• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      非酒精性脂肪性肝病相關(guān)肝細(xì)胞癌的發(fā)病機(jī)制及FXR和OCA的研究進(jìn)展

      2017-03-10 14:34:38帆,張
      關(guān)鍵詞:膽汁酸脂質(zhì)肝細(xì)胞

      黎 帆,張 玲

      1. 廣西中醫(yī)藥大學(xué)研究生院,廣西 南寧 530011; 2. 廣西中醫(yī)藥大學(xué)附屬瑞康醫(yī)院肝病科

      非酒精性脂肪性肝病相關(guān)肝細(xì)胞癌的發(fā)病機(jī)制及FXR和OCA的研究進(jìn)展

      黎 帆1,張 玲2

      1. 廣西中醫(yī)藥大學(xué)研究生院,廣西 南寧 530011; 2. 廣西中醫(yī)藥大學(xué)附屬瑞康醫(yī)院肝病科

      非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)進(jìn)展為肝細(xì)胞癌(hepatocellular carcinoma,HCC)的發(fā)病機(jī)制是相當(dāng)復(fù)雜的,其中涉及多個(gè)方面,包括高胰島素環(huán)境、細(xì)胞學(xué)機(jī)制、遺傳多態(tài)性等。為預(yù)防NAFLD進(jìn)展為HCC,干預(yù)和治療NAFLD是必然的選擇。法尼醇X受體(Farnesoid X receptor,F(xiàn)XR)的活化可以改善NAFLD的組織學(xué)特征。作為FXR激動(dòng)劑奧貝膽酸(Obeticholic acid,OCA)又名6-乙基鵝去氧膽酸,是目前一種治療NAFLD的新藥物。本文就NAFLD相關(guān)HCC發(fā)病機(jī)制、FXR和OCA的研究進(jìn)展作一概述。

      非酒精性脂肪性肝??;肝細(xì)胞癌;法尼醇X受體;奧貝膽酸

      非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)包括單純性脂肪肝(simple fatty liver, SFL)、非酒精性脂肪性肝炎(non-alcoholic steatohepa-titis,NASH)及其相關(guān)肝硬化,肝細(xì)胞癌(hepatocellular cercinoma,HCC)是其嚴(yán)重后果。隨著NAFLD全球發(fā)病率的上升,發(fā)現(xiàn)因NAFLD患上HCC的患者同樣在逐年遞增,也許在未來(lái)將超越病毒相關(guān)HCC?!岸未驌魧W(xué)說(shuō)”[1]一直是學(xué)術(shù)界公認(rèn)的經(jīng)典學(xué)說(shuō),而NAFLD相關(guān)HCC的發(fā)病機(jī)制則較為復(fù)雜,目前尚未明確,其中涉及多個(gè)方面,包括高胰島素環(huán)境、細(xì)胞學(xué)機(jī)制、遺傳多態(tài)性等,因此預(yù)防和干預(yù)NAFLD進(jìn)展為HCC顯得十分困難。而通過(guò)法尼醇X受體(Farnesoid X receptor,FXR)調(diào)節(jié)肝臟脂質(zhì)代謝解決脂質(zhì)在肝臟過(guò)度沉積,從根本上解決NAFLD的組織特征改變是不錯(cuò)的選擇。

      1 NAFLD相關(guān)HCC的發(fā)病機(jī)制

      1.1 高胰島素環(huán)境 脂質(zhì)在肝臟內(nèi)蓄積引起肝臟特異性胰島素抵抗和高胰島素血癥的發(fā)生。在高胰島素環(huán)境下,胰島素樣生長(zhǎng)因子(insulin-like growth factor, IGF)和胰島素受體底物-1(insulin receptor substrate-1,IRS-1)通過(guò)激活不同的致癌途徑促進(jìn)HCC的發(fā)展[2]。IGF-1可促進(jìn)細(xì)胞增殖和抑制細(xì)胞死亡[3],通過(guò)增加原癌基因c-fos和c-Jun的表達(dá),并活化促絲裂原活化蛋白激酶(mitogen activated protein kinase, MAPK),這些過(guò)程被認(rèn)為有助于HCC的發(fā)展[4]。而最近的研究顯示IGF-1通過(guò)抑制蛋白酶體介導(dǎo)的組織蛋白酶B降解促進(jìn)HCC的生長(zhǎng)和轉(zhuǎn)移,因?yàn)樵诎┌Y進(jìn)展期間,組織蛋白酶B不僅可以切割細(xì)胞外基質(zhì)和基底膜的組分,同時(shí)還可以激活許多其他促進(jìn)癌癥侵襲和進(jìn)展的蛋白酶[5]。IRS-1通過(guò)細(xì)胞因子傳導(dǎo)促進(jìn)細(xì)胞生長(zhǎng),在肝臟腫瘤細(xì)胞中過(guò)度的表達(dá)促進(jìn)腫瘤細(xì)胞生長(zhǎng)和提高腫瘤惡化[6]。

      高胰島素血癥和胰島素抵抗可引起c-Jun 氨基末端激酶 (c-Jun N-terminal kinase,JNK)激活、脂聯(lián)素降低、瘦素升高、促炎細(xì)胞因子和活性氧增多[7-10]。關(guān)于JNK的作用,在小鼠模型中描述了JNK的兩種主要同種類(lèi)型JNK 1和JNK 2,JNK 1可以促進(jìn)肝脂肪變性和炎癥的發(fā)生、發(fā)展,而JNK 2主要是抑制肝細(xì)胞死亡。約70%的HCC組織顯示磷酸化JNK的陽(yáng)性免疫染色,這充分說(shuō)明JNK在HCC發(fā)生、發(fā)展中的作用[7]。瘦素具有較強(qiáng)的促炎和促纖維形成作用,其作用通過(guò)Janus激酶(JAK)、轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3, STAT3)、磷酸肌醇3-激酶(P13K)/蛋白激酶B(Akt)和ERK信號(hào)傳導(dǎo)途徑等介導(dǎo),同時(shí)瘦素通過(guò)上調(diào)端粒酶反轉(zhuǎn)錄酶促進(jìn)腫瘤生長(zhǎng)[8]。脂聯(lián)素抑制腫瘤血管生成并抑制HCC生長(zhǎng)和轉(zhuǎn)移,主要是通過(guò)激活作為腫瘤抑制劑的5′-腺苷單磷酸激活蛋白激酶(Adenosine 5′-monophosphate-activated protein kinase, AMPK)來(lái)發(fā)揮其作用。脂肪組織中的胰島素抵抗增加脂肪分解和非酯化脂肪酸(non-esterifiedfatty acid, NEFA)在肝臟中的進(jìn)入,線粒體脂肪酸氧化(mitochondrial fatty acid oxidation, mtFAO)增加。沒(méi)有伴隨線粒體呼吸鏈(mito-chondrial respiratory chain, MRC)活性上調(diào)增強(qiáng)的mtFAO誘導(dǎo)細(xì)胞色素c-氧化酶上游的不同MRC組分內(nèi)的活性氧過(guò)量產(chǎn)生[9]。促炎因子的釋放(包括腫瘤壞死因子-α和白細(xì)胞介素-6),可導(dǎo)致信號(hào)傳導(dǎo)與STAT3活化,STAT3的異常激活可以促進(jìn)肝細(xì)胞向惡性轉(zhuǎn)化,同時(shí)可以促進(jìn)HCC細(xì)胞的增殖、血管生成、侵襲和轉(zhuǎn)移,并抑制HCC細(xì)胞的凋亡[10]。

      1.2 細(xì)胞學(xué)機(jī)制

      1.2.1 肝祖細(xì)胞群(HPCs):NASH引起的肝細(xì)胞損傷可誘導(dǎo)Hedgehog信號(hào),Hedgehog信號(hào)與肝纖維化的發(fā)生、發(fā)展相關(guān),過(guò)度激活Hedgehog通路可致受損肝組織過(guò)度再生,使肝組織纖維化[11]。Hedgehog信號(hào)激活的主要機(jī)制之一是動(dòng)員HPCs來(lái)替代受損的肝細(xì)胞,這也是肝臟修復(fù)的必要條件,但HPCs在激活過(guò)程中的畸變可以導(dǎo)致肝細(xì)胞的修復(fù)過(guò)程異常及肝細(xì)胞異常增殖,這可以加強(qiáng)致癌作用[12]。同時(shí)通過(guò)Hedgehog激活的HPC可以避免核因子κB(NF-κB)的核定位調(diào)節(jié)而存活,從而對(duì)NF-κB驅(qū)動(dòng)的細(xì)胞凋亡不太敏感[13]。最近的一項(xiàng)小鼠研究[14]顯示,Bmi-1基因的強(qiáng)制表達(dá)促進(jìn)HPC的惡性轉(zhuǎn)化,Bmi-1的遺傳缺失抑制細(xì)胞增殖、集落形成和侵入。相反,Bmi-1強(qiáng)制表達(dá)在兩個(gè)HPCs細(xì)胞株促進(jìn)細(xì)胞增殖、集落形成和體外侵襲。將強(qiáng)制Bmi-1表達(dá)HPC移植到裸鼠中導(dǎo)致形成具有低分化HCC的組織學(xué)特征的腫瘤。

      1.2.2 免疫反應(yīng):腫瘤細(xì)胞逃逸免疫系統(tǒng)攻擊促使HCC發(fā)生、發(fā)展,特別是CD8+T淋巴細(xì)胞對(duì)腫瘤細(xì)胞的細(xì)胞毒作用。CD8+T細(xì)胞的功能障礙與程序性死亡1(programmed death 1, PD-1)密切相關(guān),PD-1是一種免疫抑制分子,在活化的T細(xì)胞和B細(xì)胞中均有表達(dá),而PD-1的配體(PD-L1)在肝臟腫瘤細(xì)胞上表達(dá),并且負(fù)責(zé)遞送抑制T細(xì)胞表達(dá)PD-1的信號(hào),導(dǎo)致細(xì)胞毒性T細(xì)胞應(yīng)答的抑制,這種抑制導(dǎo)致這些T細(xì)胞的凋亡和無(wú)應(yīng)答。在HCC患者中,已被證明在CD8+T細(xì)胞上PD-1表達(dá)顯著增加,同時(shí)PD-L1肝臟腫瘤細(xì)胞上表達(dá)增加[15]。最近Ma等[16]通過(guò)NAFLD-HCC小鼠模型實(shí)驗(yàn)和人類(lèi)樣本發(fā)現(xiàn),NAFLD中脂質(zhì)代謝的失調(diào)導(dǎo)致肝內(nèi)CD4+T淋巴細(xì)胞損耗,使免疫系統(tǒng)對(duì)腫瘤細(xì)胞的作用減弱加速腫瘤的發(fā)生,同時(shí)實(shí)驗(yàn)小鼠的肝臟顯示肝臟內(nèi)積累的亞油酸可以使CD4+T淋巴細(xì)胞線粒體產(chǎn)生更多線粒體衍生的活性氧(ROS),并因此導(dǎo)致肝內(nèi)CD4+T淋巴細(xì)胞選擇性死亡。

      1.3 遺傳多態(tài)性 因遺傳多態(tài)性產(chǎn)生的變異基因及蛋白質(zhì)對(duì)NAFLD的發(fā)生發(fā)展、嚴(yán)重程度及NAFLD進(jìn)展為肝硬化和HCC都有影響。因遺傳多態(tài)性產(chǎn)生變異的基因含patatin樣磷脂酶域3(patatin-like phospholipase domain containing 3,PNPLA3),大量位于肝細(xì)胞膜上并參與脂質(zhì)代謝,PNPLA3基因rs738409位點(diǎn)處基因突變致148位異亮氨酸被蛋氨酸取代(I148M),I148M使甘油三酯(TG)在肝細(xì)胞內(nèi)代謝障礙,引起TG在肝細(xì)胞內(nèi)沉積,進(jìn)而引起肝臟的慢性炎癥,導(dǎo)致肝纖維化。I148M被認(rèn)為是增加肝纖維化風(fēng)險(xiǎn)的獨(dú)立因素[17]。同時(shí)PNPLA3 I148M顯著增加了肝硬化及HCC的風(fēng)險(xiǎn)[18]。特別是c.444C>G時(shí)顯著增加了肝硬化的風(fēng)險(xiǎn)[19]。TM6SF2是肝臟脂肪代謝的調(diào)節(jié)基因,它調(diào)節(jié)著富含TG的脂蛋白(TG-rich lipoproteins, TRLs)的分泌和肝脂質(zhì)滴含量,TRL分泌減少,細(xì)胞TG濃度和脂滴含量增加,與TM6SF2受抑制有關(guān)[20],TM6SF2影響肝臟纖維向肝硬化發(fā)展的進(jìn)程[21]。影響肝脂質(zhì)出口或脂肪變性氧化反應(yīng)的基因還有APOE、LEPR、NR1I2、PPARα,這些基因突變都影響著NAFLD的發(fā)生和進(jìn)展。

      2 FXR

      FXR調(diào)節(jié)膽汁酸和脂質(zhì)代謝,其主要在肝臟和腸道中表達(dá)[22-23]。在腸中,F(xiàn)XR結(jié)合膽汁酸,導(dǎo)致其靶基因成纖維細(xì)胞生長(zhǎng)因子15(fibroblast growth factor-15, FGF15)的激活,F(xiàn)GF15則抑制膽汁酸合成限速酶肝膽固醇7-α-羥化酶(Cyp7a1)的活性[24],從而抑制膽汁酸的合成。在肝臟中初級(jí)膽汁酸激活肝臟FXR,使小異二聚體伴侶(short heterodimer partner, SHP)基因表達(dá),從而抑制肝受體同系物(liver receptor homologues-1,LRH-1)的活性,使Cyp7a1的活性降低從而抑制膽汁酸合成。而膽汁酸通過(guò)激活FXR來(lái)改善肝脂肪變性并減少TG含量[25],膽汁酸和FXR的相互作用改善了NAFLD肝臟的組織學(xué)特征。通過(guò)FXR缺陷型小鼠實(shí)驗(yàn)[26],我們看到FXR缺陷型小鼠TG和高密度脂蛋白膽固醇的血清水平升高,因此表明FXR激活可以維持脂質(zhì)體內(nèi)平衡和保護(hù)發(fā)生肝脂肪變性。

      與之相反,最近研究[27]發(fā)現(xiàn)腸道微生物通過(guò)FXR的信號(hào)傳導(dǎo)促進(jìn)飲食誘導(dǎo)肥胖,致使宿主代謝損傷。一項(xiàng)小鼠實(shí)驗(yàn)[28]也顯示高選擇性抑制腸道中FXR信號(hào)后,因高脂肪飲食而被誘導(dǎo)的肥胖、胰島素抵抗和肝脂肪變性等癥狀得到了逆轉(zhuǎn)。而進(jìn)一步的調(diào)查顯示,在高脂肪飲食誘導(dǎo)的NAFLD小鼠模型中,腸特異性FXR敲除小鼠組肝臟中的TG明顯比對(duì)照組減少,其主要原因是由于循環(huán)神經(jīng)酰胺的減少,神經(jīng)酰胺導(dǎo)致肝固醇調(diào)節(jié)元件結(jié)合蛋白1C(SREBP-1C,一種脂肪酸和TG合成所需的轉(zhuǎn)錄因子)的下調(diào)和從頭脂肪生成的抑制[29]。FXR-神經(jīng)酰胺軸可能成為治療NAFLD的新靶點(diǎn)。由此看來(lái)通過(guò)調(diào)節(jié)FXR治療NAFLD的機(jī)制是復(fù)雜的。FXR不僅是治療NAFLD的靶點(diǎn),最近研究[30]發(fā)現(xiàn)FXR活化后可以上調(diào)細(xì)胞因子信號(hào)傳導(dǎo)抑制因子3(suppressor of cytokine signaling 3,SOCS3),SOCS3是重要的腫瘤抑制因子,主要通過(guò)抑制信號(hào)傳導(dǎo)和STAT3活性防止HCC發(fā)生。因此調(diào)節(jié)FXR是干預(yù)和治療NAFLD和HCC非常好的選擇。

      3 OCA

      目前尚無(wú)特別批準(zhǔn)治療NAFLD的藥物,因此目前并無(wú)有效的干預(yù)措施預(yù)防NAFLD向HCC發(fā)展。而通過(guò)研究FXR對(duì)膽汁酸的調(diào)節(jié)作用時(shí)發(fā)現(xiàn)FXR激活后有利于減少肝脂肪變性和挽救肝損傷[25-26],因此FXR激動(dòng)劑成為一種潛在治療NAFLD的藥物。OCA由美國(guó)Intercept制藥公司研發(fā),為強(qiáng)效的FXR選擇性激動(dòng)劑,一個(gè)多中心、雙盲、安慰劑對(duì)照、平行組隨機(jī)臨床試驗(yàn)[31]顯示,與對(duì)照組相比,接受OCA治療組NASH的生化(丙氨酸氨基轉(zhuǎn)移酶和天冬氨酸氨基轉(zhuǎn)移酶濃度顯著降低,γ-谷氨酰轉(zhuǎn)肽酶濃度下降)和組織學(xué)特征(肝纖維化、肝細(xì)胞氣球樣變、脂肪變性和小葉炎癥)得到了改善。但OCA也存在著許多問(wèn)題,OCA治療組患者血清膽固醇升高、低密度脂蛋白膽固醇升高、高密度脂蛋白膽固醇降低及出現(xiàn)胰島素抵抗癥狀,這增加了動(dòng)脈粥樣硬化的風(fēng)險(xiǎn),并停止接受OCA治療患者血清轉(zhuǎn)氨酶可能會(huì)再次升高,同時(shí)臨床試驗(yàn)中OCA治療組部分患者出現(xiàn)皮膚瘙癢。最近的一項(xiàng)小鼠研究[32]顯示,OCA不僅能夠使肝硬化模型小鼠的肝臟纖維化減少,同時(shí)還能降低肝內(nèi)血管阻力,降低門(mén)脈壓力,減少促炎和促纖維化細(xì)胞因子(增殖細(xì)胞核抗原,PCNA)的表達(dá)。該研究還指出OCA減少的肝纖維化途徑與IκBα上調(diào)肝NF-κB通路活性降低有關(guān)。目前OCA治療NAFLD的療效及其他作用仍需進(jìn)一步證實(shí)。

      NALFD進(jìn)展為HCC的發(fā)病機(jī)制是復(fù)雜的,提高對(duì)NALFD的認(rèn)知,深入研究NAFLD與HCC之間關(guān)系,對(duì)于HCC的預(yù)防有著重要意義。在疾病發(fā)展過(guò)程中最好的預(yù)防和干預(yù)節(jié)點(diǎn)是在疾病處于NAFLD階段,因此對(duì)于NAFLD的干預(yù)和治療是預(yù)防HCC最有效的方法。通過(guò)FXR調(diào)節(jié)肝臟脂質(zhì)代謝似乎是目前比較好的治療NAFLD的手段,但FXR調(diào)節(jié)脂質(zhì)代謝過(guò)程是復(fù)雜的,仍需對(duì)其進(jìn)一步研究。OCA治療NAFLD的療效及其他作用也需要進(jìn)一步實(shí)驗(yàn),對(duì)其加強(qiáng)了解。

      [1]Day CP, James OF. Steatohepatitis: a tale of two “hits”? [J]. Gastroenterology, 1998, 114(4): 842-845.

      [2]Chettouh H, Lequoy M, Fartoux L, et al. Hyperinsulinemia and insulin signalling in the pathogenesis and the clinical course of hepatocellular carcinoma [J]. Liver Int, 2015, 35(10): 2203-2217.

      [3]Page JM, Harrison SA. NASH and HCC [J]. Clin Liver Dis, 2009, 13(4): 631-647.

      [4]Buzzelli G, Dattolo P, Pinzani M, et al. Circulating growth hormone and insulin-like growth factor-I in nonalcoholic liver cirrhosis with or without superimposed hepatocarcinoma: evidence of an altered circadian rhythm [J]. Am J Gastroenterol, 1993, 88(10): 1744-1748.

      [5]Lei T, Ling X. IGF-1 promotes the growth and metastasis of hepatocellular carcinoma via the inhibition of proteasome-mediated cathepsin B degradation [J]. World J Gastroenterol, 2015, 21(35): 10137-10149.[6]Tanaka S, Mohr L, Schmidt EV, et al. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes [J]. Hepatology, 1997, 26(3): 598-604.

      [7]Chang Q, Zhang Y, Beezhold KJ, et al. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer [J]. J Hepatol, 2009, 50(2): 323-333.[8]Stefanou N, Papanikolaou V, Furukawa Y, et al. Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase [J]. BMC Cancer, 2010, 10: 442.

      [9]Begriche K, Massart J, Robin MA, et al. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease [J]. Hepatology, 2013, 58(4): 1497-1507.

      [10]He G, Karin M. NF-κB and STAT3-key players in liver inflammation and cancer [J]. Cell Res, 2011, 21(1): 159-168.

      [11]Chen Y, Choi SS, Michelotti GA, et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism [J]. Gastroenterology, 2012, 143(5): 1319-1329, e1-e11.

      [12]Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis [J]. Gastroenterology, 2016, 150(8): 1769-1777.[13]Jung Y, Witek RP, Syn WK, et al. Signals from dying hepatocytes trigger growth of liver progenitors [J]. Gut, 2010, 59(5): 655-665.

      [14]Zhang R, Wu WR, Shi XD, et al. Dysregulation of Bmi1 promotes malignant transformation of hepatic progenitor cells [J]. Oncogenesis, 2016, 5: e203.

      [15]Shi F, Shi M, Zeng Z, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients [J]. Int J Cancer, 2011, 128(4): 887-896.

      [16]Ma C, Kesarwala AH, Eggert T, et al. NAFLD causes selective CD4(+)T lymphocyte loss and promotes hepatocarcinogenesis [J]. Nature, 2016, 531(7593): 253-257.

      [17]Dongiovanni P, Donati B, Fares R, et al. PNPLA3 I148M polymorphism and progressive liver disease [J]. World J Gastroenterol, 2013, 19(41): 6969-6978.

      [18]Liu YL, Patman GL, Leathart JB, et al. Carriage of the PNPLA3 rs738409 C>G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma [J]. J Hepatol, 2014, 61(1): 75-81.

      [19]Shen JH, Li YL, Li D, et al. The rs738409 (I148M) variant of the PNPLA3 gene and cirrhosis: a meta-analysis [J]. J Lipid Res, 2015, 56(1): 167-175.

      [20]Mahdessian H, Taxiarchis A, Popov S, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content [J]. Proc Natl Acad Sci U S A, 2014, 111(24): 8913-8918.

      [21]Liu YL, Reeves HL, Burt AD, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease [J]. Nat Commun, 2014, 5: 4309.

      [22]Kim I, Ahn SH, Inagaki T, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine [J]. J Lipid Res, 2007, 48(12): 2664-2672.

      [23]Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system [J]. Mol Cell Endocrinol, 2013, 368(1-2): 17-29.

      [24]Sayin SI, Wahlstr?m A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist [J]. Cell Metab, 2013, 17(2): 225-235.

      [25]Kunne C, Acco A, Duijst S, et al. FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model [J]. Biochim Biophys Acta, 2014, 1842(5): 739-746.

      [26]Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation [J]. Physiol Rev, 2009, 89(1): 147-191.

      [27]Parséus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor [J]. Gut, 2017, 66(3): 429-437.

      [28]Jiang C, Xie C, Lv Y, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction [J]. Nat Commun, 2015, 6: 10166.

      [29]Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease [J]. J Clin Invest, 2015, 125(1): 386-402.

      [30]Guo F, Xu Z, Zhang Y, et al. FXR induces SOCS3 and suppresses hepatocellular carcinoma [J]. Oncotarget, 2015, 6(33): 34606-34616.

      [31]Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial [J]. Lancet, 2015, 385(9972): 956-965.

      [32]Verbeke L, Mannaerts I, Schierwagen R, et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis [J]. Sci Rep, 2016, 6: 33453.

      (責(zé)任編輯:王全楚)

      Research progress of FXR and OCA, the pathogenesis of non-alcoholic fatty liver disease related hepatocellular carcinoma

      LI Fan1, ZHANG Ling2

      1. Graduate School, Guangxi University of Chinese Medicine, Nanning 530011; 2. Department of Liver Disease, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, China

      The pathogenesis of non-alcoholic fatty liver disease (NAFLD) progress to hepatocellular carcinoma (HCC) is quite complex, which involves many aspects, including the high insulin environment, cytological mechanisms, genetic polymorphism and so on. In order to prevent the development of NAFLD as HCC, intervention and treatment of NAFLD are inevitable choice. The Farnesoid X receptor (FXR) activation can improve the histological features of NAFLD. As an FXR agonist, Obeticholic acid (OCA, 6-ethylchenodeoxycholic acid) is a new drug for the treatment of NAFLD currently. In this article, the pathogenesis of NAFLD-related HCC, FXR and OCA research progress were introduced.

      Non-alcoholic fatty liver disease; Hepatocellular carcinoma; Farnesoid X receptor; Obeticholic acid

      黎帆,碩士在讀,研究方向:肝臟疾病的臨床研究。E-mail:247778982@qq.com

      張玲,主任醫(yī)師,教授,研究方向:肝臟疾病的臨床研究。E-mail:826232905@qq.com

      10.3969/j.issn.1006-5709.2017.04.004

      R575.5;R735.7

      A

      1006-5709(2017)04-0372-04

      2016-11-20

      猜你喜歡
      膽汁酸脂質(zhì)肝細(xì)胞
      膽汁酸代謝與T2DM糖脂代謝紊亂的研究概述
      外泌體miRNA在肝細(xì)胞癌中的研究進(jìn)展
      總膽汁酸高是肝臟出問(wèn)題了嗎?
      肝博士(2020年5期)2021-01-18 02:50:26
      膽汁酸代謝在慢性肝病中的研究進(jìn)展
      復(fù)方一枝蒿提取物固體脂質(zhì)納米粒的制備
      中成藥(2018年9期)2018-10-09 07:18:36
      白楊素固體脂質(zhì)納米粒的制備及其藥動(dòng)學(xué)行為
      中成藥(2018年1期)2018-02-02 07:19:53
      馬錢(qián)子堿固體脂質(zhì)納米粒在小鼠體內(nèi)的組織分布
      中成藥(2017年4期)2017-05-17 06:09:26
      肝細(xì)胞程序性壞死的研究進(jìn)展
      新生兒膽紅素和總膽汁酸測(cè)定的臨床意義
      肝細(xì)胞癌診斷中CT灌注成像的應(yīng)用探析
      博罗县| 石楼县| 咸阳市| 明光市| 昂仁县| 新平| 宁远县| 新河县| 南康市| 海宁市| 灌阳县| 肇州县| 樟树市| 会同县| 尉犁县| 栾城县| 威宁| 萨迦县| 阿鲁科尔沁旗| 江达县| 山西省| 彰武县| 连江县| 大同县| 桓仁| 定边县| 正安县| 白河县| 利辛县| 抚州市| 隆尧县| 南部县| 宜川县| 凤台县| 青岛市| 中山市| 自贡市| 麻栗坡县| 进贤县| 黑龙江省| 临汾市|