(guān)疾病的進(jìn)展[27,33],因此,人們應(yīng)重視環(huán)境OCP殘留帶來的健康危害及其長(zhǎng)遠(yuǎn)效應(yīng),適當(dāng)監(jiān)測(cè)體內(nèi)OCP殘余可能對(duì)預(yù)防其所致相關(guān)代謝性疾病具有重要意義。

      參考文獻(xiàn):

      [1] Nakata H,Hirakawa Y,Kawazoe M,Nakabo T,Arizono K,Abe S,et al.Concentrations and compositions of organochlorine contaminants in sediments,soils,crustaceans,fishes and birds collected from Lake Tai,Hangzhou Bay and Shanghai city region,China[J].Environ Pollut,2005,133(3):415-429.

      [2] Sun J,Pan L,Zhan Y,Lu H,Tsang DC,Liu W,et al.Contamination of phthalate esters,organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China[J].Sci Total Environ,2016,544:670-676.

      [3] Wang B,Wu C,Liu W,Teng Y,Luo Y,Christie P,et al.Levels and patterns of organochlorine pesticides in agricultural soils in an area of extensive historical cotton cultivation in Henan province,China[J].Environ Sci Pollut Res Int,2016,23(7):6680-6689.

      [4] Liu Q,Tian S,Jia R,Liu X.Pollution characteristics and ecological risk assessment of HCHs and DDTs in estuary wetland sediments from the Bohai Bay,North China[J/OL].Environ Sci Pollut Res Int,(2015-12-09).https://link.springer.com/article/10.1007%2Fs11356-015-5882-8

      [5] Yu Y,Li Y,Shen Z,Yang Z,Mo L,Kong Y,et al.Occurrence and possible sources of organochlorine pesticides(OCP)and polychlorinated biphenyls(PCBs)along the Chao River,China[J].Chemo?sphere,2014,114:136-143.

      [6] Bajwa A,Ali U,Mahmood A,Chaudhry MJ,Syed JH,Li J,et al.Organochlorine pesticides(OCP)in the Indus River catchment area,Pakistan:Status,soil-air exchange and black carbon mediated distribution[J].Chemosphere,2016,152:292-300.

      [7] Mu?oz-Arnanz J,Roscales JL,Ros M,Vicente A,Jiménez B.Towards the implementation of the Stockholm Convention in Spain:five-year monitoring(2008-2013)of POPs in air based on passive sampling[J].Environ Pollut,2016,217:107-113.

      [8] Takazawa Y,Takasuga T,Doi K,Saito M,Shibata Y.Recent decline of DDTs among several organochlorine pesticides in background air in East Asia[J].Environ Pollut,2016,217:134-142.

      [9] Wu C,Luo Y,Gui T,Huang Y.Concentrations and potential health hazards of organochlorine pesticides in(shallow)groundwater of Taihu Lake region,China[J].Sci Total Environ,2014,470-471:1047-1055.

      [10] Maisano M,Cappello T,Oliva S,Natalotto A,Giannetto A,Parrino V,et al.PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna,T.thynnus,from the Mediterranean Sea[J].Mar Environ Res,2016,121:40-48.

      [11] Li C,Cheng Y,Tang Q,Lin S,Li Y,Hu X,et al.The association between prenatal exposure to organochlorine pesticides and thyroid hormone levels in newborns in Yancheng, China[J].Environ Res,2014,129:47-51.

      [12] Cao LL,Yan CH,Yu XD,Tian Y,Zhao L,Liu JX,et al.Relationship between serum concentrations of polychlorinated biphenyls and organochlorine pesticides and dietary habits of pregnant women in Shanghai[J].Sci Total Environ,2011,409(16):2997-3002.

      [13] Freire C, Lopez-Espinosa MJ, Fernández M,Molina-Molina JM,Prada R,Olea N.Prenatal exposure to organochlorine pesticides and TSH status in newborns from southern Spain[J].Sci TotalEnviron,2011,409(18):3281-3287.

      [14] Freund R,Kelsberg G,Safranek S.Clinical inquiry:do oral contraceptives put women with a family history of breast cancer at increased risk?[J].J Fam Pract,2014,63(9):540,549.

      [15] Saeedi Saravi SS,Dehpour AR.Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders:a review[J].Life Sci,2016,145:255-264.

      [16] Mrema EJ,Rubino FM,Brambilla G,Moretto A,Tsatsakis AM,Colosio C.Persistent organochlorinated pesticides and mechanisms of their toxicity[J].Toxicology,2013,307:74-88.

      [17] Dirinck E, Jorens PG, Covaci A, Geens T,Roosens L,Neels H,et al.Obesity and persistent organic pollutants:possible obesogenic effect of organochlorine pesticides and polychlorinated biphenyls[J].Obesity(Silver Spring),2011,19(4):709-714.

      [18] Rantakokko P, M?nnist? V, Airaksinen R,Koponen J,Viluksela M,Kiviranta H,et al.Persistent organic pollutants and non-alcoholic fatty liver disease in morbidly obese patients:a cohort study[J/OL].Environ Health,2015,14:79(2015-09-29).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588245/

      [19] Ali N, Rajeh N, Wang W, Abualnaja KO,Kumosani TA,Albar HMS,et al.Organohalogenated contaminants in type 2 diabetic serum from Jeddah,Saudi Arabia[J].Environ Pollut,2016,213:206-212.

      [20] Mangum LC,Mangum LH,Chambers JE,Ross MK,Meek EC,Wills RW,et al.The association of serum trans-nonachlor levels with atherosclerosis[J].J Toxicol Environ Health A,2016,79(5):210-220.

      [21] Lee YM,Kim KS,Kim SA,Hong NS,Lee SJ,Lee DH.Prospective associations between persistent organic pollutants and metabolic syndrome:a nested case-control study[J].Sci Total Environ,2014,496:219-225.

      [22] Su Y,Dai Y,Lin Y,Gao X,Han Y,Zhao B.Serum organochlorine pesticide residues and risk of gallstone disease:a case-control study in Xiamen[J].Ann Epidemiol,2012,22(8):592-597.

      [23] Ji G,Xu C,Sun H,Liu Q,Hu H,Gu A,et al.Organochloride pesticides induced hepatic ABCG5/G8 expression and lipogenesis in Chinese patients with gallstone disease[J].Oncotarget,2016,7(23):33689-33702.

      [24] Ruzzin J,Petersen R,Meugnier E,Madsen L,Lock EJ,Lillefosse H,et al.Persistent organic pollutantexposure leads to insulin resistance syndrome[J].Environ Health Perspect,2010,118(4):465-471.

      [25] Horton JD,Shimomura I.Sterol regulatory elementbinding proteins:activators of cholesterol and fatty acid biosynthesis[J].Curr Opin Lipidol,1999,10(2):143-150.

      [26] Rodríguez-Alcalá LM,Sá C,Pimentel LL,Pestana D,Teixeira D,F(xiàn)aria A,et al.Endocrine disruptor DDE associated with a high-fat diet enhances the impairment of liver fatty acid composition in rats[J].J Agric Food Chem,2015,63(42):9341-9348.

      [27] Liu Q,Wang Q,Xu C,Shao W,Zhang C,Liu H,et al.Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism[J/OL].Sci Rep,2017,7:46339(2017-04-11).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5387717/

      [28] Bhatt DK,Bano M.Modulation of tricarboxylic acid cycle dehydrogenases during hepatocarcinogenesis induced by hexachlorocyclohexane in mice[J].Exp Toxicol Pathol,2009,61(4):325-332.

      [29] Mota PC,Cordeiro M,Pereira SP,Oliveira PJ,Moreno AJ,Ramalho-Santos J.Differential effects of p,p′-DDE on testis and liver mitochondria:implications for reproductive toxicology[J].Reprod Tox?icol,2011,31(1):80-85.

      [30] Li T,Chiang JY.Bile acid signaling in metabolic disease and drug therapy[J].Pharmacol Rev,2014,66(4):948-983.

      [31] Houten SM,Watanabe M,Auwerx J.Endocrine functions of bile acids[J].EMBO J,2006,25(7):1419-1425.

      [32] Out C,Patankar JV,Doktorova M,Boesjes M,Bos T,de Boer S,et al.Gut microbiota inhibit Asbtdependent intestinal bile acid reabsorption via Gata4[J].J Hepatol,2015,63(3):697-704.

      [33] Liu Q,Shao W,Zhang C,Xu C,Wang Q,Liu H,et al.Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice[J].Environ Pollut,2017,226:268-276.

      [34] Begley M,Gahan CG,Hill C.The interaction between bacteria and bile[J].FEMS Microbiol Rev,2005,29(4):625-651.

      [35] Denk GU,Kleiss CP,Wimmer R,Vennegeerts T,Reiter FP,Schulz S,et al.Tauro-β-muricholic acid restricts bile acid-induced hepatocellular apoptosis by preserving the mitochondrial membrane potential[J].Biochem Biophys Res Commun,2012,424(4):758-764.

      [36] Wang DQ,Tazuma S,Cohen DE,Carey MC.Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption:studies in the gallstone-susceptible mouse[J].Am J PhysiolGastrointest Liver Physiol,2003,285(3):G494-G502.

      [37] Yan L,Xu C,Liu Q,Gu A,Jiang ZY.Altered profile of gut microbiota after subchronic exposure to neochamaejasmin A in rats[J].Environ Toxicol Pharmacol,2015,39(2):927-933.

      [38] Xu C,Liu Q,Huan F,Qu J,Liu W,Gu A,et al.Changes in gut microbiota may be early signs of liver toxicity induced by epoxiconazole in rats[J].Chemotherapy,2014,60(2):135-142.

      [39] Eckburg PB,Bik EM,Bernstein CN,Purdom E,Dethlefsen L,Sargent M,et al.Diversity of the human intestinal microbial flora[J].Science,2005,308(5728):1635-1638.

      [40] Bueno L,Beaufrand C,Theodorou V,Andro-Delestrain MC.Influence of simethicone and alverine on stress-induced alterations of colonic permeability and sensitivity in rats:beneficial effect of their association[J].J Pharm Pharmacol,2013,65(4):567-573.

      [41] Machado MV,Cortez-Pinto H.Diet,microbiota,obesity,and NAFLD:a dangerous quartet[J/OL].Int J Mol Sci,2016,17(4):481(2016-04-01).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848937/

      [42] Fiorucci S,Distrutti E.Bile acid-activated receptors,intestinal microbiota,and the treatment of metabolic disorders[J].Trends Mol Med,2015,21(11):702-714.

      [43] Sayin SI, Wahlstr?m A, Felin J, J?nttiS,Marschall HU,Bamberg K,et al.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid,a naturally occurring FXR antagonist[J].Cell Metab,2013,17(2):225-235.

      猜你喜歡
      膽酸膽汁酸脂質(zhì)
      膽汁酸代謝與T2DM糖脂代謝紊亂的研究概述
      高效液相色譜法測(cè)定復(fù)方胰酶片中膽酸和牛磺豬去氧膽酸的含量
      總膽汁酸高是肝臟出問題了嗎?
      肝博士(2020年5期)2021-01-18 02:50:26
      膽汁酸代謝在慢性肝病中的研究進(jìn)展
      復(fù)方一枝蒿提取物固體脂質(zhì)納米粒的制備
      中成藥(2018年9期)2018-10-09 07:18:36
      白楊素固體脂質(zhì)納米粒的制備及其藥動(dòng)學(xué)行為
      中成藥(2018年1期)2018-02-02 07:19:53
      馬錢子堿固體脂質(zhì)納米粒在小鼠體內(nèi)的組織分布
      中成藥(2017年4期)2017-05-17 06:09:26
      新生兒膽紅素和總膽汁酸測(cè)定的臨床意義
      血清甘膽酸測(cè)定在急性心肌梗死時(shí)對(duì)肝臟損傷的診斷價(jià)值
      痰熱清注射液中熊膽氧化成分的推測(cè)
      中成藥(2014年4期)2014-04-01 08:43:42
      洛扎县| 大同县| 抚远县| 昌图县| 信阳市| 富裕县| 屏边| 炎陵县| 渝北区| 呼伦贝尔市| 定西市| 崇州市| 蛟河市| 孝义市| 泸定县| 汾阳市| 吉木乃县| 蒙自县| 衡山县| 宝丰县| 永吉县| 巨野县| 旬邑县| 库车县| 奉新县| 寿光市| 襄城县| 永泰县| 沁阳市| 禄丰县| 周口市| 昭觉县| 察雅县| 仙游县| 岳池县| 靖宇县| 永川市| 托里县| 岐山县| 留坝县| 深圳市|