• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      SH0導(dǎo)波在粘接結(jié)構(gòu)中傳播時(shí)的相位變化1)

      2017-03-20 11:32:26丁俊才斌何存富
      力學(xué)學(xué)報(bào) 2017年1期
      關(guān)鍵詞:厚積入射波導(dǎo)波

      丁俊才 吳 斌何存富

      (北京工業(yè)大學(xué)機(jī)械工程與應(yīng)用電子技術(shù)學(xué)院,北京100124)

      SH0導(dǎo)波在粘接結(jié)構(gòu)中傳播時(shí)的相位變化1)

      丁俊才 吳 斌2)何存富

      (北京工業(yè)大學(xué)機(jī)械工程與應(yīng)用電子技術(shù)學(xué)院,北京100124)

      對(duì)粘接結(jié)構(gòu)進(jìn)行超聲導(dǎo)波無損檢測(cè)與評(píng)估是一個(gè)有挑戰(zhàn)性的前沿性課題.針對(duì)此問題,研究了SH0導(dǎo)波在界面為理想連接的三層板狀粘接結(jié)構(gòu)中傳播時(shí)的相位變化情況.首先基于波傳播的控制方程,建立了粘接結(jié)構(gòu)中反射和透射SH0導(dǎo)波相對(duì)于入射SH0導(dǎo)波的相位差解析模型.然后利用數(shù)值模擬計(jì)算了鋁/環(huán)氧樹脂/鋁粘接結(jié)構(gòu)中反射和透射SH0導(dǎo)波的相位差曲線.最后分析了入射角度和頻厚積的變化對(duì)反射和透射SH0導(dǎo)波相位差的影響.結(jié)果表明,對(duì)于具體的粘接結(jié)構(gòu),反射和透射SH0導(dǎo)波在其中傳播時(shí)的相位差變化主要依賴于入射角度、頻率等參數(shù).在特定的頻厚積下,當(dāng)聲波水平入射時(shí),反射和入射SH0導(dǎo)波同相位.無論入射角度為多大,隨著頻厚積的增大,反射SH0導(dǎo)波的相位差曲線均會(huì)產(chǎn)生周期性諧振.對(duì)于透射SH0導(dǎo)波,當(dāng)聲波垂直入射時(shí),其相位差曲線的改變無規(guī)律可循;但是隨著入射角度逐漸增大,透射SH0導(dǎo)波的相位差曲線逐漸變規(guī)則.所得結(jié)果可為實(shí)驗(yàn)時(shí)研究板狀粘接結(jié)構(gòu)中SH0導(dǎo)波的傳播特性以及提取SH0導(dǎo)波回波中的有用信息和定位提供一定的理論指導(dǎo).

      粘接結(jié)構(gòu),SH0導(dǎo)波,相位差,反射和透射,周期性諧振

      引言

      粘接結(jié)構(gòu)因具有比強(qiáng)度、比模量高,以及密封、減振等優(yōu)越性能,在機(jī)械、建筑、醫(yī)療、電力、航空航天等領(lǐng)域被廣泛應(yīng)用[1-2].為保證粘接結(jié)構(gòu)在使用過程中的機(jī)械強(qiáng)度與穩(wěn)定性,必須要對(duì)粘接界面的力學(xué)性能進(jìn)行無損檢測(cè)與評(píng)估[3].因此,針對(duì)粘接結(jié)構(gòu)界面力學(xué)行為及其表征技術(shù)的研究具有一定的學(xué)術(shù)意義和應(yīng)用價(jià)值[4].超聲導(dǎo)波由于具有能量衰減小、檢測(cè)效率高、傳播距離遠(yuǎn)以及能攜帶更多的界面局部特征信息等優(yōu)點(diǎn),目前已成為粘接結(jié)構(gòu)無損檢測(cè)應(yīng)用最為廣泛的技術(shù)之一[5].

      Deng等[6]采用半解析有限元方法分析了具有錐形粘接層的粘接結(jié)構(gòu)中的導(dǎo)波傳播特性.Cerniglia等[7]利用3D模擬和實(shí)驗(yàn)的方法研究了多層粘接結(jié)構(gòu)中的導(dǎo)波傳播.然而,相對(duì)于其他導(dǎo)波而言,SH導(dǎo)波(也可簡(jiǎn)稱為SH波)由于具有頻散小、易激發(fā)、靈敏度高,且可以實(shí)現(xiàn)高頻小厚度檢測(cè)等優(yōu)勢(shì),在針對(duì)粘接以及其他結(jié)構(gòu)的檢測(cè)中更受關(guān)注[8-9].Crom等[10]通過數(shù)值模擬得到了鋁/復(fù)合板粘接結(jié)構(gòu)中的SH波頻散曲線,分析了鋁板和復(fù)合板的厚度、剪切模量等參數(shù)對(duì)SH波相速度的影響.Banerjee[11]從理論上分析了粘接結(jié)構(gòu)中的SH波傳播模式,研究發(fā)現(xiàn),垂直激發(fā)時(shí)響應(yīng)信號(hào)被一階反對(duì)稱模態(tài)所控制. Chaudhary等[12]推導(dǎo)了自增強(qiáng)彈性層處于兩均勻半無限固體之間的“三明治”結(jié)構(gòu)中平面SH波的反射和透射系數(shù)表達(dá)式.Dravinski等[13]和Sheikhhassani等[14]利用邊界積分法研究了多層結(jié)構(gòu)中SH波的頻散特性.Castaings[15]利用有限元和實(shí)驗(yàn)的方法研究了處于不同界面質(zhì)量的鋁/樹脂玻璃/鋁搭接結(jié)構(gòu)中SH波的傳播,研究表明,SH0導(dǎo)波對(duì)界面質(zhì)量的變化非常敏感.Predoi等[16]基于SH波通過分析粘接界面強(qiáng)度的降低研究了粘接層厚度的變化規(guī)律.Wang等[17-18]分析了SH波在兩層結(jié)構(gòu)中傳播時(shí)的相位變化.Yew等[19]利用SH波評(píng)估了粘接結(jié)構(gòu)粘接層的質(zhì)量,研究表明,粘接結(jié)構(gòu)中SH波二階模態(tài)的截止頻率主要依賴于粘接層的厚度和力學(xué)性能.Ding等[20]基于彈簧模型法推導(dǎo)了弱粘接結(jié)構(gòu)中SH0導(dǎo)波的反射和透射系數(shù)表達(dá)式,研究了弱界面和SH0導(dǎo)波的相互作用.

      劉福平等[21]利用SH波在層界面反射系數(shù)的附加相角研究了SH波Goos-Hanchen效應(yīng)所引起的橫向偏移.代海濤等[22]基于傳遞矩陣二維譜分析了復(fù)合材料層合板中穩(wěn)態(tài)SH波的頻散特性.徐紅玉等[23]討論了多層彈性介質(zhì)中平面SH波通過彈性夾層時(shí)的傳播特性,求得了透射波和反射波振幅的解析表達(dá)式.龔育寧[24]研究了具有滑移界面的兩層結(jié)構(gòu)中SH波的反射和透射特性,研究表明,若入射波的強(qiáng)度無法使接觸面發(fā)生粘著,那么接觸面上無透射現(xiàn)象.魏唯一等[25]討論了初應(yīng)力對(duì)周期壓電/壓磁層狀結(jié)構(gòu)中SH波傳播特性的影響.郭智奇等[26]研究了層狀黏彈性介質(zhì)中SH波的反射和透射情況,得到了二維黏彈性平面的SH波解.杜建科等[27]基于線彈性理論討論了功能梯度壓電材料層狀結(jié)構(gòu)中的SH波,結(jié)果指出,適當(dāng)?shù)牟牧咸荻确植伎墒筍H波傾向于沿覆蓋層表面?zhèn)鞑?楊理踐等[28]分析了有界雙層結(jié)構(gòu)中SH波的頻散特性.余嘉順等[29]精確模擬了SH波在表面多層介質(zhì)中的傳播,得到了具有特定波形和傳播方向組合的任意SH波聲場(chǎng).艾春安等[30]給出了粘接界面層多孔缺陷微觀結(jié)構(gòu)的界面數(shù)學(xué)模型,得到了SH波在“三明治”結(jié)構(gòu)中傳播的頻散方程,分析了孔隙度的變化對(duì)SH0導(dǎo)波傳播速度的影響.

      綜上可見,許多學(xué)者采用不同的方法結(jié)合超聲SH波對(duì)多層結(jié)構(gòu)開展了研究并取得了相應(yīng)的成果.但是分析發(fā)現(xiàn),以上文獻(xiàn)大多針對(duì)的是層狀結(jié)構(gòu)中SH波的多模態(tài)或頻散特性,未見有關(guān)于多層板狀粘接結(jié)構(gòu)中SH波傳播時(shí)單個(gè)或多個(gè)模態(tài)相位變化情況的討論.對(duì)超聲導(dǎo)波傳播過程中的相位變化進(jìn)行研究,有助于提取其回波中的有用信息和定位[31].與SH波其他非零階模態(tài)(例如SH1,SH2,SH3,··)不同的是,無論是在單層還是多層板狀結(jié)構(gòu)中傳播的SH0導(dǎo)波均無頻散現(xiàn)象,也即其聲彈性應(yīng)力響應(yīng)不受入射頻率的影響.另外,由于在各向同性彈性固體板介質(zhì)中SH波和SV橫波、縱波是解耦的,因此當(dāng)SH0導(dǎo)波單獨(dú)入射時(shí),結(jié)構(gòu)中不會(huì)形成SV橫波和縱波;類似地,若采用SV橫波或縱波入射,在波結(jié)構(gòu)上也可以認(rèn)為SH0導(dǎo)波對(duì)于板中應(yīng)力檢測(cè)是無聲彈性效應(yīng)的[32].SH0導(dǎo)波的這些特性決定了其比SH波其他非零階模態(tài)更適合于單層或多層板狀結(jié)構(gòu)的檢測(cè).

      針對(duì)上述問題,作為理論上的補(bǔ)充,本文以具有非頻散特性的SH導(dǎo)波的最低階模態(tài)(即SH0導(dǎo)波)為例,研究三層板狀粘接結(jié)構(gòu)中SH0導(dǎo)波在傳播時(shí)的相位變化問題.首先在界面處于理想(也稱剛性或完好)連接的情況下,從理論上得到粘接結(jié)構(gòu)中SH0導(dǎo)波的反射和透射系數(shù)表達(dá)式,進(jìn)而由此兩個(gè)系數(shù)表達(dá)式分別導(dǎo)出反射和透射SH0導(dǎo)波相對(duì)于入射SH0導(dǎo)波(下文若有提及反射或透射SH0導(dǎo)波相位差之處均指反射或透射SH0導(dǎo)波相對(duì)于入射SH0導(dǎo)波的相位差)的相位差(即SH0導(dǎo)波傳播過程中因界面存在而產(chǎn)生的附加相角)解析表達(dá)式;接著利用數(shù)值模擬計(jì)算粘接結(jié)構(gòu)中反射和透射SH0導(dǎo)波的相位差曲線;最后分析聲波入射角度或頻厚積的變化對(duì)反射和透射SH0導(dǎo)波相位差的影響.

      1 理論分析

      圖1所示為SH波傳播示意圖.將笛卡爾坐標(biāo)系的y軸置于三層板狀粘接結(jié)構(gòu)的上界面(界面1),板厚沿x方向.假設(shè)半無限固體介質(zhì)1和介質(zhì)3分別為粘接結(jié)構(gòu)的上、下基體,介質(zhì)2是厚度為h的粘接層,介質(zhì)1~介質(zhì)3均為各向同性彈性固體介質(zhì).同時(shí),忽略波傳播的非線性效應(yīng),不考慮SH波在結(jié)構(gòu)中傳播時(shí)的衰減.圖中SHi1為入射SH波;SHt2和SHt3分別為粘接層和基體3中的透射SH波;SHr1和SHr2分別為基體1和粘接層中的反射SH波.α為粘接層中SH波的傳播角;θ和β分別為SH波在基體1中的入射(或反射)角和在基體3中的透射角.由于SH波在各向同性彈性固體介質(zhì)中傳播時(shí)不發(fā)生波型轉(zhuǎn)換,因此在介質(zhì)1~介質(zhì)3中僅存在SH波.若令角頻率為ω的平面簡(jiǎn)諧SH波從上基體1入射到多層粘接結(jié)構(gòu),依據(jù)Snell定律,入射波和所有的反射或透射波的波矢量沿y方向的分量都相等.

      圖1 粘接結(jié)構(gòu)中SH波傳播模式Fig.1 SH wave propagation model in bonding structure

      容易知道,各向同性彈性固體介質(zhì)中,平面簡(jiǎn)諧SH波只在z方向上的位移分量不為零,即ux=uy=0(ux和uy分別為x和y方向上的位移分量).因此,SH波的Navier控制方程可寫為[33]

      式(1)中,uz為z方向上的位移分量;t為時(shí)間;?和?2分別為一階和二階偏微分算子;?2為二階Laplace算子為橫波速度,這里μ和ρ分別為介質(zhì)的剪切模量和密度.

      如圖1所示,這里將基體1、粘接層和基體3中沿著z方向的位移分量(記為uz1,uz2和uz3)分別寫成以下形式

      式(2)中,k和ω分別為波數(shù)和角頻率.之所以選取這種解的形式,主要是由于它代表波動(dòng)沿著y方向傳播(由指數(shù)項(xiàng)表示),且在x方向有確定的分布(由g1(x),g2(x)和g3(x)給出).一般地,實(shí)際的物理位移場(chǎng)是式(2)右邊項(xiàng)的實(shí)部.

      結(jié)合式(1)和式(2)可知,實(shí)際上g1(x),g2(x)和g3(x)分別是下列3個(gè)微分方程的解

      式(3)中

      這里,c=ω/k為相速度,CT(1),CT(2)和CT(3)分別為介質(zhì)1~介質(zhì)3中的橫波速度.誠(chéng)如前文所言,入射波、反射波與透射波的波矢量沿界面的分量相等,因此在界面1和界面2處分別有

      在式(4)的基礎(chǔ)上,可以很容易寫出式(3)的位移通解

      式(5)中,A1和B1分別為基體1中入射和反射SH波的幅值;A2和B2分別為粘接層中透射和反射SH波的幅值;A3為基體3中透射SH波的幅值.

      若界面1和界面2為理想連接,那么界面上的切向位移和應(yīng)力連續(xù),因此界面1和界面2上的連接條件可分別寫為

      式(6)中,符號(hào)“+”和“-”分別表示界面的上側(cè)與下側(cè);τxz1,τxz2,τxz3分別為基體1、粘接層和基體3中沿著z方向的切應(yīng)力分量,且

      式中,μ1,μ2和μ3分別為基體1、粘接層和基體3的剪切模量.將式(5)、式(7)和界面連接條件式(6)相結(jié)合并經(jīng)過一定的運(yùn)算,最后可以得到粘接結(jié)構(gòu)中SH0導(dǎo)波的反射和透射系數(shù)表達(dá)式

      這里假設(shè)δ=δ1-δ2,δ′=δ3-δ2,那么δ,δ′分別為粘接結(jié)構(gòu)中SH0導(dǎo)波因被粘接界面反射、透射而產(chǎn)生的附加相位角,也即反射、透射SH0導(dǎo)波相對(duì)于入射SH0導(dǎo)波的相位差.

      2 數(shù)值計(jì)算與結(jié)果分析

      基于上述模型,利用Mathematica軟件編寫相應(yīng)的程序計(jì)算粘接結(jié)構(gòu)中反射或透射SH0導(dǎo)波在傳播過程中相位差的變化曲線.本文選取均勻無雜質(zhì)、無缺陷的鋁板作為粘接結(jié)構(gòu)的基體材料,環(huán)氧樹脂為粘接劑,其物理參數(shù)見表1.

      表1 常見材料的物理性質(zhì)Table 1 Physical properties of common materials

      2.1 入射角度與相位差的關(guān)系

      圖2為SH0導(dǎo)波以不同角度入射的情況下,鋁/環(huán)氧樹脂/鋁粘接結(jié)構(gòu)中反射與透射SH0導(dǎo)波相對(duì)于入射波的相位差變化情況.圖中SH0導(dǎo)波的頻率取1MHz.由于實(shí)際工業(yè)生產(chǎn)中常用粘接結(jié)構(gòu)的粘接層厚度通常為幾十到幾百微米,因此本節(jié)將粘接層的厚度固定在0.2mm.誠(chéng)然,頻率和粘接層厚度也可取滿足條件的其他值.

      圖2 入射角度對(duì)SH0導(dǎo)波相位差的影響Fig.2 The ef f ect of incident angle on the phase-dif f erence of SH0guided wave

      由圖2可知,入射角度的改變對(duì)反射和透射SH0導(dǎo)波的傳播相位差有一定影響.反射和透射SH0導(dǎo)波相對(duì)于入射波而言,相位差變化的區(qū)別較為明顯,并且從整體上講,透射SH0導(dǎo)波在傳播時(shí)相位差的變化大于反射SH0導(dǎo)波.對(duì)于反射SH0導(dǎo)波,與入射波相比,相位差總體變化不大且最大不超過0.3rad.當(dāng)聲波的入射角度小于82°,相位差隨著入射角度的增大緩慢增大;當(dāng)入射角位于82°~90°之間,相位差急劇縮小.尤其當(dāng)入射角為90°時(shí),反射和入射SH0導(dǎo)波同相位.對(duì)于透射SH0導(dǎo)波,當(dāng)入射角分別小于和大于48.3°時(shí),透射SH0導(dǎo)波的傳播相位相對(duì)于入射波基本保持不變,相位差分別維持在1.1rad和-1.95rad左右.然而當(dāng)入射角處于48.3°附近,透射SH0導(dǎo)波的相位差發(fā)生了快速且劇烈的“突變”.之所以會(huì)產(chǎn)生此種“突變”現(xiàn)象,除了與SH0導(dǎo)波本身的波結(jié)構(gòu)有關(guān)以外,還與粘接結(jié)構(gòu)的材料參數(shù)以及聲波的頻率等有關(guān).若波型、材料參數(shù)和頻率等改變,那么圖2(b)中相位差曲線發(fā)生“突變”的位置也會(huì)有所變化.

      2.2 頻厚積與相位差的關(guān)系

      針對(duì)粘接結(jié)構(gòu)的檢測(cè),頻厚積一直是重要和關(guān)鍵的參數(shù).就超聲檢測(cè)中常用的兆赫茲脈沖激勵(lì)而言,其相對(duì)帶寬通常在50%~80%之間,檢測(cè)的頻厚積往往不超過 5MHz·mm. 因此,本節(jié)將在0~5MHz·mm的頻厚積范圍內(nèi)展開研究.圖3~圖5所示分別為鋁/環(huán)氧樹脂/鋁粘接結(jié)構(gòu)在SH0導(dǎo)波以特定角度(0°,30°或60°)入射時(shí),頻厚積的變化對(duì)反射或透射SH0導(dǎo)波相位差的影響.

      圖3 入射角為0°時(shí)頻厚積對(duì)SH0導(dǎo)波相位差的影響Fig.3 The ef f ect of frequency-thickness product on the phase-dif f erence of SH0guided wave when the incident angle is 0°

      圖4 入射角為30°時(shí)頻厚積對(duì)SH0導(dǎo)波相位差的影響Fig.4 The ef f ect of frequency-thickness product on the phase-dif f erence of SH0guided wave when the incident angle is 30°

      圖5 入射角為60°時(shí)頻厚積對(duì)SH0導(dǎo)波相位差的影響Fig.5 The ef f ect of frequency-thickness product on the phase-dif f erence of SH0guided wave when the incident angle is 60°

      圖5 入射角為60°時(shí)頻厚積對(duì)SH0導(dǎo)波相位差的影響(續(xù))Fig.5 The ef f ect of frequency-thickness product on the phase-dif f erence of SH0guided wave when the incident angle is 60°(continued)

      出于撰寫簡(jiǎn)潔性考慮,本節(jié)僅以圖3和圖5為例進(jìn)行分析.當(dāng)聲波垂直入射,反射SH0導(dǎo)波(圖3(a))的相位差曲線出現(xiàn)了規(guī)則的以0.55MHz·mm為周期的諧振,并且曲線的極大值和極小值點(diǎn)處的幅值分別保持為±2.64rad不變.在所有極大值和極小值點(diǎn)的兩側(cè),反射SH0導(dǎo)波的相位差發(fā)生了較為劇烈的轉(zhuǎn)變.當(dāng)聲波的入射角度增大到60°(圖5(a)),反射SH0導(dǎo)波相位差曲線的諧振現(xiàn)象依然存在,但是與垂直入射相比,其諧振周期增大了11%;另外,極大值和極小值點(diǎn)處的幅值分別下降和上升了9.9%.與反射SH0導(dǎo)波不同的是,對(duì)于透射SH0導(dǎo)波,當(dāng)聲波垂直入射(圖3(b)),其相位差曲線與反射時(shí)相比稍顯“混亂”無規(guī)律;當(dāng)入射角增大到60°(圖5(b)),透射SH0導(dǎo)波的相位差曲線反而變得較為規(guī)則.除了上述現(xiàn)象,再次觀察圖3~圖5可以發(fā)現(xiàn),無論聲波的入射角度和頻厚積為多大,反射和透射SH0導(dǎo)波相位差曲線的極大值和極小值點(diǎn)處的幅值均不超過±πrad.

      2.3 頻率、粘接層厚度與相位差之間的三維關(guān)系

      圖6~圖9分析了聲波入射頻率、粘接層厚度和反射或透射SH0導(dǎo)波相位差之間的三維關(guān)系.對(duì)應(yīng)于前文,這里圖6和圖8中SH0導(dǎo)波的入射角取0°;圖7和圖9中SH0導(dǎo)波的入射角取60°,圖中顏色的深淺表示相位差幅值的大小.這些三維圖清晰地顯示出了相位差的變化趨勢(shì),如圖6(b)中箭頭所指的類似于曲線的部分,其中藍(lán)顏色和紅顏色線條分別表示反射SH0導(dǎo)波與入射波相位差的極小值和極大值點(diǎn).如2.2節(jié)所言,對(duì)于反射SH0導(dǎo)波,當(dāng)入射角取0°或60°時(shí)相位差的變化規(guī)則且有規(guī)律.對(duì)比圖6(b)與圖7(b)可以發(fā)現(xiàn),入射角度越大,藍(lán)顏色和紅顏色線條的寬度越寬,表明曲線的諧振周期在增大.類似地,對(duì)于透射SH0導(dǎo)波(圖8和圖9),當(dāng)入射角為0°,相位差曲線的改變“雜亂無章”毫無規(guī)律可循;但是當(dāng)入射角達(dá)到60°,曲線的變化較為規(guī)則.

      圖6 入射角為0°時(shí)頻率、粘接層厚度與反射SH0導(dǎo)波相位差之間的關(guān)系Fig.6 The relationship between the frequency,the thickness of adhesive layer and the phase-dif f erence of reflectio SH0guided wave when the incident angle is 0°

      圖7 入射角為60°時(shí)頻率、粘接層厚度與反射SH0導(dǎo)波相位差之間的關(guān)系Fig.7 The relationship between the frequency,the thickness of adhesive layer and the phase-dif f erence of reflectio SH0guided wave when the incident angle is 60°

      圖8 入射角為0°時(shí)頻率、粘接層厚度與透射SH0導(dǎo)波相位差之間的關(guān)系Fig.8 The relationship between the frequency,the thickness of adhesive layer and the phase-dif f erence of transmission SH0guided wave when the incident angle is 0°

      圖9 入射角為60°時(shí)頻率、粘接層厚度與透射SH0導(dǎo)波相位差之間的關(guān)系Fig.9 The relationship between the frequency,the thickness of adhesive layer and the phase-dif f erence of transmission SH0guided wave when the incident angle is 60°

      3 討論和結(jié)論

      對(duì)粘接結(jié)構(gòu)中超聲導(dǎo)波傳播問題的研究一直受到重視.作為理論補(bǔ)充,我們討論了界面為理想連接的三層板狀粘接結(jié)構(gòu)中SH0導(dǎo)波在傳播時(shí)的相位變化情況,得到以下結(jié)論:

      (1)本文在SH0導(dǎo)波入射的情況下,基于波傳播的控制方程,從理論上推導(dǎo)了粘接結(jié)構(gòu)中反射和透射SH0導(dǎo)波相對(duì)于入射波的相位差解析表達(dá)式.通過計(jì)算證實(shí)了所推公式的正確性.

      (2)對(duì)于具體的粘接結(jié)構(gòu),反射和透射SH0導(dǎo)波在其中傳播時(shí)相位差的變化主要依賴于入射角度、頻率等參數(shù).無論聲波的入射角度為多大,隨著頻厚積的增大,反射SH0導(dǎo)波與入射波的相位差曲線均會(huì)出現(xiàn)規(guī)律的周期性諧振.對(duì)于透射SH0導(dǎo)波,當(dāng)聲波垂直入射時(shí),其相位差曲線的改變無任何規(guī)律可循;但是隨著聲波入射角度的增大,透射SH0導(dǎo)波的相位差曲線逐漸由不規(guī)則變規(guī)則.無論SH0導(dǎo)波的入射角度和頻厚積為多大,反射和透射SH0導(dǎo)波相位差曲線的極大值和極小值點(diǎn)處的幅值均不會(huì)超過±π rad.本文的研究成果可為具體實(shí)驗(yàn)時(shí)提取SH0導(dǎo)波回波中的有用信息和定位提供較好的理論指導(dǎo).

      1 Wu B,Ding JC,He CF,et al.Wave propagation in water-immersed adhesive structure with the substrates of finit thickness.NDT&E International,2016,80:35-47

      2 MassereyB,RaemyC,FrommeP.High-frequencyguidedultrasonic waves for hidden defect detection in multi-layered aircraft structures.Ultrasonics,2014,54(7):1720-1728

      3 Zhang KS,Zhou ZG,Zhou JH,et al.Characteristics of laser ultrasound interaction with multi-layered dissimilar metals adhesive interface by numerical simulation.Applied Surface Science,2015, 353:284-290

      4 Moreno MCS,Cela JJL,Vicente JLM,et al.Adhesively bonded joints as a dissipative energy mechanism under impact loading.Applied Mathematical Modelling,2015,39(12):3496-3505

      5 Kundu S,Manna S,Gupta S.Propagation of SH-wave in an initially stressed orthotropic medium sandwiched by a homogeneous and an inhomogeneous semi-infinit media.Mathematical Methods in the Applied Sciences,2015,38(9):1926-1936

      6 Deng QT,Yang ZC.Propagation of guided waves in bonded composite structures with tapered adhesive layer.Applied Mathematical Modelling,2011,35(11):5369-5381

      7 Cerniglia D,Pantano A,Montinaro N.3D simulations and experiments of guided wave propagation in adhesively bonded multilayered structures.NDT&E International,2010,43(6):527-535

      8 Graham JW,Lee JK.Reflectioand transmission from biaxially anisotropic-isotropic interfaces.Progress in Electromagnetics Research,2013,136:681-702

      9 Vajari DA,S?rensen BF,Legarth BN.Ef f ect of fibe positioning on mixed-mode fracture of interfacial debonding in composites.International Journal of Solids and Structures,2015,53:58-69

      10 Crom LB,Castaings M.Shear horizontal guided wave modes to in-fer the shear stif f ness of adhesive bond layers.Journal of the Acoustical Society of America,2010,127(4):2220-2230

      11 Banerjee S.Theoretical modeling of guided wave propagation in a sandwich plate subjected to transient surface excitations.International Journal of Solids and Structures,2012,49(23-24):3233-3241

      12 Chaudhary S,Kaushik VP,Tomar SK.Reflectio/transmission of plane SH wave through a self-reinforced elastic layer between two half-spaces.Acta Geophysica Polonica,2004,52(2):219-235

      13 Dravinski M,Sheikhhassani R.Scattering of a plane harmonic SH wave by a rough multilayered inclusion of arbitrary shape.Wave Motion,2013,50(4):836-851

      14 Sheikhhassani R,Dravinski M.Scattering of a plane harmonic SH wave by multiple layered inclusions.Wave Motion,2014,51(3):517-532

      15 Castaings M.SH ultrasonic guided waves for the evaluation of interfacial adhesion.Ultrasonics,2014,54(7):1760-1775

      16 Predoi MV,Kettani MEC,Leduc D,et al.Use of shear horizontal waves to distinguish adhesive thickness variation from reduction in bonding strength.Journal of the Acoustical Society of America, 2015,138(2):1206-1213

      17 Wang AL,Liu FP.The phase shift of reflectio and refraction of SH-wave at an interface of two media.Advanced Materials Research, 2014,983:388-391

      18 Wang AL,Liu FP.The lateral shift of refraction SH-wave on an interface of two media.Advanced Mechanics and Materials,2014, 551:580-582

      19 YewCH,WengXW.UsingultrasonicSHwavestoestimatethequality of adhesive bonds in plate structures.Journal of the Acoustical Society of America,1985,77(5):1813-1823

      20 Ding JC,Wu B,He CF.Reflectio and transmission coefficients of the SH0mode in the adhesive structures with imperfect interface.Ultrasonics,2016,70:248-257

      21 劉福平,王安玲,李瑞忠等.全反射SH地震波的Goos-Hanchen效應(yīng)動(dòng)校正時(shí)差.地球物理學(xué)報(bào),2009(8):2128-2134(Liu Fuping, Wang Anling,Li Ruizhong,et al.The influenc on normal moveout of total reflecte SH-wave by Goos-Hanchen ef f ect at an interface of strata.Chinese Journal of Geophysics,2009(8):2128-2134(in Chinese))

      22 代海濤,程偉.壓電復(fù)合材料層合結(jié)構(gòu)中的SH波.復(fù)合材料學(xué)報(bào),2007,24(1):179-184(Dai Haitao,Cheng Wei.SH wave in piezoelectric composite layered structure.Acta Materiae Compositae Sinica,2007,24(1):179-184(in Chinese))

      23 徐紅玉,陳殿云,楊先建等.彈性介質(zhì)中平面SH波通過彈性夾層時(shí)的傳播特性.巖石力學(xué)與工程學(xué)報(bào),2003,22(2):304-308(Xu Hongyu,Chen Dianyun,Yang Xianjian,et al.Propagation characteristics of plane SH wave passing through elastic interlining in elastic medium.Chinese Journal of Rock Mechanics and Engineering, 2003,22(2):304-308(in Chinese))

      24 龔育寧.SH波在滑動(dòng)接觸面上的反射與折射.固體力學(xué)學(xué)報(bào), 1987,8(2):174-178(Gong Yuning.The reflectio and refraction of SH-waves at a slipping unilateral interface.Chinese Journal of Solid Mechanics,1987,8(2):174-178(in Chinese))

      25 魏唯一,劉金喜,方岱寧.初應(yīng)力對(duì)周期壓電/壓磁層狀結(jié)構(gòu)中SH波傳播特性的影響.工程力學(xué),2010,27(11):184-190(Wei Weiyi, Liu Jinxi,Fang Daining.Ef f ect of initial stress on the propagation characteristics of SH-waves in periodic piezoelectric-piezomagnetic layered structures.Engineering Mechanics,2010,27(11):184-190 (in Chinese))

      26 郭智奇,劉財(cái),張鳳琴.層狀黏彈性介質(zhì)中SH波的反射和透射問題.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2005,35(增刊):57-61(Guo Zhiqi,Liu Cai,Zhang Fengqin.Reflectio and transmission problem of SH waves in layered viscoelastic medium.Journal of Jilin University(Earth Science Edition),2005,35(Sup):57-61(in Chinese))

      27 杜建科,葉定友.功能梯度壓電材料層狀結(jié)構(gòu)中的SH波.固體火箭技術(shù),2005,28(2):133-136(Du Jianke,Ye Dingyou.SH waves in laminated structure of functionally gradient piezoelectric material.Journal of Solid Rocket Technology,2005,28(2):133-136(in Chinese))

      28 楊理踐,呂瑞宏,高松巍等.有界雙層結(jié)構(gòu)SH導(dǎo)波頻散特性分析.沈陽工業(yè)大學(xué)學(xué)報(bào),2016,38(3):286-292(Yang Lijian,Lu Ruihong,Gao Songwei,et al.Analysis for frequency dispersion characteristics of SH guiding wave in bounded double layer structure.Journal of Shenyang University of Technology,2016,38(3):286-292(in Chinese))

      29 余嘉順,賀振華.SH波在表面多層介質(zhì)中傳播的精確模擬.地震研究,2003,26(1):14-19(Yu Jiashun,He Zhenhua.Precise modelling of SH wave propagation in subsurface multilayer media.Journal of Seismological Research,2003,26(1):14-19(in Chinese))

      30 艾春安,朱盛錄,俞紅博.橫波檢測(cè)粘接界面層多孔隙缺陷的數(shù)值分析.無損檢測(cè),2007,29(1):16-19(Ai Chun’an,Zhu Shenglu, Yu Hongbo.Numeric analysis of the testing of porosity fl w on the adhesive layer with SH wave.Nondestructive Testing,2007,29(1):16-19(in Chinese))

      31 Rose JL.Ultrasonic Guided Waves in Solid Media.Cambridge:Cambridge University Press,2014

      32 劉飛,吳斌,何存富等.彈性板中低階導(dǎo)波模態(tài)聲彈性效應(yīng)分析.北京工業(yè)大學(xué)學(xué)報(bào),2013,39(6):823-827(Liu Fei,Wu Bin,He Cunfu,et al.Analysis of acoustoelastic ef f ect for low-order guided wave modes in elastic plate.Journal of Beijing University of Technology,2013,39(6):823-827(in Chinese))

      33 徐紅玉,陳殿云,王欽亭.層合介質(zhì)中平面SH波的傳播.焦作工學(xué)院學(xué)報(bào)(自然科學(xué)版),2003,22(4):320-323(Xu Hongyu,Chen Dianyun,Wang Qinting.Propagation of plan SH wave in laminated medium.Journal of Jiaozuo Institute of Technology(Natural Science),2003,22(4):320-323(in Chinese))

      THE PHASE SHIFT OF SH0GUIDED WAVE PROPAGATING IN BONDING STRUCTURE1)

      Ding Juncai Wu Bin2)He Cunfu
      (College of Mechanical Engineering and Applied Electronics Technology,Beijing University of Technology,Beijing100124,China)

      It is a difficult and challenging subject for non-destructive testing and evaluation of adhesive structure by ultrasonic guided waves.For this issue,the phase shift of SH0guided wave transmitting in perfect connected trilaminar plate-like adhesive structure was researched.Firstly,the phase-dif f erence analytical model between the incident and transmission/reflectio SH0guided wave,which based on the control equation of wave propagation,was established.Then,the phase-dif f erence curves of reflectio/transmission SH0guided wave in aluminum/epoxy resin/aluminum adhesive structure were calculated by numerical simulation.Finally,the ef f ects of changes of incident angle and frequency-thickness product on the phase-dif f erence of reflectio/transmission SH0guided wave were analyzed.The results show that the changes of phase-dif f erence of reflectio/transmission SH0guided wave transmitting in adhesive structure mainly depend on the parameter as incident angle or frequency of acoustic wave,for the concrete bonding structure.The reflectio and incident SH0guided waves are in the same phase when the ultrasound is incident under a particular frequency-thickness product.Despite the angle of incidence,the phase-dif f erence curve of reflectio SH0guided wave shows periodic res-onance with the increasement of frequency-thickness product.For the transmission SH0guided wave,the change of the phase-dif f erence curve has no law to follow when the ultrasound is normal incident.But the phase-dif f erence curve changes from irregularity to regularity as the angle of incidence increase.The results obtained could provide the theory support for studying the propagation characteristics of SH0guided wave in plate-like bonding structure and information retrieving of echoed SH0guided wave and positioning during the experiment.

      adhesive structure,SH0guided wave,phase-dif f erence,reflectio and transmission,periodic resonance

      O347.4

      A doi:10.6052/0459-1879-16-245

      2016-09-05收稿,2016-10-28錄用,2016-10-31網(wǎng)絡(luò)版發(fā)表.

      1)國(guó)家自然科學(xué)基金資助項(xiàng)目(11132002,11372016,51245001,51475012).

      2)吳斌,教授,主要研究方向:波動(dòng)力學(xué)及其應(yīng)用和無損檢測(cè)新技術(shù).E-mail:wb@bjut.edu.cn

      丁俊才,吳斌,何存富.SH0導(dǎo)波在粘接結(jié)構(gòu)中傳播時(shí)的相位變化.力學(xué)學(xué)報(bào),2017,49(1):202-211

      Ding Juncai,Wu Bin,He Cunfu.The phase shift of SH0guided wave propagating in bonding structure.Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):202-211

      猜你喜歡
      厚積入射波導(dǎo)波
      SHPB入射波相似律與整形技術(shù)的試驗(yàn)與數(shù)值研究
      超聲導(dǎo)波技術(shù)在長(zhǎng)輸管道跨越段腐蝕檢測(cè)中的應(yīng)用
      根植紅色基因 厚積紅色能量
      “厚積”和“薄發(fā)”的關(guān)系
      快樂語文(2019年16期)2019-11-28 01:52:14
      與美同行——讀朱光潛《厚積落葉聽雨聲》有感
      卷簧缺陷檢測(cè)的超聲導(dǎo)波傳感器研制
      電子制作(2019年9期)2019-05-30 09:42:00
      厚積
      瞬態(tài)激勵(lì)狀態(tài)下樁身速度以及樁身內(nèi)力計(jì)算
      對(duì)機(jī)械波半波損失現(xiàn)象的物理解釋
      電子科技(2015年11期)2015-03-06 01:32:24
      后彎管式波力發(fā)電裝置氣室結(jié)構(gòu)的試驗(yàn)研究*
      东辽县| 靖边县| 定南县| 炉霍县| 广水市| 中宁县| 靖安县| 铜川市| 色达县| 福贡县| 桐乡市| 平顶山市| 韩城市| 浮梁县| 昆山市| 靖江市| 女性| 疏勒县| 玉龙| 大同县| 乌兰浩特市| 广平县| 河北省| 洛浦县| 伊宁县| 尚志市| 开远市| 青海省| 凉城县| 安平县| 砚山县| 弋阳县| 普洱| 白沙| 新乡市| 滦南县| 望江县| 奉贤区| 潞西市| 营山县| 文山县|