王 弘 喬德才 劉曉莉
(北京師范大學體育與運動學院,北京 100875)
A2AR/D2DR在運動調節(jié)帕金森病基底神經(jīng)節(jié)功能紊亂中的作用研究進展
王 弘 喬德才 劉曉莉
(北京師范大學體育與運動學院,北京 100875)
腺苷A2A型受體;多巴胺D2型受體;帕金森?。患y狀體;運動調控
帕金森病(PD)是一種神經(jīng)系統(tǒng)退行性疾病,主要病理性改變?yōu)楹谫|致密部多巴胺(DA)能神經(jīng)元變性、壞死,紋狀體DA投射減少,引發(fā)黑質-紋狀體通路對基底神經(jīng)節(jié)的調節(jié)功能紊亂〔1〕。DA替代治療在PD早期能夠緩解其臨床癥狀〔2〕,但隨著病情發(fā)展,患者會對以左旋多巴(L-DOPA)為主的DA能抗PD藥物產(chǎn)生耐藥性、引發(fā)異動癥等并發(fā)癥〔3〕。近年來研究證實,腺苷A2A型受體(A2AR)拮抗劑具有增強多巴胺D2型受體(D2DR)活性的作用〔4〕,能有效緩解PD的臨床癥狀〔5〕,且副作用較小〔6〕,迅速成為PD治療的新策略。堅持規(guī)律運動可以減緩由于增齡引發(fā)A2AR活性增高的過程〔7,8〕,這可能與近年來文獻報道的運動療法顯著改善PD 病人行為功能障礙有關,提示A2AR/D2DR在運動調節(jié)PD狀態(tài)下基底神經(jīng)節(jié)功能紊亂中起重要作用。
基底神經(jīng)節(jié)是參與運動行為調控的皮層下中樞,它主要通過直接通路(direct pathway)與間接通路(indirect pathway)實現(xiàn)對運動功能的調節(jié)。直接通路是從包括尾狀核和殼核在內的新紋狀體(Str)向黑質網(wǎng)狀部(SNr)和蒼白球內側部(GPi)發(fā)出單突觸的γ-氨基丁酸(GABA)能神經(jīng)投射,該通路激活會導致輸出核團中神經(jīng)元的抑制,從而使丘腦的抑制解除,并增強對運動皮層的興奮性驅動。相反,GABA能紋狀體-蒼白球神經(jīng)元是從紋狀體到黑質網(wǎng)狀部這一間接通路的起始端,它的興奮會增強丘腦底核(STN)向黑質網(wǎng)狀部投射的谷氨酸(Glu)能神經(jīng)傳遞,繼而增加對丘腦的抑制性輸入,導致皮層的興奮性驅動減少〔9〕。因此,間接通路的過度激活或直接通路與間接通路的平衡失調均可導致運動功能障礙。
紋狀體是基底神經(jīng)節(jié)直接與間接兩條通路的起始部位,其神經(jīng)元構筑約95%為GABA能中等多棘神經(jīng)元(MSNs),其余為大膽堿能無棘中間神經(jīng)元和快放電中間神經(jīng)元。MSNs分為兩類:即表達D1DR的GABA能強啡肽神經(jīng)元和表達D2DR 的GABA能腦啡肽神經(jīng)元〔10〕。紋狀體MSNs樹突棘的“頭”接收來自大腦皮層Glu能的興奮性投射,而樹突棘的“頸部”接受來自黑質致密部的DA能投射〔11〕。黑質-紋狀體通路的DA信號可通過上述解剖結構調節(jié)Glu能突觸傳遞、激活直接通路(D1-MSNs介導)和抑制間接通路(D2-MSNs介導)發(fā)揮對運動的調控功能。
腺苷是一種內源性嘌呤核苷酸,分布于哺乳動物的多種組織中,它作為一種神經(jīng)調質參與多種神經(jīng)遞質的釋放或突觸后神經(jīng)元電活動的調節(jié),被認為是調節(jié)神經(jīng)系統(tǒng)穩(wěn)態(tài)的重要物質。腺苷有4種受體亞型,分別是A1、A2A、A2B和A3,存在于中樞神經(jīng)系統(tǒng)以及心臟、腎臟、睪丸等不同組織,A2AR在基底神經(jīng)節(jié)紋狀體、蒼白球外側部分布密度較高〔12〕。逆轉錄多聚酶鏈反應技術檢測結果表明,A2AR mRNA在皮層、杏仁核、海馬、丘腦、小腦等部位也有低水平表達〔13〕。單克隆抗體超微結構分析結果顯示,A2AR多分布于突觸后膜,少量分布于突觸前膜;位于突觸前的A2AR起負反饋調節(jié)作用,抑制Ca2+內流及神經(jīng)遞質的釋放,而位于突觸后的A2AR通過與其他受體形成二聚體發(fā)揮生物作用〔14〕。紋狀體D2-MSNs的胞膜上〔15〕、皮層-紋狀體Glu能神經(jīng)元的軸突末梢和紋狀體-蒼白球外側部GABA能神經(jīng)元的軸突末梢都分布有A2AR-D2DR異源二聚體,見圖1。
A:生理狀態(tài),B:PD狀態(tài);實線的加粗表示興奮性或抑制性變強,虛線表示變弱圖1 PD基底神經(jīng)節(jié)A2AR/D2DR共定位及運動環(huán)路活性變化模式圖
A2AR/D2DR都屬于胞膜上的一種G蛋白耦聯(lián)受體(GPCR),通過變構與配體結合或與其他受體相互作用形成多聚體聚合物,后者又被稱為受體群島或受體馬賽克,具有不同的生物化學效能〔16~19〕。本實驗室前期研究表明,A2AR/D2DR共表達于紋狀體D2-MSNs 的胞膜上,運動過程中A2AR與D2DR通過獨立或相互作用影響各自配體與受體結合,對腺苷酸環(huán)化酶(AC)產(chǎn)生互為拮抗的作用,生成環(huán)磷酸腺苷(cAMP),調節(jié)蛋白激酶(PK)A活性,最終影響紋狀體內細胞信號整合因子 DARPP-32 的磷酸化〔20〕,這一DA和cAMP調節(jié)的磷蛋白可被鈣調磷酸酶(PP-2B)去磷酸化,起到抑制胞外Ca2+內流的作用〔21〕。激活A2AR可興奮紋狀體-蒼白球通路的GABA能神經(jīng)元、激活間接通路,從而起到抑制運動的作用。相反,激動D2DR可抑制紋狀體-蒼白球通路的GABA能神經(jīng)元、抑制間接通路,從而起到易化運動的作用,見圖2。
+:興奮作用,-:抑制作用圖2 紋狀體A2AR/D2DR胞內信號轉導機制模式圖
研究表明,PD狀態(tài)下紋狀體A2AR mRNA表達顯著升高〔22,23〕、D2DR密度顯著降低〔24〕。核磁共振成像(MRI)結果表明,PD患者接受A2AR拮抗劑SYN115治療后,丘腦血流量顯著下降,說明蒼白球外側部對丘腦的過度抑制得到明顯緩解〔25〕。研究還發(fā)現(xiàn),PD患者采用A2AR拮抗劑治療后,能夠有效緩解L-DOPA藥物毒作用引發(fā)的異動癥等并發(fā)癥〔26,27〕,表明L-DOPA和A2AR拮抗劑的協(xié)同作用對PD治療有重要的臨床意義〔28〕。此外,新近的研究證實,拮抗A2AR對DA能神經(jīng)元具有保護作用。Fox等人發(fā)現(xiàn),A2AR拮抗劑可抑制單胺氧化酶的活性,減輕神經(jīng)毒素MPTP對黑質DA能神經(jīng)元的損傷〔29,30〕。有研究發(fā)現(xiàn),A2AR參與DA合成代謝的調節(jié),咖啡因和A2AR拮抗劑MSX-3均可促進PD模型動物紋狀體DA合成限速酶酪氨酸羥化酶(TH)的合成〔31,32〕。
PD狀態(tài)下紋狀體DA的損耗和丟失對皮層-紋狀體Glu能突觸傳遞產(chǎn)生去抑制作用〔33,34〕,增強了該通路Glu能突觸傳遞效能,因此Glu的興奮性毒作用也是導致PD狀態(tài)下出現(xiàn)行為功能障礙和異動癥等并發(fā)癥的原因之一〔35〕。A2AR和mGluR5在皮層-紋狀體Glu能突觸末梢共定位,A2AR對紋狀體Glu能神經(jīng)輸入也具有調節(jié)作用〔36〕,阻斷A2AR能減少皮層Glu的釋放和紋狀體Glu的內流〔29〕。Peterson等〔37〕的研究表明,A2AR拮抗劑SCH-58261可以顯著改善DA缺失小鼠D2-MSNs的興奮性、抑制突觸后電流、減輕Glu的興奮性毒性作用。近來有人利用光遺傳技術進一步證實,用光刺激注射了熒光蛋白標記的腺病毒ChR2的野生型小鼠紋狀體 D2-MSNs時,出現(xiàn)了震顫等PD癥狀且行走和精細動作顯著減少,而雙側光照紋狀體D1-MSNs則震顫現(xiàn)象得到緩解,與靜止相比,行走等運動的時長所占總時長的百分比明顯增加,初步證實了PD病理狀態(tài)下間接通路興奮性升高、直接通路興奮性降低可能是導致行為功能障礙的原因,并提出激活直接通路可以作為今后PD的一種治療方案〔38〕。
流行病學調查發(fā)現(xiàn),體力活動能夠提高PD患者的日常生活能力,降低PD的發(fā)生率和致死率〔8〕。PD患者通過太極拳〔39〕、探戈和拳擊〔40〕等運動可明顯改善行為功能障礙。大量的研究證實,運動防治PD的神經(jīng)生物學機制與運動的神經(jīng)保護作用有關〔41〕。Gerecke等〔42〕的研究表明,跑輪運動可降低PD模型大鼠黑質DA能神經(jīng)元的死亡率;Yoon等〔43〕對6-OHDA模型大鼠連續(xù)進行30min/d、14d的跑臺運動訓練后發(fā)現(xiàn),黑質-紋狀體DA神經(jīng)元的損傷程度明顯降低;Tillerson等〔44〕的研究發(fā)現(xiàn),6-OHDA模型大鼠進行運動干預后,黑質和紋狀體區(qū)域的TH陽性表達均明顯提高;Fisher等〔45〕的研究發(fā)現(xiàn),MPTP小鼠接受運動訓練后,紋狀體多巴胺轉運體(DAT)表達下降,而D2DR表達增加;采用同位素標記的受體顯像技術觀察發(fā)現(xiàn),運動增加PD小鼠紋狀體D2DR結合潛能〔46〕。本實驗室前期研究也表明,4周跑臺運動可上調6-OHDA大鼠紋狀體D2DR表達水平〔35〕;抑制黑質DA能神經(jīng)元的放電頻率和爆發(fā)式放電活動,改善黑質-紋狀體DA能通路的功能〔47〕。上述結果可能均與運動的神經(jīng)保護作用調節(jié)了黑質-紋狀體DA能神經(jīng)傳遞過程有關。有關運動防治PD的神經(jīng)可塑性機制也有相關文獻報道,他們大多數(shù)集中在紋狀體MSNs的突觸可塑性方面。Toy等〔48〕的研究表明,持續(xù)6周的遞增負荷跑臺運動可明顯增加MPTP 小鼠紋狀體MSNs突觸后致密物和突觸囊泡的數(shù)量,并明顯增加MSNs樹突棘分支和密度;本實驗室前期研究也發(fā)現(xiàn),4周跑臺運動干預,明顯減少了PD模型大鼠紋狀體MSNs樹突棘的脫落〔49〕;降低了紋狀體Glu能突觸活性,抑制了皮層-紋狀體Glu能通路的過度興奮,顯著改善了皮層-紋狀體突觸可塑性〔50〕。
眾所周知,咖啡因是一種中樞神經(jīng)系統(tǒng)興奮劑〔51〕,補充咖啡因能夠促進高強度運動能力和運動表現(xiàn)力〔52〕,縮短大強度運動后疲勞的恢復時間,有利于提高耐力和抗疲勞能力〔53〕。有研究發(fā)現(xiàn),咖啡因攝取量與PD發(fā)病呈負相關〔54〕;6-OHDA模型大鼠給予兩周低劑量咖啡因治療后自主行為活動明顯改善,A2AR拮抗劑也有類似的作用效果〔55〕。目前的研究已經(jīng)證實,咖啡因是一種非特異性腺苷受體拮抗劑,進入體內后通過抑制紋狀體A2AR的活性,下調蒼白球外側部GABA水平,使丘腦底核的興奮性減弱,對皮層起到去抑制作用,從而達到改善PD大鼠行為功能和運動障礙的效果〔56〕。由此推測,運動改善PD大鼠行為功能障礙的機制可能是通過紋狀體D2-MSNs胞膜上的A2AR/D2DR相互作用,抑制A2AR或激活D2DR的活性,糾正PD狀態(tài)下紋狀體-蒼白球通路GABA神經(jīng)元的過度興奮,抑制間接通路的活性,調節(jié)了基底神經(jīng)節(jié)功能紊亂。但目前仍缺乏直接的實驗證據(jù),有待進一步研究考證。
A2AR/D2DR共存于基底神經(jīng)節(jié)紋狀體D2-MSNs突觸后膜,通過變構與配體結合或與其他受體相互作用形成多聚體聚合物調節(jié)突觸后神經(jīng)元功能。A2AR拮抗D2DR的表達是導致間接通路過度激活的重要原因,這與PD狀態(tài)下運動障礙發(fā)生密切相關。運動可能通過抑制A2AR或激活D2DR的活性,糾正PD狀態(tài)下紋狀體-蒼白球通路GABA神經(jīng)元的過度激活,調節(jié)間接通路的興奮性和基底神經(jīng)節(jié)直接與間接通路的平衡,達到改善PD病人行為功能障礙的治療效果。A2AR可能成為今后運動干預防治PD研究的新靶向。
1 Chou KH,Lin WL,Lee PL,etal.Structural covariance networks of striatum subdivision in patients with Parkinson's disease〔J〕.Human Brain Mapping,2014;36(4):1567-84.
2 Paolo C,Massimiliano DF,Antongiulio G,etal.New Synaptic and Molecular Targets for Neuroprotection in Parkinson's Disease〔J〕.Mov Disord,2013;28(1):51-60.
3 Raja M,Bentivoglio AR.Impulsive and compulsive behaviors during dopamine replacement treatment in Parkinson's Disease and other disorders〔J〕.Curr Drug Saf,2012;7(1):63-75.
4 Patrick H,Mark S.Adenosine A2A Antagonists in Parkinson's Disease:What's Next?〔J〕.Curr Neur Neurosci Rep,2012;12(4):376-85.
5 Yoshikuni M,Tomoyoshi K.Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson's disease〔J〕.Mov Disord,2013;28(8):1138-41.
6 Uchida S,Tashiro T,Kawai-Uchida M,etal.The adenosine A2A-receptor antagonist istradefylline enhances the motor response of L-DOPA without worsening dyskinesia in MPTP-treated common marmosets〔J〕.J Pharmacol Sci,2014;124(4):480-5.
7 Costa MS,Ardais AP,Fioreze GT,etal.Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats〔J〕.Prog Neurol Psychopharmac Biol Psychiatry,2012;36(1):198-204.
8 Archer T,Fredriksson A,Johansson B.Exercise alleviates Parkinsonism:clinical and laboratory evidence〔J〕.Acta Neurol Scand,2011;123(2):73-84.
9 Calabresi P,Picconi B,Tozzi A,etal.Direct and indirect pathways of basal ganglia:a critical reappraisal〔J〕.Nat Neurosci,2014;17(8):1022-30.
10 Gerfen CR,Engber TM.D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons〔J〕.Science,1990;250(4986):1429-32.
11 Deutch AY,Colbran RJ,Winder DJ.Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism〔J〕.Parkinson Relat Disord,2007;13 Suppl 3(8):S251-S258.
12 Ferré S,Bonaventura J,Tomasi D,etal.Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer〔J〕.Neuropharmacology,2016;104:154-60.
13 Lee YC,Chien CL,Sun CN,etal.Characterization of the rat A2A adenosine receptor gene:a 4.8-kb promoter-proximal DNA fragment confers selective expression in the central nervous system〔J〕.Eur J Neurosci,2003;18(7):1786-96.
14 Zuzana J,Redhi GH,Goldberg SR,etal.Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol(THC)self-administration in squirrel monkeys〔J〕.J Neurosci,2014;34(19):6480-4.
15 Fernández-Dueas V,Taura JJ,Cottet M,etal.Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats〔J〕.Dis Mode Mech,2015;8(1):57-63.
16 Ferré S.The GPCR heterotetramer:challenging classical pharmacology〔J〕.Trend Pharmacol Sci,2015;36(3):145-52.
17 Ferré S,Casadó V,Devi L A,etal.G Protein-coupled receptor oligomerization revisited:functional and pharmacological perspectives〔J〕.Pharmacol Rev,2014;66(2):413-34.
18 Maurice P,Kamal M,Jockers R.Asymmetry of GPCR oligomers supports their functional relevance〔J〕.Trend Pharmacol Sci,2011;32(9):514-20.
19 Smith NJ,Milligan G.Allostery at G protein-coupled receptor homo- and heteromers:uncharted pharmacological landscapes〔J〕.Pharmacol Rev,2010;62(4):701-25.
20 劉 軍,劉曉莉,喬德才.紋狀體神經(jīng)元的生理功能及其對運動中樞疲勞調控研究進展〔J〕.天津體育學院學報,2014;29(2):161-4.
21 Zhen Q,Miller GW,Voit EO.The internal state of medium spiny neurons varies in response to different input signals〔J〕.System Biol,2010;4(11):26.
22 Varani K,Vincenzi F,Tosi A,etal.A2A adenosine receptor overexpression and functionality,as well as TNF-alpha levels,correlate with motor symptoms in Parkinson's disease〔J〕.FASEB J,2010;24(2):587-98.
23 Hodgson RA,Bedard PJ,Varty GB,etal.Preladenant,a selective A(2A)receptor antagonist,is active in primate models of movement disorders〔J〕.Experiment Neurol,2010;225(2):384-90.
24 Blesa J,Przedborski S.Parkinson's Disease:animal models and dopaminergic cell vulnerability〔J〕.Front Neuroanat,2014;8(1):155.
25 Black KJ,Koller JM,Campbell MC,etal.Quantification of indirect pathway inhibition by the adenosine A 2a antagonist SYN115 in Parkinson disease〔J〕.J Neurosci,2010;30(48):16284-92.
26 Ramlackhansingh AF,Bose SK,Ahmed I,etal.Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease〔J〕.Neurology,2011;76(21):1811-6.
27 Mishina M,Ishiwata K,Naganawa M,etal.Adenosine A2A Receptors Measured with〔11 C〕TMSX PET in the Striata of Parkinson's Disease Patients〔J〕.PLoS One,2011;6(2):e17338.
28 Fuzzati-Armentero MT,Cerri S,Levandis G,etal.Dual target strategy:combining distinct non-dopaminergic treatments reduces neuronal cell loss and synergistically modulates l -DOPA-induced rotational behavior in a rodent model of Parkinson's disease〔J〕.J Neurochem,2015;134(4):740-7.
29 Fox SH.Non-dopaminergic treatments for motor control in Parkinson's disease〔J〕.Drugs,2013;73(13):1405-15.
30 Xu K,Xu YH,Chen JF,etal.Neuroprotection by caffeine:time course and role of its metabolites in the MPTP model of Parkinson's disease〔J〕.Neuroscience,2010;167(2):475-81.
31 Gammella E,Cairo G,Tacchini L.Adenosine A(2)A receptor but not HIF-1 mediates Tyrosine hydroxylase induction in hypoxic PC12 cells〔J〕.J Neurosci Res,2010;88(9):2007-16.
32 Machado-Filho JA,Correia AO,Montenegro ABA,etal.Caffeine neuroprotective effects on 6-OHDA-lesioned rats are mediated by several factors,including pro-inflammatory cytokines and histone deacetylase inhibitions〔J〕.Behav Brain Res,2014;264(5):116-25.
33 Max FO,Edmund WR,Merry CC,etal.D2 receptors receive paracrine neurotransmission and are consistently targeted to a subset of synaptic structures in an identified neuron of the crustacean stomatogastric nervous system〔J〕.J Comparat Neurol,2010;518(3):255-76.
34 Galvan A,Wichmann T.Pathophysiology of parkinsonism〔J〕.Clin Neurophysiol,2008;119(7):1459-74.
35 陳 巍,魏 翔,劉曉莉,等.運動對PD模型大鼠皮層-紋狀體Glu能神經(jīng)傳遞的影響〔J〕.北京體育大學學報,2015;28(2):61-6.
36 Nuria C,Jorge G,Bertarelli DCG,etal.Metabotropic glutamate type 5,dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells〔J〕.J Neurochem,2009;109(5):1497-507.
37 Peterson JD,Goldberg JA,Surmeier DJ.Adenosine A2a receptor antagonists attenuate striatal adaptations following dopamine depletion〔J〕.Neurobiol Dis,2012;45(1):409-16.
38 Kravitz AV,Freeze BS,Parker PRL,etal.Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry〔J〕.Nature,2010;466(7306):622-6.
39 Bloem BR,de Vries NM,Ebersbach G,etal.Nonpharmacological treatments for patients with Parkinson's disease〔J〕.Mov Disord,2015;30(11):1504-20.
40 L?tzke D,Ostermann T,Büssing A.Argentine tango in Parkinson disease-a systematic review and meta-analysis〔J〕.BMC Neurol,2015;15(1):1-18.
41 陳 巍,喬德才,劉曉莉.紋狀體神經(jīng)元可塑性與帕金森病的運動防治研究進展〔J〕.中國運動醫(yī)學雜志,2014;33(7):729-34.
42 Gerecke KM,Yun J,Pani A,etal.Exercise protects against MPTP-induced neurotoxicity in mice〔J〕.Brain Res,2010;1341(6):72-83.
43 Yoon MC,Shin MS,Kim TS,etal.Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson's rats〔J〕.Neurosci Lett,2007;423:12-7.
44 Tillerson JL,Caudle WM,Reverón ME,etal.Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease〔J〕.Neuroscience,2003;119(3):899-911.
45 Fisher BE,Petzinger GM,Nixon K,etal.Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl- 4 -phenyl -1,2,3,6 -tetrahydropyridine -lesioned mouse basal ganglia〔J〕.Neurosci Res,2004;77:378-90.
46 Vucckovic MG,Li Q,Beth F,etal.Exercise elevates dopamine D2 receptor in a mouse model of Parkinson's disease:in vivo imaging with〔18F〕fallypride〔J〕.Mov Disord,2010;25(16):2777-84.
47 王宗兵,喬德才,劉曉莉.早期運動干預對帕金森病模型大鼠黑質多巴胺能神經(jīng)元電活動的影響〔J〕.中國運動醫(yī)學雜志,2014;33(9):876-82.
48 Toy WA,Petzinger GM,Leyshon BJ,etal.Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine(MPTP)mouse model of Parkinson's disease〔J〕.Neurobiol Dis,2014;63(1):201-9.
49 陳 巍,時凱旋,劉曉莉.運動干預通過紋狀體MSNs結構可塑性改善PD模型大鼠行為功能〔J〕.中國運動醫(yī)學雜志,2015;34(3):228-34.
50 陳 巍.運動對PD大鼠紋狀體MSNs可塑性及Glu能突觸傳遞調節(jié)機制研究〔D〕.北京:北京師范大學,2015.
51 Goldstein ER,Ziegenfuss T,Kalman D,etal.International society of sports nutrition position stand:caffeine and performance〔J〕.J Int Soc Sport Nutr,2010;7(1):5.
52 Kasper AM,Cocking S,Cockayne M,etal.Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted〔J〕.Eur J Sport Sci,2016;16(5):560-8.
53 ACSM.2015 Abstract session A-G〔J〕.Med Sci Sport Exerc,2015;46(5):S1-S778.
54 Alberto A,Zhang S,Miguel AH,etal.Prospective study of caffeine consumption and risk of Parkinson's disease in men and women〔J〕.Ann Neurol,2001;50(1):56-63.
55 Hodgson RA,Bertorelli R,Varty GB,etal.Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 in rodent models of movement disorders and depression〔J〕.Pharmacol Exp Ther,2009;330(1):294-303.
56 Ferraro L,Beggiato S,Tomasini MC,etal.A(2A)/D-2 receptor heteromerization in a model of Parkinson's disease.Focus on striatal aminoacidergic signaling〔J〕.Brain Res,2012;1476(1):96-107.
〔2016-02-04修回〕
(編輯 李相軍)
國家自然科學基金資助項目(31571221);北京市自然科學基金資助項目(5142012)
劉曉莉(1958-),女,博士,教授,博士生導師,主要從事體育保健與運動康復研究。
王 弘(1991-),女,在讀碩士,主要從事運動人體科學研究。
R322.8
A
1005-9202(2017)01-0222-05;
10.3969/j.issn.1005-9202.2017.01.098