魏巧莉,房曉歡,曹 慧,李俊杰,2*
(1.河北農(nóng)業(yè)大學動物科技學院,河北保定 071001;2. 河北省牛羊胚胎工程技術(shù)研究中心,河北保定 071001)
褪黑素對卵母細胞成熟和胚胎體外發(fā)育影響的研究進展
魏巧莉1,房曉歡1,曹 慧1,李俊杰1,2*
(1.河北農(nóng)業(yè)大學動物科技學院,河北保定 071001;2. 河北省牛羊胚胎工程技術(shù)研究中心,河北保定 071001)
卵母細胞與胚胎體外培養(yǎng)過程中,細胞處于相對高氧環(huán)境,常常會由于抗氧化防御不足而導致氧化應激,使細胞在發(fā)育過程中積累大量的活性氧(ROS),從而降低卵母細胞及胚胎的體外發(fā)育率。褪黑素作為一種有效的抗氧化劑和自由基清除劑,能顯著降低細胞內(nèi)ROS水平,清除細胞內(nèi)自由基,改善卵母細胞的體外成熟與胚胎的體外發(fā)育歷程。本文從褪黑素對卵母細胞成熟、胚胎體外發(fā)育、胚胎質(zhì)量以及褪黑素作用機制等方面進行綜述,為褪黑素在體外胚胎生產(chǎn)中的應用提供參考。
卵母細胞;胚胎;褪黑素;抗氧化劑;體外發(fā)育
褪黑素(Melatonin,MT)又名N-乙酰基-5-甲氧基色胺,是色氨酸的衍生物,由哺乳動物松果體合成并分泌的一種吲哚類激素。褪黑素的2個特異性受體:MT1(褪黑素膜受體1)和MT2(褪黑素膜受體2),被證明在細胞的信號轉(zhuǎn)導中起著極為重要的作用。He等[1]研究表明,MT可促進雌二醇的生物合成并抑制孕酮(P4)分泌,提高細胞中類固醇基因CYP19A1的表達。目前已有研究證明,MT對卵母細胞體外成熟及P4、雌激素(E2)具有促進作用且呈現(xiàn)劑量依賴現(xiàn)象[2]。也有實驗證明,MT結(jié)合卵泡刺激激素(FSH)可促進卵泡的前期發(fā)育[3]。另外,MT作為一種有效的抗氧化劑和自由基清除劑,能顯著降低細胞內(nèi)活性氧(ROS)水平,清除細胞內(nèi)自由基,改善卵母細胞的體外成熟與胚胎的體外發(fā)育歷程??梢姡琈T除具有調(diào)節(jié)哺乳動物卵巢功能和生殖活性功能外,還是一種有效的自由基清除劑和廣譜抗氧化劑,可直接清除細胞中ROS、增加抗氧化酶和谷胱甘肽(GSH)的表達水平與活性,并抑制促氧化酶以減少細胞氧化損傷[4]。近年來,MT在提高體外培養(yǎng)卵母細胞和胚胎發(fā)育方面得到了越來越多的證實。因此,本文從MT對卵母細胞成熟、胚胎體外發(fā)育、胚胎質(zhì)量以及褪黑素作用機制等方面加以綜述。
MT及其代謝衍生物具有強的清除自由基和抗氧化功能,可降低卵母細胞體外成熟過程中因氧化應激造成的脂質(zhì)、蛋白質(zhì)和DNA的氧化損傷[5]。研究表明,與維生素A、維生素C、維生素E和N-乙酰半胱氨酸相比,MT對卵母細胞的成熟更有效[6]。當向體外培養(yǎng)的未成熟卵母細胞的培養(yǎng)液中加入MT時,可促進卵母細胞體外成熟并提高豬孤雌激活胚胎的發(fā)育率[7]。Kang等[8]研究發(fā)現(xiàn),在豬卵母細胞成熟培養(yǎng)期間添加10 ng/mL(4.4×10-8mol/L)MT,可促進卵母細胞的減數(shù)分裂能力和增加成熟的卵母細胞比例。Tian 等[7]發(fā)現(xiàn),補充適當濃度的MT可促進牛卵母細胞的減數(shù)分裂能力和胚胎的發(fā)育和質(zhì)量。在防止卵母細胞老化方面,MT也具有重要功能。研究證實,在體外培養(yǎng)卵母細胞時補充MT可以提高卵母細胞質(zhì)量及延緩卵母細胞的衰老[9];Liang等[10]發(fā)現(xiàn),補充MT可明顯減少體外老化卵母細胞與異常紡錘體的比例。
卵母細胞的質(zhì)量是受精成功和重構(gòu)胚胎發(fā)育能力的最重要因素。研究表明,向卵母細胞的成熟培養(yǎng)基中添加MT,不僅可以促進卵母細胞的成熟還能提高胚胎的質(zhì)量[11]。Lonergan等[12]亦證明胚胎發(fā)育率與卵母細胞內(nèi)在質(zhì)量有關。因此,體外成熟(IVM)培養(yǎng)條件可能對胚胎的生產(chǎn)會有一定的影響作用,包括對卵母細胞核成熟、卵裂率和囊胚率的影響。另外,MT的加工工藝對其使用效果也會產(chǎn)生一定的影響。Remiao等[13]發(fā)現(xiàn),MT可增加體外胚胎產(chǎn)生,并且用MT制成的脂質(zhì)-納米膠囊(Mel-LNC)體外培養(yǎng)卵母細胞,發(fā)現(xiàn)MT在降低ROS水平和囊胚凋亡細胞、增加卵裂率和囊胚發(fā)育率方面更有效??梢娨欢舛鹊腗T在提高卵母細胞的體外成熟、促進細胞的分裂能力、降低卵母細胞的氧化速度、延緩細胞衰老方面具有重要作用。
MT不僅對卵母細胞的成熟有促進作用,對體外胚胎的發(fā)育同樣具有有益的影響[14-15]。在胚胎體外培養(yǎng)過程中,ROS可導致細胞器特別是線粒體損傷,并引起胚胎發(fā)育阻斷和凋亡。MT可通過消除細胞中自由基而改善胚胎的體外發(fā)育[16]。前人研究證明添加MT對小鼠[17]、綿羊[18]、牛[4,16]和豬[8]的體外胚胎生產(chǎn)均具有積極作用。孤雌激活實驗表明,培養(yǎng)液中添加50 ng/mL(2.2×10-7mol/L)MT可顯著增加卵裂率[8];Nakano等[19]實驗證實,培養(yǎng)液中加入10-7M MT時,發(fā)育到2-細胞和4-細胞階段的孤雌卵母細胞比例顯著高于對照組。對體外受精(IVF)實驗表明,MT可增強IVF胚胎的發(fā)育能力,并可下調(diào)早期胚胎卵裂球凋亡比例[8]。有研究證實,當在含有10-9mol/L MT的培養(yǎng)液中培養(yǎng)豬IVF胚胎時,卵裂率和囊胚總細胞數(shù)增加[9]。Do[11]對豬體外受精胚胎研究表明,用25 ng/mL[11]MT培養(yǎng)的胚胎囊胚形成率較對照組顯著增加。在體細胞核移植試驗(SCNT)中,Nakano等[19]證明加入MT可顯著降低SCNT胚胎中的ROS水平和細胞凋亡數(shù)。另外,MT不僅可以增強囊胚形成速率、減少細胞凋亡、改善豬[14]和牛-克隆胚胎的胚胎質(zhì)量[15],而且還可通過特定的MT受體提高牛胚胎發(fā)育的效率[4]。上述研究結(jié)果進一步證實了MT對胚胎的體外發(fā)育具有積極的促進作用,它能夠下調(diào)早期胚胎的凋亡比率,促進囊胚形成,降低胚胎中ROS水平。
內(nèi)細胞團(ICM)細胞數(shù)量和總細胞數(shù)(TCN)及ICM/TCN在囊胚中的比例是評估囊胚質(zhì)量的標準之一[20]。Su等[15]發(fā)現(xiàn),MT處理的囊胚中的卵裂球、ICM細胞數(shù)量和ICM/ TCN的比例明顯高于未處理的對照組囊胚。ICM細胞中SOX2基因是一種關鍵調(diào)節(jié)基因,對于內(nèi)細胞團細胞發(fā)育十分重要。研究表明,MT作用下SOX2的表達量比對照組細胞顯著上調(diào),SOX2基因的表達上調(diào)可能提高體細胞核移植胚泡中ICM / TCN的比率[15]。也有實驗證明,在IVC期間添加MT(25 ng/mL)增加了囊胚形成率,并且與未接受MT的囊胚相比,補充50 ng/mL MT減少了囊胚中DNA斷裂的比例[8]??梢?,添加一定濃度的MT不僅能夠顯著影響胚胎細胞中內(nèi)細胞團和總細胞數(shù)的比率,同時還能夠上調(diào)胚胎發(fā)育關鍵基因SOX2的表達量,減少DNA斷裂的比率,改善胚胎質(zhì)量。
4.1 MT對細胞抗氧化性及細胞ROS水平的影響 在卵母細胞與胚胎的體外培養(yǎng)微環(huán)境中,細胞與胚胎暴露于相對“高氧”環(huán)境[21],由于細胞抗氧化防御不足而導致氧化應激,細胞會產(chǎn)生大量的ROS,包括超氧化物陰離子(O2-)、羥基自由基(-OH)和過氧化氫(H2O2)。大量ROS會引起細胞產(chǎn)生氧化應激,且ROS的過度積累可導致異?;蜣D(zhuǎn)錄和細胞信號傳導、細胞膜損傷、細胞周期停滯、大量DNA斷裂、線粒體異常、細胞衰老、細胞凋亡或胚胎中的細胞死亡[22],從而降低細胞活力與體外發(fā)育水平。已有研究證實,細胞內(nèi)積累的氧化損傷和高水平的ROS可導致細胞膜損傷和DNA斷裂[23]。ROS不僅對細胞功能(如蛋白質(zhì)、脂質(zhì)和核酸組分的損傷)產(chǎn)生負面影響,而且這種損傷可導致線粒體改變及卵裂率降低,最終影響胚胎的體外發(fā)育率。此外,卵母細胞中DNA損傷程度與細胞內(nèi)ROS水平的增加呈正相關。
MT作為一種抗氧化劑,可有效改善體外培養(yǎng)細胞的外環(huán)境,提高卵母細胞與胚胎的體外發(fā)育率。因此,抑制胚胎或卵母細胞中ROS的產(chǎn)生或添加自由基清除劑可增強胚胎發(fā)育潛力。Kang等[8]報道MT處理的卵母細胞IVM過程中ROS水平顯著低于未處理的卵母細胞。牛體細胞核移植胚胎的研究表明,MT可顯著降低細胞內(nèi)ROS水平和上調(diào)??寡趸騍NT1和Gpx4的表達[15]。在小鼠上,大量研究也證實MT可顯著降低IVF胚胎ROS水平,并可促進胚胎的體外發(fā)育[20]。Suzuki等[24]在豬胚胎細胞培養(yǎng)基中加入抗氧化劑,結(jié)果顯示抗氧化劑可減少細胞間H2O2水平并提高了胚胎的發(fā)育能力。Nakano等[19]則證實,在IVC期間加入MT可降低孤雌生殖胚胎中ROS的水平??梢奙T的存在對體外培養(yǎng)的胚胎及卵母細胞起到了顯著降低細胞內(nèi)ROS水平的作用。
4.2 MT對細胞凋亡的影響 細胞凋亡是指為維持細胞內(nèi)環(huán)境的穩(wěn)定,由基因控制下的細胞自主有序的死亡,是評價細胞質(zhì)量的重要標準之一,是評價體外胚胎發(fā)育能力的重要因素。研究證實,MT可阻止綿羊顆粒細胞中因熱應激引起的增殖減少和凋亡率增加[25]。大量研究證實,MT通過保護細胞免受氧化應激,使線粒體內(nèi)環(huán)境保持穩(wěn)態(tài),從而減少細胞的凋亡[5,22]。同時MT作為一種抗氧化劑,也可以顯著減少體外培養(yǎng)細胞的凋亡,改善胚胎質(zhì)量。有研究表明,MT的補充可顯著減少牛核移植胚胎的凋亡、改善胚胎質(zhì)量。類似地,MT的處理可減少豬SCNT胚胎和體外培養(yǎng)的鼠胚胎的凋亡。Ren等[26]發(fā)現(xiàn),MT可以補償受損的谷胱甘肽/谷胱甘肽過氧化物酶(GSH / GPx)系統(tǒng),減輕胚胎凋亡。MT抗細胞凋亡不僅通過其抗氧化作用,還可通過其調(diào)節(jié)基因表達的能力。有研究表明,MT可抑制促凋亡基因p53和Bax的表達,并刺激抗氧化基因SOD1和Gpx4、抗凋亡基因BCL2L1和多能性相關基因SOX2在核移植胚胎中的表達[15]??梢姡琈T能夠有效地維持細胞內(nèi)環(huán)境的穩(wěn)定,降低細胞的氧化應激程度,調(diào)節(jié)細胞中凋亡相關基因的表達。
4.3 MT對胚胎表觀遺傳修飾的影響 對于體細胞核移植重構(gòu)胚,卵母細胞質(zhì)中的重編程因子將供體核進行新的表觀遺傳修飾(主要有DNA甲基化、組蛋白乙?;?、X染色體失活、基因印記和端粒維持)來維持體細胞核移植胚胎的發(fā)育,供體細胞核的重編程程度是導致核移植胚胎能否發(fā)育成正常動物的最重要的因素之一。其中有關DNA甲基化、組蛋白乙?;c體細胞核移植重編程的前人已進行大量研究,發(fā)現(xiàn)組蛋白超乙?;烧T導染色質(zhì)重塑,減輕轉(zhuǎn)錄抑制,促進各種因子進入核小體,有助于重編程進行[27]。另有研究發(fā)現(xiàn),在體細胞核移植胚胎培養(yǎng)液中加入MT,可顯著提高胚胎細胞H3K9乙?;磉_水平,但不影響總體H3K9甲基化、DNA甲基化和DNA羥甲基化水平[15]。目前關于MT對胚胎表觀遺傳修飾的影響方面的報道并不太多,還有待深入研究。
綜上,在卵母細胞及胚胎的發(fā)育過程中添加適宜濃度的MT可改善卵母細胞質(zhì)量、促進卵母細胞與胚胎的體外發(fā)育、提高囊胚發(fā)育率,增加內(nèi)細胞團比例,減少由于氧化應激而引起的細胞凋亡,改善胚胎質(zhì)量,維持線粒體內(nèi)環(huán)境穩(wěn)態(tài),降低細胞內(nèi)ROS水平,促進E2與P4的生成,降低重構(gòu)胚在重編程過程中的轉(zhuǎn)錄抑制。然而,MT在卵母細胞與胚胎發(fā)育過程中的精密調(diào)控機制還不得而知,且MT在不同的物種中在細胞發(fā)育的不同階段起到的作用效果是否一致還未可知。關于MT對細胞表觀遺傳修飾方面的作用機理目前尚不明確,還需要進行深入探索。
[1] He Y M, Deng H H, Shi M H, et al. Melatonin modulates the functions of porcine granulosa cells via its membrane receptor MT2 in vitro[J]. Anim Reprod Sci, 2016, 172: 164‐172.
[2] 王淑娟, 劉寶如, 劉文舉, 等. 褪黑素對牛卵母細胞體外成熟及孤雌胚胎體外發(fā)育的影響[C]. 蘭州: 中國奶業(yè)協(xié)會第26次繁殖學術(shù)年會暨國家肉牛牦牛/奶牛產(chǎn)業(yè)技術(shù)體系第3屆全國牛病防治學術(shù)研討會, 2011.
[3] Rocha R M P, Lima L F, Alves A M C V, et al. Interaction between melatonin and follicle‐stimulating hormone promotes in vitro development of caprine preantral follicles[J]. Domest Anim Endocrin, 2013, 1: 1‐9.
[4] Wang F, Tian X, Zhang L, et al. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1[J]. J Pineal Res, 2014, 56(3): 333‐342.
[5] Zhang H, Zhang Y. Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions[J]. J Pineal Res, 2014, 57(2): 131‐146.
[6] Gitto E, Tan D, Reiter R J, et al. Individual and synergistic antioxidative actions of melatonin: studies with vitamin E, vitamin C, glutathione and desferrrioxamine (desferoxamine) in rat liver homogenates[J]. J Pharm Pharmacol , 2001, 53(10): 1393‐1401.
[7] Tian X, Wang F, He C, et al. Benef i cial ef f ects of melatonin on bovine oocytes maturation: a mechanistic approach[J]. JPineal Res, 2014, 57(3): 239‐247.
[8] Kang J, Koo O, Kwon D, et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells[J]. J Pineal Res, 2009, 46(1): 22‐28.
[9] Lord T, Nixon B, Jones K, et al. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro[J]. Biol Reprod, 2013, 88(3): 67‐67.
[10] Liang S, Guo J, Choi J, et al. Ef f ect and possible mechanisms of melatonin treatment on the quality and developmental potential of aged bovine oocytes[J]. Reprod Fertil Dev, 2016, DOI: 10.1071/RD16223.
[11] Do L, Shibata Y, Taniguchi M, et al. Melatonin supplementation during in vitro maturation and development supports the development of porcine embryos[J]. Reprod Domest Anim, 2015, 50(6):1054‐1058. [12] Lonergan P, Rizos D, Ward F, et al. Factors influencing oocyte and embryo quality in cattle[J]. Reprod Nutr Dev, 2001, 41:1‐11.
[13] Remiao M, Lucas C G, Domingues W B, et al. Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos[J]. Reprod Toxicol, 2016, 63: 70‐81.
[14] Luchetti F, Canonico B, Betti M, et al. Melatonin signaling and cell protection function[J]. FASEB J, 2010, 24(10): 3603‐3624.
[15] Su J, Wang Y, Xing X, et al. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos[J]. J Pineal Res, 2015, 59(4): 455‐468.
[16] Papis K, Poleszczuk O, Wentamuchalska E, et al. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration[J]. J Pineal Res, 2007, 43(4): 321‐326.
[17] Ishizuka B, Kuribayashi Y, Murai K, et al. The effect of melatonin on in vitro fertilization and embryo development in mice[J]. J Pineal Res, 2000, 28(1): 48‐51.
[18] Abecia J A, Forcada F, Zuniga O. The ef f ect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro[J]. Vet Res Commun, 2002, 26(2): 151‐158.
[19] Nakano M, Kato Y, Tsunoda Y. Ef f ect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear‐transferred porcine oocytes in vitro[J]. Zygote, 2012, 20(2): 199‐207.
[20] Gao C, Han H, Tian X, et al. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2‐cell embryos[J]. J Pineal Res, 2012, 52(3): 305‐311.
[21] Manchester L C, Cotomontes A, Boga J A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable[J]. J Pineal Res, 2015, 59(4): 403‐419.
[22] Gupta M K, Uhm S J, Lee H T. Ef f ect of vitrif i cation and beta‐mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrif i ed before or after in vitro fertilization[J]. Fertil Steril, 2010, 93(8): 2602‐2607.
[23] Bogliolo L, Murrone O, Emidio G D, et al. Raman spectroscopy‐based approach to detect aging‐related oxidative damage in the mouse oocyte[J]. J Assist Reprod Genet, 2013, 30(7): 877‐882.
[24] Suzuki C, Yoshioka K. 257 Effects of glutamine and hypotaurine on oxidative stress of porcine embryos cultured in vitro[J]. Reprod Fertil Dev, 2004, 17(2): 278‐279.
[25] Fu Y, He C, Ji P, et al. Effects of Melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress[J]. Int J Mol Sci, 2014, 15(11): 21090‐21104.
[26] Ren L, Wang Z, An L, et al. Dynamic comparisons of high‐resolution expression profiles highlighting mitochondria‐related genes between in vivo and in vitro fertilized early mouse embryos[J]. Hum Reprod, 2015, 30(12): 2892‐2911.
[27] 蘇文龍, 李璐, 孟娜娜, 等. Zebularine處理綿羊核供體卵丘細胞對其細胞周期和核移植胚胎發(fā)育效果的影響[J].中國畜牧雜志, 2014, 50(23): 18‐21.
Advances in Ef f ects of Melatonin on the Development of Oocytes and Embryos in vitro
WEI Qiao‐li1, FANG Xiao‐huan1, CAO Hui1, LI Jun‐jie1,2*
(1. College of Animal Science and Technology, Agricultural Unive sity of Hebei, Hebei Baoding 071001, China; 2. Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei, Hebei Baoding 071001, China)
Oxidative stress is often involved in culturing oocytes and embryos in vitro due to a relatively high oxygen environment and inadequate antioxidant defenses. Then large amount of reactive oxygen species (ROS) are accumulated and the rate of oocyte and embryo development in vitro was decreased. As an ef f ective antioxidant and free radical scavenger, melatonin can signif i cantly decrease the intracellular ROS level, remove the intracellular free radicals, and improve the in vitro maturation and in vitro development of oocytes. This review focuses on the ef f ects of melatonin on oocyte maturation, embryo in vitro development, embryo quality and its mechanism in order to further enhance the understanding of melatonin in oocyte and fetal development, and lay the foundation for the application of melatonin in the production of embryos in vitro.
Oocytes; Embryo; Melatonin; Antioxidants; In vitro Development
S814
A
10.19556/j.0258-7033.2017-09-004
2017-04-26;
2017-07-14
河北省科技計劃(17226613D);河北省高等學??茖W技術(shù)研究項目(ZD2014002);河北省自然科學基金(C2014204119)
魏巧莉(1992-),女,甘肅蘭州人,碩士研究生,主要從事動物繁殖與胚胎工程研究,E-mail:1398696621@ qq.com
*通訊作者:李俊杰,男,博士,教授,E-mail: lijunjie816 @163.com