徐 海 祥, 瞿 洋, 余 文 曌1,
( 1.武漢理工大學(xué) 高性能船舶技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室, 湖北 武漢 430063;2.武漢理工大學(xué) 交通學(xué)院, 湖北 武漢 430063 )
船舶動(dòng)力定位反步逆最優(yōu)控制
徐 海 祥*1,2, 瞿 洋2, 余 文 曌1,2
( 1.武漢理工大學(xué) 高性能船舶技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室, 湖北 武漢 430063;2.武漢理工大學(xué) 交通學(xué)院, 湖北 武漢 430063 )
針對(duì)動(dòng)力定位船舶定點(diǎn)定位過程中的高低頻運(yùn)動(dòng)特性,設(shè)計(jì)了一種基于無源濾波的反步逆最優(yōu)控制器.首先建立船舶的非線性方程,再利用線性化方程對(duì)應(yīng)的Riccati方程對(duì)船舶非線性方程進(jìn)行反步變換,最后基于Lyapunov函數(shù)設(shè)計(jì)了未建模擾動(dòng)環(huán)境力自適應(yīng)律和漸進(jìn)穩(wěn)定的控制律,同時(shí)滿足了局部性能指標(biāo)和全局性能指標(biāo).該方法從一個(gè)新的角度解決定點(diǎn)定位過程中船舶非線性系統(tǒng)最優(yōu)控制的問題,避免了傳統(tǒng)H∞魯棒控制需要求解Hamilton-Jacobi-Isaacs(HJI)方程的問題,保證了整個(gè)濾波和控制系統(tǒng)的穩(wěn)定性.同時(shí)還研究了誤差和控制權(quán)矩陣Q和R對(duì)系統(tǒng)性能的影響,確保了船舶低速定位過程中的能耗最優(yōu).動(dòng)力定位船舶定點(diǎn)定位的仿真結(jié)果驗(yàn)證了該方法的有效性.
動(dòng)力定位;無源濾波;反步變換;最優(yōu)控制
動(dòng)力定位技術(shù)已廣泛用于深水鉆井、海底管線的檢測(cè)和調(diào)查、水下機(jī)器人作業(yè)、水下工程施工、油井增產(chǎn)措施和維修、平臺(tái)供應(yīng)、穿梭油船、浮式采油(有或無儲(chǔ)油設(shè)備)等作業(yè)中.對(duì)于海上長(zhǎng)時(shí)間定位的船舶,船舶的濾波和最優(yōu)控制問題對(duì)于節(jié)省燃料和減少污染具有重要意義.
傳統(tǒng)動(dòng)力定位(DP)系統(tǒng)通常假定運(yùn)動(dòng)方程在36個(gè)艏向角每隔10°可線性化,并利用線性Kalman濾波濾除船舶的高頻運(yùn)動(dòng).對(duì)于每10°的線性化運(yùn)動(dòng)方程,最優(yōu)的Kalman濾波器相關(guān)參數(shù)和反饋控制器增益都需要隨著線性化過程不斷調(diào)整[1],并且相應(yīng)的噪聲協(xié)方差矩陣需要在線自適應(yīng)估計(jì)[2].相較于Kalman濾波,無源濾波參數(shù)易整定,并且實(shí)船試驗(yàn)也驗(yàn)證了其有效性[1].此后,F(xiàn)ossen論述了在低速和恒定速度時(shí),船舶系統(tǒng)具有良好的無源性,克服了無源理論在船舶控制系統(tǒng)中應(yīng)用的局限性[3].在無源理論的基礎(chǔ)上,卜德華等結(jié)合PID控制器驗(yàn)證了無源濾波器對(duì)濾除船舶位置和艏搖角高頻信息的有效性[4].針對(duì)船舶定點(diǎn)狀態(tài)環(huán)境最優(yōu)問題,F(xiàn)ossen等提出了環(huán)境最優(yōu)艏向控制,使船舶能根據(jù)外部緩變環(huán)境力自動(dòng)調(diào)節(jié)艏向,從而達(dá)到減小能耗的目的[5].對(duì)于固定艏向定位作業(yè),最優(yōu)控制問題通過設(shè)計(jì)H∞魯棒控制器來解決,但此方法需要求解復(fù)雜的Hamilton-Jacobi-Isaacs(HJI)方程[6-7].為了克服環(huán)境荷載對(duì)船舶系統(tǒng)的影響,Ngongi等利用H∞魯棒控制來抵抗外荷載,并用TS模糊模型來逼近DP系統(tǒng),最后通過求解LMI方程來保證該TS模糊控制器的穩(wěn)定性[8].相較于H∞魯棒控制,反步積分控制設(shè)計(jì)過程簡(jiǎn)單,被廣泛應(yīng)用于船舶動(dòng)力定位系統(tǒng)的設(shè)計(jì)當(dāng)中[9-10].為了滿足執(zhí)行機(jī)構(gòu)動(dòng)態(tài)特性的要求,Morishita等以及徐海祥等將執(zhí)行機(jī)構(gòu)的動(dòng)態(tài)特性考慮到反步積分控制器的設(shè)計(jì)過程中,使控制輸出更加平滑,減小了執(zhí)行機(jī)構(gòu)的磨損[11-12].由于反步積分控制器的設(shè)計(jì)基于船舶數(shù)學(xué)模型,模型的準(zhǔn)確性對(duì)控制效果有一定的影響.為了避免求解HJI方程,Ezal等針對(duì)單輸入單輸出系統(tǒng),首先提出了一種反步逆最優(yōu)控制器,將H∞最優(yōu)控制理論和反步積分控制理論相結(jié)合,同時(shí)滿足了局部最優(yōu)和全局最優(yōu)的性能指標(biāo)[13].在Ezal等的基礎(chǔ)上,Strand等將單輸入單輸出的反步逆最優(yōu)控制理論推廣到多輸入多輸出的錨泊輔助動(dòng)力定位中[14].隨后,Strand等又將反步逆最優(yōu)控制器和無源濾波相結(jié)合,進(jìn)一步推廣了反步逆最優(yōu)理論并保證了整個(gè)系統(tǒng)輸入狀態(tài)的穩(wěn)定(input-to-state stable)[15].由于多輸入多輸出的錨泊輔助動(dòng)力定位系統(tǒng)不具有一般性,Kim等在Ezal和Strand等的基礎(chǔ)上,推導(dǎo)了多輸入多輸出系統(tǒng)的一般理論形式[16].謝文博等在Strand等的基礎(chǔ)上,根據(jù)船舶動(dòng)力定位循跡控制中時(shí)變期望位置的特點(diǎn),推廣設(shè)計(jì)了時(shí)變反步逆最優(yōu)控制[17].
以上文獻(xiàn)大都側(cè)重于濾波器或者控制器的設(shè)計(jì)穩(wěn)定,而較少考慮到濾波和控制器之間的相互影響,有時(shí)無法保證整個(gè)濾波和控制系統(tǒng)的穩(wěn)定性.在Strand等的研究基礎(chǔ)之上,本文結(jié)合動(dòng)力定位定點(diǎn)控制的具體要求,進(jìn)一步完善反步逆最優(yōu)控制理論在船舶動(dòng)力定位系統(tǒng)中的應(yīng)用,研究誤差和控制權(quán)矩陣Q和R對(duì)系統(tǒng)性能的影響,設(shè)計(jì)一種自適應(yīng)反步逆最優(yōu)控制器,以保證整個(gè)濾波和控制系統(tǒng)的穩(wěn)定性,降低船舶低速定位過程中的能耗.
1.1 船舶動(dòng)力定位數(shù)學(xué)模型
建立如圖1所示的3個(gè)坐標(biāo)系.在大地坐標(biāo)系XEYEZE下,船舶當(dāng)前低頻運(yùn)動(dòng)位置和船舶期望位置分別為η=(xyψ)T和ηd=(xdydψd)T.在船舶運(yùn)動(dòng)坐標(biāo)系XYZ下,船舶當(dāng)前低頻運(yùn)動(dòng)速度和期望速度分別為v=(uυr)T和vd=(udυdrd)T,其坐標(biāo)系原點(diǎn)位于船中縱剖面與重心G相距xg處.船舶固定坐標(biāo)系XDYDZD原點(diǎn)OD位于(xd,yd),相對(duì)于北東坐標(biāo)系旋轉(zhuǎn)了ψd.船舶固定坐標(biāo)系實(shí)際是為控制器的設(shè)計(jì)而引入的,可以認(rèn)為是一個(gè)“控制坐標(biāo)系”,其避免了船舶期望位置ηd對(duì)控制器的影響,使得船舶在期望位置ηd附近擁有良好的控制效果[14].
大地坐標(biāo)系和船舶運(yùn)動(dòng)坐標(biāo)系下,船舶動(dòng)力定位數(shù)學(xué)模型為[18]
(1)
(2)
(3)
(4)
y=η+Cωξ
(5)
式中:Aω為包含波浪主頻率ω0和相對(duì)阻尼ζ的定常矩陣;ωω和Eω分別為高斯白噪聲及其幅值矩陣;J(η)為坐標(biāo)系轉(zhuǎn)換矩陣;b∈R3×1,是作用于船體上的環(huán)境擾動(dòng)力,包括二階波浪慢漂力、風(fēng)和流的作用力;T為大時(shí)間常數(shù)矩陣;ωb為均值為零的高斯白噪聲矩陣;Eb為高斯白噪聲的幅值矩陣;M∈R3×3,為船舶慣性矩陣;D∈R3×3,為線性阻尼矩陣;τ∈R3×1,為作用于船體上的推力;y為船舶測(cè)量位置;Cωξ為船舶高頻運(yùn)動(dòng)位置,Cω=(0I).模型中相關(guān)矩陣的具體形式為
M=m-Xu.000m-Yυ.mxg-Yr.0mxg-Nυ.Iz-Nr.?è?????÷÷÷,
當(dāng)船舶前進(jìn)速度不為零時(shí),矩陣D一般是非線性的;但對(duì)于零速或者恒定速度,矩陣D可以假定為線性的[1].
圖1 大地、船舶運(yùn)動(dòng)和船舶固定坐標(biāo)系
1.2 基于數(shù)學(xué)模型的無源濾波器設(shè)計(jì)
20世紀(jì)90年代,機(jī)器人等領(lǐng)域的無源控制已得到了較大的發(fā)展[19],而船舶無源控制直到90年代后期才得到應(yīng)用,限制無源理論在船舶中應(yīng)用的原因是船舶的附黏水質(zhì)量和阻尼項(xiàng)會(huì)隨著船舶在海浪中的遭遇頻率以及船速的變化而變化[3].在利用無源理論設(shè)計(jì)船舶的濾波器時(shí),需要考慮船舶是否具有無源性.Fossen已論證了當(dāng)船速較低時(shí)船舶具有良好的無源性[3].在一般工況下,環(huán)境擾動(dòng)力矩對(duì)船艏的擾動(dòng)角度在1°以內(nèi),而極限海況的擾動(dòng)角度在5°以內(nèi),因此可以做出如下的合理假設(shè):
J(η)≈J(y)
(6)
根據(jù)文獻(xiàn)[1]和[18],利用式(6)并結(jié)合船舶動(dòng)力定位數(shù)學(xué)模型可設(shè)計(jì)如下船舶無源濾波器:
ξ^.=Aωξ^+K1y
(7)
η^.=J(y)v^+K2y
(8)
b^.=-T-1b^+K3y
(9)
Mv^.+Dv^=τ+JT(y)b^+JT(y)K4y
(10)
(11)
:y =y-y^
式中;K1∈R6×3,K2,K3,K4∈R3×3,為濾波器增益矩陣.為使濾波器穩(wěn)定,結(jié)合Kalman-Yakubovich-Popov引理并利用頻域理論可以確定濾波器的相關(guān)增益矩陣[1].
1.3 低頻運(yùn)動(dòng)數(shù)學(xué)模型的變換
在大地坐標(biāo)系XEYEZE和船舶運(yùn)動(dòng)坐標(biāo)系XYZ下,無源濾波器設(shè)計(jì)用到的是低頻運(yùn)動(dòng)數(shù)學(xué)模型(8)和(10).為了避免船舶期望位置ηd對(duì)控制器設(shè)計(jì)的影響,控制器設(shè)計(jì)所用到的低頻運(yùn)動(dòng)模型為船舶固定坐標(biāo)系XDYDZD和船舶運(yùn)動(dòng)坐標(biāo)系XYZ下的變換模型.在XDYDZD下,偏差向量可以表示為[14]
e=JT(ηd)(ηd-η)
(12)
記Jd=J(ηd),Je=JT(ηd)J(η),并考慮如下關(guān)系:
(13)
(14)
對(duì)式(12)求導(dǎo)有
(15)
在定點(diǎn)定位和狀態(tài)保持控制中,期望位置偏差ed=(exdeydeψd)T和定位點(diǎn)處期望速度vd均為0,且濾波器的輸出是控制器的輸入.因此,式(15)可以簡(jiǎn)化為
e^.=-Jev^-JTdK2y
(16)
同時(shí),式(10)可以寫為
v^.=-M-1Dv^+M-1u+JTeJTdK4y
(17)
式中
u=τ+JTeJTdb^
(18)
x.=f(x)+Bu+Hy
(19)
式中
f(x)=-Jev^-M-1Dv^?è????÷÷,B=0B2?è???÷=0M-1?è???÷,
x.=Ax+Bu+H0y
(20)
式中
式(19)和(20)為船舶低頻運(yùn)動(dòng)方程(8)和(10)的變換形式,兩式均計(jì)及了船舶的期望位置ηd,避免了ηd對(duì)控制器設(shè)計(jì)的影響.
2.1 控制目標(biāo)
(1)局部最優(yōu)目標(biāo)
系統(tǒng)在所設(shè)定的期望位置xd=0附近時(shí),要實(shí)現(xiàn)的控制目標(biāo)是對(duì)于式(20)的線性系統(tǒng),設(shè)計(jì)一個(gè)穩(wěn)定的控制律,以滿足如下的性能指標(biāo):
(21)
式中:誤差權(quán)矩陣Q和控制權(quán)矩陣R均為對(duì)稱正定矩陣.對(duì)于最優(yōu)的衰減系數(shù)γ*,衰減系數(shù)γ應(yīng)滿足γ>γ*.
(2)全局最優(yōu)目標(biāo)
系統(tǒng)最終要實(shí)現(xiàn)的控制目標(biāo)是對(duì)于式(19)的非線性系統(tǒng),設(shè)計(jì)一個(gè)全局漸進(jìn)穩(wěn)定的控制律,以滿足如下的性能指標(biāo):
(22)
式中:q(x)和R*(x)為非線性系統(tǒng)中待確定的正定部分,其在反步逆最優(yōu)設(shè)計(jì)過程中滿足以下局部約束條件[15]:
R*(0)=R
(23)
(24)
因此,當(dāng)船舶靠近設(shè)定點(diǎn)xd=0時(shí),全局漸進(jìn)穩(wěn)定的控制律將退化為線性H∞(LQ)控制律,此時(shí)局部最優(yōu)目標(biāo)得到滿足.
2.2 線性反步變換
局部最優(yōu)性能指標(biāo)Jl所對(duì)應(yīng)的廣義Riccati代數(shù)方程為
(25)
正定矩陣P可以分解為
P=LTΔL
(26)
式中:L為下三角矩陣,Δ為正定分塊對(duì)角矩陣,
利用式(26),可將式(25)轉(zhuǎn)化為
(27)
式中
設(shè)定新的變量z,通過反步變換,滿足全局目標(biāo)的非線性系統(tǒng)式(19)有如下映射關(guān)系[20]:
(28)
z.=Az+B0ul+H0y
(29)
考慮如下Lyapunov函數(shù):
V=zTΔz
(30)
對(duì)式(30)求導(dǎo)并結(jié)合式(29)的線性系統(tǒng),局部最優(yōu)目標(biāo)所對(duì)應(yīng)的線性H∞控制律為
(31)
此時(shí),Lyapunov導(dǎo)函數(shù)滿足
V.≤-zTQz-uTRu+γ2y Ty
(32)
在后文的控制器設(shè)計(jì)中,將會(huì)用到非線性反步逆最優(yōu)設(shè)計(jì)方法來構(gòu)建與式(29)相類似的非線性變換方程.在非線性反步逆最優(yōu)構(gòu)造過程中,都會(huì)確定每一步的虛擬控制量αi,最終存在全局最優(yōu)目標(biāo)所對(duì)應(yīng)的控制律:
(33)
滿足
V.≤-q(z)-uT?R?(z)u?+γ2y Ty
(34)
其中q(z)和R*(z)的正定過程將會(huì)在后文中給出.
2.3 非線性反步變換
反步逆最優(yōu)控制器的設(shè)計(jì)首先通過構(gòu)建與式(29)相類似的非線性變換方程,再利用Lyapunov函數(shù)(30)推導(dǎo)反步逆最優(yōu)控制律.非線性變換方程的推導(dǎo)過程總共可分兩步進(jìn)行.
步驟1 定義第一個(gè)偏差向量為
(35)
對(duì)式(35)求導(dǎo)得
z.1=α1+(-Jev^-α1)+H1y
(36)
αh=-Π(z1)z1
Ω(z1)=diag{3ρ1z1,3ρ2z2,3ρ3z3}
式中:z1=(z1z2z3)T,ρ1、ρ2、ρ3為正常數(shù).
定義第2個(gè)偏差向量為
A12z2=-z2=-Jev^-α1
(37)
因此
z.1=α1-z2+H1y
(38)
步驟2 對(duì)式(37)求導(dǎo)得
(39)
式中
J.eJTe=(r-rd)S=(r^+δ-rd)S
(40)
(41)
(42)
式中
G2(r^,z)=-JeM-1DJTe+r^S-A11-A22
綜合式(38)和(42)可得與式(29)相類似的非線性變換方程:
z.=Az+Bu+Gz+Hy +Σ
(43)
式中
2.4 反步逆最優(yōu)控制器設(shè)計(jì)
若用無源濾波器中的式(9)作為未建模環(huán)境力的估計(jì),則可選取和式(30)相同的Lyapunov函數(shù).雖然式(9)能夠?qū)崿F(xiàn)對(duì)未建模環(huán)境力的跟蹤,但是為了獲得較好的濾波效果,式(9)中的增益矩陣會(huì)受到限制,使得未建模環(huán)境力的跟蹤效率并不高.為了提高環(huán)境力的跟蹤效率,這里采用另外一種積分操作,可以取如下Lyapunov函數(shù):
(44)
(45)
B2u+H2y +Σ2)+2zT1Δ1H1y -2b TΓ-1b^.
(46)
將式(27)代入上式,則
(47)
b^.=ΓJdJeBT2Δ2z2
(48)
(49)
(50)
式中
反步逆最優(yōu)控制律可以取為
(51)
若令
(52)
則有
(53)
式中:q(z)應(yīng)該滿足正定條件,在假設(shè)船舶速度v和高頻運(yùn)動(dòng)艏向角速度δ有界的情況下,存在有界正實(shí)數(shù)β1和β2使得Υ滿足[15]
(54)
為了使整個(gè)系統(tǒng)穩(wěn)定,q(z)需滿足
(55)
結(jié)合式(54)和(55),存在0<θ<1,使式(53)滿足
V.≤-(1-θ)q(z)-uT?R?u?+γ2y Ty
(56)
若q(z)滿足正定條件,則
(57)
方式一
(58)
方式二
(59)
式中χ為正定矩陣,可取為
(60)
方式三
R-T?=u1(r^,z)I+u2(r^,z)R-1
(61)
(62)
u2(r^,z)=1;λ1≥-λ2(1+λ1+λ2k)-1;k>0,λ1<-λ2{
(63)
(64)
(65)
式中:λmax(*)表示求取*的最大特征值.為了操作的簡(jiǎn)便,這里選用第3種選取方式.
下面將通過計(jì)算機(jī)仿真來驗(yàn)證無源濾波和反步逆最優(yōu)算法的有效性.如圖2所示,本文仿真模型為縮尺比為1∶20的平臺(tái)供應(yīng)船模,船舶的慣性矩陣和阻尼矩陣通過CFD理論計(jì)算得到,船舶模型相關(guān)參數(shù)、環(huán)境力參數(shù)以及控制器等相關(guān)參數(shù)如表1所示,環(huán)境荷載的加載方式詳見文獻(xiàn)[18].
為檢驗(yàn)未建模環(huán)境力自適應(yīng)律效果,使船舶狀態(tài)保持控制,初始時(shí)刻船舶位置為η0,期望位置也為η0,初始時(shí)刻船舶3個(gè)方向未建模環(huán)境力和力矩均設(shè)置為零.船舶在時(shí)刻t=200 s時(shí)受到表1中的環(huán)境力作用,在t=1 800 s環(huán)境力消失.船舶在東向、北向和艏向的位置如圖3所示.固定坐標(biāo)系下3個(gè)方向的自適應(yīng)未建模環(huán)境力如圖4所示.相應(yīng)的權(quán)矩陣選取為
圖2 平臺(tái)供應(yīng)船模
表1 相關(guān)參數(shù)設(shè)定值
為檢驗(yàn)權(quán)矩陣Q和R對(duì)DP系統(tǒng)的能耗影響,使船舶作中近距離定點(diǎn)定位控制,初始時(shí)刻船舶位置為η0,期望位置為ηd=(5 m 5 m π/4)T,無環(huán)境力干擾.選取4組權(quán)矩陣.
為了比較權(quán)矩陣對(duì)船舶能耗的影響,取如下總推力性能指標(biāo):
(b) 船舶狀態(tài)保持北向位置
(c) 船舶狀態(tài)保持艏向位置
圖4 船舶狀態(tài)保持自適應(yīng)未建模環(huán)境力
權(quán)矩陣為參數(shù)1、2、3和4時(shí),總推力性能指標(biāo)如圖5所示,船舶低頻東向位置、低頻北向位置和低頻艏向位置如圖6所示.
針對(duì)本文中所涉及的無源濾波器,狀態(tài)保持仿真實(shí)驗(yàn)展示了相應(yīng)的濾波效果和未建模環(huán)境力
圖5 總推力性能指標(biāo)
(a) 船舶低頻東向位置
(b) 船舶低頻北向位置
(c) 船舶低頻艏向位置
圖6 不同權(quán)矩陣下的控制效果
Fig.6 The control results of different positive cost matrices
自適應(yīng)律的效果.在突變未建模環(huán)境力的作用下,圖4展示了環(huán)境力自適應(yīng)律良好的跟蹤效果.圖3展示了在自適應(yīng)未建模環(huán)境力和實(shí)際環(huán)境力相近時(shí),船舶的位置和艏向?yàn)V波效果良好,在很大程度上濾除了高頻運(yùn)動(dòng).在t=200 s至t=1 800 s,自適應(yīng)未建模環(huán)境力和實(shí)際環(huán)境力存在較大偏差,導(dǎo)致船舶位置估計(jì)尤其是艏向角估計(jì)和實(shí)際低頻位置存在一定的偏差.造成未建模環(huán)境力和實(shí)際環(huán)境力有偏差的原因往往是突風(fēng)、大浪或者激流等.由于控制是響應(yīng)緩變環(huán)境力,變化較大且頻繁的外部環(huán)境力對(duì)船舶控制將會(huì)是一個(gè)巨大的挑戰(zhàn).
圖5展示了不同權(quán)矩陣所對(duì)應(yīng)的總推力性能指標(biāo),船舶的低速運(yùn)動(dòng)意味著船舶較長(zhǎng)的響應(yīng)時(shí)間,與此同時(shí)相應(yīng)的能耗也較小.圖6給出了不同權(quán)矩陣對(duì)定位效果的影響.根據(jù)權(quán)矩陣的定義可知,參數(shù)Q的前3個(gè)元素對(duì)應(yīng)船舶的位置權(quán)重,而后3個(gè)元素對(duì)應(yīng)船舶的速度權(quán)重;參數(shù)R對(duì)應(yīng)控制器的輸出推力權(quán)重.參數(shù)2相較于參數(shù)1增大了位置權(quán)重,船舶的速度有所增大,相應(yīng)的超調(diào)量和響應(yīng)時(shí)間等系統(tǒng)響應(yīng)特性都得到了改善.參數(shù)3相較于參數(shù)1增大了推力權(quán)重,船舶位置的響應(yīng)時(shí)間變長(zhǎng)和超調(diào)量有所增加,這是由于增大推力權(quán)重會(huì)在一定程度上限制控制器的推力輸出.參數(shù)4相較于參數(shù)1增大了船舶速度權(quán)重,船舶位置的響應(yīng)時(shí)間明顯變長(zhǎng),且基本無超調(diào),這是因?yàn)樵龃笏俣葯?quán)重限制了船舶速度.值得注意的是,過大的船舶速度會(huì)破壞船舶系統(tǒng)的無源性,即船舶的附加質(zhì)量和阻尼明顯的非線性,將會(huì)對(duì)船舶系統(tǒng)的穩(wěn)定性有著明顯的影響.因此,為了使整個(gè)動(dòng)力定位控制系統(tǒng)穩(wěn)定,控制船舶的速度不宜過高是十分必要的.
本文針對(duì)動(dòng)力定位船舶定點(diǎn)定位問題設(shè)計(jì)了一種基于無源濾波的自適應(yīng)反步逆最優(yōu)控制器,避免了H∞魯棒控制器設(shè)計(jì)過程中需要求解HJI方程的問題,滿足了局部最優(yōu)和全局最優(yōu)的性能指標(biāo),對(duì)外界緩變未建模環(huán)境力進(jìn)行補(bǔ)償?shù)耐瑫r(shí),也保證了無源濾波和控制整個(gè)系統(tǒng)的穩(wěn)定性.不同權(quán)矩陣Q和R對(duì)動(dòng)力定位控制系統(tǒng)的響應(yīng)時(shí)間、超調(diào)量等動(dòng)態(tài)特性和控制推力有著直接的影響,在滿足系統(tǒng)穩(wěn)定性的條件下,可通過優(yōu)化性能權(quán)函數(shù)Q和R以達(dá)到提高控制精度與降低能耗的目的.
[1] FOSSEN T I, STRAND J P. Passive nonlinear observer design for ships using Lyapunov methods:full-scale experiments with a supply vessel [J]. Automatica, 1999, 35(1):3-16.
[2] FOSSEN T I, PEREZ T. Kalman filtering for positioning and heading control of ships and offshore rigs [J]. IEEE Control Systems, 2010, CST-29(6):32-46.
[3] FOSSEN T I. Nonlinear passive control and observer design for ships [J]. Modeling, Identification and Control, 2000, 21(3):129-184.
[4] 卜德華,徐海祥,李文娟,等. 基于非線性無源濾波器的船舶動(dòng)力定位仿真[J]. 武漢理工大學(xué)學(xué)報(bào), 2013, 35(10):69-73.
BU Dehua, XU Haixiang, LI Wenjuan,etal. Simulation of ship dynamic positioning based on nonlinear passive filter [J]. Journal of Wuhan University of Technology, 2013, 35(10):69-73. (in Chinese)
[5] FOSSEN T I, STRAND J P. Nonlinear passive weather optimal positioning control (WOPC) system for ships and rigs:experimental results [J]. Automatica, 2001, 37(5):701-715.
[6] WU Huaining, LUO Biao. Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear control [J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(12):1884-1895.
[7] CHEN W, ANDERSON B D O. On the convergence rate of the Leake-Liu algorithm for solving Hamilton-Jacobi-Bellman equation [J]. IFAC Proceedings Volumes, 2011, 44(1):8064-8069.
[8] NGONGI W E, DU J, WANG R. Robust fuzzy controller design for dynamic positioning system of ships [J]. International Journal of Control Automation & Systems, 2015, 13(5):1294-1305.
[9] Jr. ZAKARTCHOUK A, MORISHITA H M. A backstepping controller for dynamic positioning of ships:numerical and experimental results for a shuttle tanker model [J]. IFAC Proceedings Volumes, 2009, 42(18):394-399.
[10] WITKOWSKA A. Control system design for dynamic positioning using vectorial backstepping [J]. Scientific Journals of the Maritime University of Szczecin, 2013, 108(36):182-187.
[11] MORISHITA H M, SOUZA C E S. Modified observer backstepping controller for a dynamic positioning system [J]. Control Engineering Practice, 2014, 33:105-114.
[12] 徐海祥,瞿 洋,余文曌,等. 基于動(dòng)態(tài)執(zhí)行機(jī)構(gòu)的欠驅(qū)船舶循跡控制[J]. 武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版), 2016, 40(1):6-10.
XU Haixiang, QU Yang, YU Wenzhao,etal. Path following for underactuated marine craft with actuator dynamics [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016, 40(1):6-10. (in Chinese)
[14] STRAND J P, EZAL K, FOSSEN T I,etal. Nonlinear control of ships:a locally optimal design [M] // Preprints of the IFAC NOLCOS 1998. Enschede:The Netherlands, 1998:732-738.
[15] STRAND J P, FOSSEN T I. Nonlinear output feedback and locally optimal control of dynamically positioned ships:Experimental results [C] // Proceedings of IFAC Conference on Control Application in Marine Systems. Fukuoka:IFAC, 1998:89-95.
[16] KIM H, BACK J, SHIM H,etal. Locally optimal and globally inverse optimal controller for multi-input nonlinear systems [C] // Proceedings of 2008 American Control Conference. Seattle: AACC, 2008:4486-4491.
[17] 謝文博,付明玉,張 健,等. 動(dòng)力定位船舶自適應(yīng)反步逆最優(yōu)循跡控制[J]. 中國(guó)造船, 2013, 54(3):58-69.
XIE Wenbo, FU Mingyu, ZHANG Jian,etal. Adaptive backstepping inverse optimal tracking control of dynamic positioning vessel [J]. Shipbuilding of China, 2013, 54(3):58-69. (in Chinese)
[18] FOSSEN T I. Handbook of Marine Craft Hydrodynamics and Motion Control [M]. New York:John Wiley & Sons, 2011.
[19] BERGHUIS H, NIJMEIJER H. Passivity approach to controller-observer design for robots [J]. IEEE Transactions on Robotics & Automation, 1993, 9(6):740-754.
[20] FOSSEN T I, STRAND J P. Tutorial on nonlinear backstepping:Applications to ship control [J]. Modeling, Identification and Control, 1999, 20(2):83-135.
Inverse optimal backstepping control of dynamic positioning ships
XU Haixiang*1,2, QU Yang2, YU Wenzhao1,2
( 1.Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan 430063, China; 2.School of Transportation, Wuhan University of Technology, Wuhan 430063, China )
In view of the characteristics of high and low frequency motion in ship dynamic locating and positioning, an inverse optimal backstepping controller is designed cascaded with a passive filter. Firstly, the nonlinear equation of the ship is established. Then, the Riccati equation corresponding to the linear equation is used to carry out the backstepping transformation of the nonlinear equation. Finally, the adaptive law and the asymptotic stable control law for disturbed environmental force without modeling are designed based on the Lyapunov function, which meets both the local cost function and global cost function. This new approach obtains a solution of the optimal control of nonlinear system in a new direction, avoids solving the Hamilton-Jacobi-Isaacs(HJI) equation in traditionalH∞controller design and simultaneously guarantees the stability of filter and controller. The influences of error and control weight matrixQandRon the system performance are discussed, and the optimal energy consumption during dynamic positioning of ship at slow speed is achieved. The simulation results of a dynamic locating and positioning ship show the effectiveness of this approach.
dynamic positioning; passive filter; backstepping transformation; optimal control
1000-8608(2017)01-0046-09
2016-01-07;
2016-09-20.
國(guó)家自然科學(xué)基金資助項(xiàng)目(61301279,51479158);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(163102006).
徐海祥*(1975-),男,教授,博士生導(dǎo)師,E-mail:qukaiyang@163.com;瞿 洋(1991-),男,碩士生,E-mail:yangqu91@163.com;余文曌(1989-),男,講師,E-mail:yuwenzhao1989@gmail.com.
U674.38
A
10.7511/dllgxb201701007