• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    突破衍射極限的成像方法綜述

    2017-04-10 15:46烏拉鄭玉祥
    光學儀器 2017年1期
    關鍵詞:柵格分類號顯微鏡

    烏拉 鄭玉祥

    摘要: “衍射極限”實際上不是一個真正的障礙,除非處理遠場和定位精度。這種衍射障礙并不是堅不可摧的,可以利用一些智能技術來突破光學衍射極限。討論了四種技術,近場掃描光學顯微鏡(NSOM)法,受激發(fā)射損耗(STED)顯微鏡法,光激活定位顯微鏡(PALM)法或隨機光學重建顯微鏡(STORM)法和結(jié)構(gòu)照明顯微鏡(SIM)法,并且介紹了各自的基本原則與優(yōu)劣。NSOM利用納米級探測器檢測通過光纖的極小匯聚光斑,從而獲得單個像素的分辨率;PALM和STORM利用熒光探針,實現(xiàn)暗場和熒光的轉(zhuǎn)換,從而觀察到極小的熒光團;SIM則是利用柵格圖案與樣品疊加成像來實現(xiàn)。其中,STORM具有相對較高的潛力,能夠更為有效地突破衍射極限。

    關鍵詞:

    衍射極限; 近場顯微鏡; 三維顯微

    中圖分類號: O 43文獻標志碼: Adoi: 10.3969/j.issn.10055630.2017.01.014

    A review on imaging methods to break the diffraction limit

    Ramzan Ullah1,2, ZHENG Yuxiang1

    (1.Shanghai UltraPrecision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering,

    Fudan University, Shanghai 200433, China;

    2.Department of Physics, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan)

    Abstract:

    Notorious term 'diffraction limit' is not actually a true barrier unless we are dealing with far field and localization precision.This diffraction barrier is not impenetrable and can be broken with some intelligent techniques.We discuss here four powerful techniques,nearfield scanning optical microscopy(NSOM),stimulated emission depletion(STED) microscopy,photoactivated localization microscopy(PALM) & stochastic optical reconstruction microscopy(STORM) and structured illumination microscopy(SIM),along with their underlying principles together with pros and cons.NSOM uses a nanometer scale detector or source which compels the light to pass through the tiny tip of a fiber while keeping the distance between the tip and sample less than λ.At any given moment in a STED microscope,laser light is focused into a small spot by the objective and as a result,all fluorophores within this focused spot radiate fluorescence,which is then gathered by the objective and headed to the detector where it forms a single pixel.Fluorescent probes are employed by STORM/PALM,which are able to toggle between dark states and fluorescent so that with every snapshot taken,only a tiny,optically resolvable portion of the fluorophores is observed.Structured illumination is a wide field technique in which a grid pattern is produced by the interference of diffraction orders which are superimposed on the sample while taking images.STORM has the relatively high potential to effectively break the conventional diffraction barrier with fewer hurdles.

    Keywords:

    diffraction limit; nearfield microscopy; threedimensional microscopy

    Introduction

    A microscope is a device used to see objects in intricate detail usually up to the order ofnanoscale.The main factor in determining the quality of a microscope is its resolution which is fundamentally bounded by diffraction limit.Normally,determining the diffraction limit of an imaging system is based on Abbe and Rayleigh criterions[1] which in turn depend on numerical aperture of the lens and wavelength of light being used.With the advent of new technologies different types of microscopes working beyond the limit of diffraction,have been developed which include electron microscopes[23] using electrons as well as optical microscopes using smart optical techniques.Each type has its own pros and cons.We present a short review of some of these optical microscopes.

    1Nearfield scanning optical microscopy(NSOM)

    NSOM sometimes abbreviated as SNOM for "Scanning Nearfield Scanning Optical Microscopy" was firstly suggested in 1928[4].NSOM uses a very innovative concept to penetrate the diffraction barrier which is to use a detector or source whose size is in nanometer scale.NSOM compels the light to pass through the tiny tip(whose aperture size is on the order of tens of nanometers) of a fiber.Now if this tip is brought very close to the object,the resolution is no more limited by the diffraction,but by the size of the tip aperture as elucidated in Fig 1.So it means the distance between the tip and object must be much smaller than λ.So it breaks the far field resolution limit.Probe resolution is mainly quantified by the diameter of the aperture[5].With the passage of time,more and more advanced techniques have been developed and some are even specific to the type of sample[6].This technique has revolutionized the field of material characterization especially for nano materials[7].So basically NSOM/SNOM utilizes the near field component of the electromagnetic wave whose propagation is limited to very short distance as opposed to far field light which smears out infinitely until absorbed,refracted or scattered whatever is the case.The propagation distance of a near field photon is proportional to the physical dimensions of its source;hence in order to be observable by the nearfield,the objects have to be in very close proximity of the field.The distance between the tip and object must be less than the dimensions of the aperture of the tip.The amplitude of the nearfield light decays exponentially as the negative of the 1st or higher power of the distance from its source.A detailed analysis of the NSOM can be found here[8].Similarly another technique called apertureless near field microscopy reaches beyond the range of simple NSOM[9].

    1.1Advantages

    (1) NSOM offers direct relationship between surfacenano features and optical or electronic characteristics along with concurrent mensuration of the topography as well as optical properties(fluorescence).

    Fig.1Schematic diagram of a NSOM

    (2) NSOM is substantially effective in characterizing the inhomogeneous materials or surfaces,like nano particles,polymer blends,porous silicon,and biological systems[10].

    1.2Disadvantages

    (1) The chief drawback to NSOM is the restricted number of photons coming out of the tiny tip and the miniscule collection efficiency.

    (2) Long scan time for high resolution images or large areas to be scanned.

    (3) Only surface features can be studied.

    2Stimulated emission depletion(STED) microscopy

    A STED microscope is built on the basis of aconfocal laser scanning microscope(CLSM).A layout of a CLSM is shown in Fig.2.At any given moment,laser light is focused into a small spot by the objective and as a result,all fluorophores within this focused spot radiate fluorescence,which is then gathered by the objective and headed to the detector.The detected signal forms a single pixel.Then the scanning mirror moves in XY plane to take the next pixels and this goes on until the whole sample is scanned and as a result whole image of the sample is formed.Sometimes,the sample stage is moveable so sample is moved in the XY plane and whole image is formed.A single pixel is obtained for each location.So in order to get a high resolution image,it would take considerable time.

    Fig.2A schematic diagram of a CLSM

    The intensity of the light at the focused spot spreads out in accordance with the point spread function(PSF).For a circular aperture,the PSF exhibits a pattern called “Airy disk”,whose size is proportional to λ/NA where λ is the wavelength of light & NA is numerical aperture.

    The resolution of CLSM is decided by the size of the PSF:If the focal spot is smaller,so does the each pixel acquired and the resultant image will be crisp and sharp.But if not,resultant image will be blurred.So the main challenge is to achieve smaller and smaller PSF to get better and better resolution.However,there is a natural diffraction limit in doing this like in any other system and this situation was first described in 1870s by a German physicist Ernst Abbe(1840—1905) who indicated that the PSF size has a lower limit which is proportional to λ/NA(circular aperture) due to diffraction.This is called the Abbes diffraction limit.The basic idea behind STED microscopy is the utilization of nonlinear optics to design a smaller PSF below Abbes diffraction limit.

    It was Albert Einstein,who in 1917 theoretically anticipated the occurrence of stimulated emission.Stimulated emission is the basic building block of lasers and it also functions as the foundation of STED that cracks the diffraction limit.

    The STEDmicroscope is largely dependent on two laser pulses which are synchronized.These two synchronized laser pulses are named as 'STED laser' and 'excitation laser' in Fig.3.As can be seen,excitation is carried out by a subpicosecond laser pulse which is tuned to the absorption spectrum of the dye.The excitation pulse is irradiated and focused onto the sample,generating a typical diffraction limited spot of excited molecules.The excitation pulse is instantly chased by a depletion pulse named as STED pulse.The STED pulse is redshifted(increased in wavelength) in frequency to the emission spectrum of the dye,in such a way that its lower energy photons operate only on the excited molecules of the dye under ideal condition,hence,extinguish them to the ground state by stimulated emission.The overall result of the STED pulse is that the influenced excited molecules cannot radiate in the fluorescence regime because their energy is disposed of in the STED pulse.By arranging the STED pulse in doughnut mode spatially,only the molecules in the proximity of the spot are quenched under ideal condition.Fluorescence ideally remains intact at the center of the doughnut,where the STED pulse is evanescing.

    Fig.3Simplified STED scheme

    By increasing the intensity of the STED pulse,the depletion becomes increasingly more functional towards the middle and sufficiently complete at the proximity of the spot.However,the fluorescence is ideally not affected at all at the doughnut hole.Therefore,by increasing the intensity of the doughnutshaped STEDpulse,the fluorescent spot can be gradually shrunk down,theoretically,even up to the size of a single molecule.This intriguing concept is manifesting the fundamental smashing of the diffraction barrier.The crucial element is the saturated diminishing of the fluorescence at any coordinate except the focal point.

    This microscopy technique is unique in a way that presently the well known super resolution methods like multiphoton fluorescence,the confocal or related microscopes,which can never transcend Abbes barrier by more than a factor of 2.In a way,confocal fluorescence and twophoton microscopes just cross the border of the diffraction limitation,without breaking it[11].The resolution of these systems is still restricted by diffraction,as opposed to the STEDmicroscope[12].

    The actual physical reason behind the breakage of the diffraction barrier is not that fluorescence is hindered,but the saturation of the fluorescence diminishing.Fluorescence diminishing alone is not conducive to the breakage of the diffraction barrier since the focused STEDpulse is also limited by diffraction.However,in this context,saturation means that when the fluorescence at the middle of the doughnut is intact,it is completely stopped at the closest proximity of the doughnut.Thus the fluorescent region is gradually shrunk down without any limit[13].

    3Photoactivated localization microscopy(PALM) & stochastic optical reconstruction microscopy(STORM)

    Superresolution optical microscopy technique which is founded on stochastic switching of single molecule fluorescence signal is named as PALM or sometimes also called STORM[14].As in the case of conventional fluorescence microscopy where all fluorophores in the sample are fluorescent and their corresponding images,being diffraction limited,overlap and thus form a smooth but somewhat obscure image.Fluorescent probes are employed by STORM/PALM,which are able to toggle between dark states and fluorescent so that with every snapshot taken,only a tiny,optically resolvable portion of the fluorophores is observed[15].In this way,deduction of their locations with ultra high accuracy from the central locations of the fluorescent spots is possible.With many snapshots of the sample,a final superresolution image can be reenacted from the assembled positions,each catching a random subset of the fluorophores[16].

    Since its inception in 2006,STORM has gathered many more functionalities[17].With either different emission wavelengths or different activation wavelengths,multicolor imaging can be attained with photoswitchable fluorophores.3D imaging has been actualized with the help of several 3D singleparticle localization methods,inclusive of PSF engineering,biplane imaging,astigmatic imaging and interference.A typical STORM /PALM setup is shown in Fig.4 in which multi color lasers were used.The detail can be found[18].Similarly,Nikon made a new STORM microscope which they name NSTORM with superresolution capable to reconstruct 2D and 3D high resolution images with crystal clear clarity.The detail and specifications can be found here[19].

    4Structured illumination microscopy(SIM)

    Structured illumination is awide field technique in which a grid pattern is produced by the interference of diffraction orders which are superimposed on the sample while taking images.The grid pattern is relocated or revolved in steps between recordings of each snapshot set.The snapshot set consists of individual subsets,where each subset is recorded after rotating the grid.Succeeded by the processing with a specially designed algorithm[20],highfrequency information can be extricated from the raw data to develop a reconstructed image with a lateral resolution roughly twice to that of diffractionlimited microscopes[21] and an axial resolution between 150 and 300 nm.

    Fig.4A PALM and STORM layout in which multi color lasers were used taken from reference

    Structuredillumination(SI) leans on both exclusive microscopy procedures and extensive software analysis after exposure.But,because SI is a widefield technique,it is normally capable to capture images at a higher rate than confocalbased schemes like STED[22].The leading concept of SI is to illuminate a sample with patterned light and increase the resolution by measuring the fringes in the Moiré pattern[23] and sample information(which is otherwise unobservable) is extracted from these fringes and computationally reinstated[24].

    There are some limitations associated with SI.Firstly,the saturating excitation powers induce more photo damage and decline fluorophore photo stability.Secondly,sample drift must be retained well below the resolving distance which is also very challenging.The first limitation can be resolved by combining with other microscopy techniques which use some other nonlinearity like reversible photo activation and stimulated emission depletion.The second limitation delimits livecell imaging and may necessitate faster frame rates.In spite of that,SI is undoubtedly,a strong rival in the competition of applications in the field of superresolution microscopy[25].

    A comparison table of pros and cons of all of these microscopy techniques given above together with many others can be found at reference[26].

    5Conclusion

    After discussing these four very powerful techniques,nearfield scanning optical microscopy(NSOM),stimulated emission depletion(STED) microscopy,photoactivated localization microscopy(PALM) & stochastic optical reconstruction microscopy(STORM) and structured illumination microscopy(SIM),of breaking the diffraction limit,we conclude STORM has the high potential to effectively break the conventional diffraction barrier with less hurdles.However,this conclusion is relative as it depends upon the application for which a microscope is required.

    參考文獻:

    [1]PAWLE Y J.Handbook of biological confocal microscopy[M].New York:Plenum Press,1990.

    [2]CLARKED R.Review:transmission scanning electron microscopy[J].Journal of Materials Science,1973,8(2):279285.

    [3]VERNONPARRY K D.Scanning electron microscopy:an introduction[J].IIIVs Review,2000,13(4):4044.

    [4]NOVOTNY L.From nearfield optics to optical antennas[J].Physics Today,2011(7):4752.

    [5]LEWENG D,NAHATA A,LEZEC H J,et al.Surface Plasmonenhanced transmission for high throughput NSOM probes[J/OL].[20150810].http:∥www.foresight.org/Conference/MNT9/Papers/Lewen/index.html.

    [6]MICHAELIS J,HETTICH C,MLYNEK J,et al.Optical microscopy using a singlemolecule light source[J].Nature,2000,405:325328.

    [7]TISLER J,OECKINGHAUS T,STHR R J,et al.Single defect center scanning nearfield optical microscopy on graphene[J].Nano Letters,2013,13(7):31523156.

    [8]DUNN R C.Nearfield scanning optical microscopy[J].Chemical Reviews,1999,99(10):28912928.

    [9]YANG T J,LESSARD G A,QUAKE S R.An apertureless nearfield microscope for fluorescence imaging[J].Applied Physics Letters,2000,76(3):378380.

    [10]HERMAN M A.Scanning nearfield optical microscopy[J].OptoElectronics Review,1997,5(4):295298.

    [11]HUANG B,BATES M,ZHUANG X W.Super resolution fluorescence microscopy[J].Annual Review of Biochemistry,2009,78:9931016.

    [12]HELL S W,WICHMANN J.Breaking the diffraction resolution limit by stimulated emission:stimulatedemissiondepletion fluorescence microscopy[J].Optics Letters,1994,19(11):780782.

    [13]HELL S W.Increasing the resolution of farfield fluorescence light microscopy by pointspreadfunction engineering[M]∥LAKOWICZ J.Topics in fluorescence spectroscopy:volume 5:nonlinear and twophotoninduced fluorescence.New York:Plenum Press,1997:361426.

    [14]HUANG B,BABCOCK H,ZHUANG X W.Breaking the diffraction barrier:superresolution imaging of cells[J].Cell,2010,143(7):10471058.

    [15]HELL S W.Microscopy and its focal switch[J].Nature Methods,2009,6(1):2432.

    [16]HELL S W.Farfield optical nanoscopy[J].Science,2007,316(5828):11531158.

    [17]KAMIYAMA D,HUANG B.Development in the STORM[J].Developmental Cell,2012,23(6):11031110.

    [18]CHEMIE P.Establishment and optimization of superresolution fluorescence microscopy for multicolour studies of biological systems[D].München,2010.

    [19]Nikon instrumants Inc.SupperResolution microscope system offering ten times the resolution of convention optical microscopes[EB/OL].[20160402].http:∥www.nikoninstruments.com/Products/Superresolution/NSTORMSuperResolution.

    [20]BARLOW A L,GUERIN C J.Quantization of widefield fluorescence images using structured illumination and image analysis software[J].Microscopy Research and Technique,2007,70(1):7684.

    [21]NEIL M A A,WILSON T,JUKAITIS R.A light efficient optically sectioning microscope[J].Journal of Microscopy,1998,189(2):114117.

    [22]WILSON T,JUKAITIS R,NEIL M A A,et al.Confocal microscopy by aperture correlation[J].Optics Letters,1996,21(23):18791881.

    [23]CHASLES F,DUBERTRET B,BOCCARA A C.Optimization and characterization of a structured illumination microscope[J].Optics Express,2007,15(24):1613016140.

    [24]JUKAITIS R,WILSON T,NEIL M A A,et al.Efficient realtime confocal microscopy with white light sources[J].Nature,1996,383(6603):804806.

    [25]KARADAGLI D,WILSON T.Image formation in structured illumination widefield fluorescence microscopy[J].Micron,2008,39(7):808818.

    [26]WILSON S M,BACIC A.Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes[J].Nature Protocols,2012,7(9):17161727.

    (編輯:張磊)

    猜你喜歡
    柵格分類號顯微鏡
    基于鄰域柵格篩選的點云邊緣點提取方法*
    顯微鏡
    顯微鏡下看沙
    A Study on the Change and Developmentof English Vocabulary
    Translation on Deixis in English and Chinese
    不同剖面形狀的柵格壁對柵格翼氣動特性的影響
    顯微鏡下的奇妙微生物
    基于CVT排布的非周期柵格密度加權陣設計
    動態(tài)柵格劃分的光線追蹤場景繪制
    99国产精品免费福利视频| 日韩有码中文字幕| 麻豆成人av在线观看| 国产97色在线日韩免费| 日韩熟女老妇一区二区性免费视频| 天天躁夜夜躁狠狠躁躁| 热re99久久国产66热| 麻豆国产av国片精品| 女人久久www免费人成看片| 国产精品国产av在线观看| 国产男靠女视频免费网站| 精品一区二区三区视频在线观看免费 | 日日摸夜夜添夜夜添小说| 久久性视频一级片| 亚洲国产欧美一区二区综合| 十八禁网站免费在线| 精品国产超薄肉色丝袜足j| 欧美人与性动交α欧美软件| av国产精品久久久久影院| 法律面前人人平等表现在哪些方面| 一区二区av电影网| a在线观看视频网站| 天天操日日干夜夜撸| 久久中文字幕一级| 成年动漫av网址| 国产无遮挡羞羞视频在线观看| 夜夜夜夜夜久久久久| 性高湖久久久久久久久免费观看| 国产精品久久久人人做人人爽| 一二三四在线观看免费中文在| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看完整版高清| 亚洲少妇的诱惑av| 老熟妇仑乱视频hdxx| 一级a爱视频在线免费观看| 欧美人与性动交α欧美软件| 91九色精品人成在线观看| 丝袜美足系列| 日韩大片免费观看网站| av有码第一页| 欧美亚洲日本最大视频资源| 在线av久久热| 丝袜美腿诱惑在线| 国产不卡一卡二| 午夜福利免费观看在线| 超碰97精品在线观看| 成人永久免费在线观看视频 | 高清欧美精品videossex| 老司机午夜福利在线观看视频 | 免费在线观看黄色视频的| 精品少妇一区二区三区视频日本电影| 美女扒开内裤让男人捅视频| 国产三级黄色录像| 欧美激情极品国产一区二区三区| 亚洲成人国产一区在线观看| 亚洲视频免费观看视频| 欧美黄色片欧美黄色片| 另类亚洲欧美激情| 亚洲欧美日韩另类电影网站| 国产在线精品亚洲第一网站| 69精品国产乱码久久久| 成人手机av| 99国产精品一区二区蜜桃av | 狠狠精品人妻久久久久久综合| 亚洲欧美日韩另类电影网站| 成人特级黄色片久久久久久久 | 91字幕亚洲| 亚洲国产欧美日韩在线播放| 日韩中文字幕欧美一区二区| 天堂俺去俺来也www色官网| 91麻豆av在线| 欧美激情高清一区二区三区| 国产av一区二区精品久久| 国产日韩欧美视频二区| 久久热在线av| 欧美人与性动交α欧美精品济南到| 最近最新免费中文字幕在线| 老司机影院毛片| 黑丝袜美女国产一区| 中文字幕人妻丝袜一区二区| 日韩精品免费视频一区二区三区| 国产真人三级小视频在线观看| 午夜免费成人在线视频| 一级毛片电影观看| 午夜老司机福利片| av福利片在线| 大码成人一级视频| 久久ye,这里只有精品| 咕卡用的链子| 亚洲三区欧美一区| 精品一区二区三区视频在线观看免费 | 一本综合久久免费| 美女福利国产在线| 国产av国产精品国产| 精品第一国产精品| 精品少妇久久久久久888优播| 精品第一国产精品| 免费一级毛片在线播放高清视频 | 精品少妇一区二区三区视频日本电影| 国产精品一区二区精品视频观看| 一本久久精品| 99国产精品99久久久久| 大片免费播放器 马上看| 美女福利国产在线| 王馨瑶露胸无遮挡在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产老妇伦熟女老妇高清| 曰老女人黄片| 丝袜在线中文字幕| videos熟女内射| 狠狠精品人妻久久久久久综合| 每晚都被弄得嗷嗷叫到高潮| 97人妻天天添夜夜摸| 少妇猛男粗大的猛烈进出视频| 久久久久久久久免费视频了| 淫妇啪啪啪对白视频| 国产aⅴ精品一区二区三区波| 首页视频小说图片口味搜索| 操出白浆在线播放| 美女主播在线视频| 最新在线观看一区二区三区| 精品午夜福利视频在线观看一区 | 91老司机精品| 看免费av毛片| 精品卡一卡二卡四卡免费| 我要看黄色一级片免费的| 老熟妇乱子伦视频在线观看| 久久久久久人人人人人| 法律面前人人平等表现在哪些方面| 在线av久久热| av不卡在线播放| 伦理电影免费视频| 欧美日韩亚洲国产一区二区在线观看 | 脱女人内裤的视频| 日本av手机在线免费观看| 人人妻人人添人人爽欧美一区卜| 成人三级做爰电影| 高潮久久久久久久久久久不卡| 精品国产乱子伦一区二区三区| 久久精品国产综合久久久| 精品卡一卡二卡四卡免费| 老熟妇乱子伦视频在线观看| 黑人巨大精品欧美一区二区mp4| 超碰成人久久| 中文字幕av电影在线播放| xxxhd国产人妻xxx| 少妇猛男粗大的猛烈进出视频| 无限看片的www在线观看| 老熟妇仑乱视频hdxx| 国产深夜福利视频在线观看| 麻豆乱淫一区二区| 国产成人精品久久二区二区免费| 免费久久久久久久精品成人欧美视频| 国产成人欧美在线观看 | 亚洲熟女精品中文字幕| 日韩大码丰满熟妇| 制服诱惑二区| 最近最新中文字幕大全免费视频| 国产亚洲欧美在线一区二区| 免费在线观看完整版高清| 精品人妻1区二区| 日韩一区二区三区影片| 亚洲国产欧美网| 美女福利国产在线| 美女国产高潮福利片在线看| 婷婷成人精品国产| 国产野战对白在线观看| 亚洲国产看品久久| 国产一卡二卡三卡精品| 成人免费观看视频高清| 久久久久精品人妻al黑| 黄色视频,在线免费观看| 中文欧美无线码| 两性夫妻黄色片| 免费女性裸体啪啪无遮挡网站| 国产精品自产拍在线观看55亚洲 | 国产亚洲精品第一综合不卡| 国产精品久久久久久精品电影小说| 午夜福利视频精品| 国产精品国产高清国产av | 不卡av一区二区三区| 精品国产超薄肉色丝袜足j| 午夜福利视频在线观看免费| 日韩视频在线欧美| 在线天堂中文资源库| 亚洲欧美一区二区三区黑人| 免费观看a级毛片全部| 露出奶头的视频| 一进一出好大好爽视频| 国产91精品成人一区二区三区 | 国产精品亚洲av一区麻豆| 后天国语完整版免费观看| 精品免费久久久久久久清纯 | 搡老熟女国产l中国老女人| 正在播放国产对白刺激| 在线观看舔阴道视频| 黄色成人免费大全| 精品人妻1区二区| 热99久久久久精品小说推荐| 成人亚洲精品一区在线观看| 国产福利在线免费观看视频| 露出奶头的视频| 午夜日韩欧美国产| 99久久精品国产亚洲精品| a级毛片在线看网站| 免费女性裸体啪啪无遮挡网站| 国产精品九九99| 90打野战视频偷拍视频| 欧美激情高清一区二区三区| 国产成人精品久久二区二区91| 亚洲精华国产精华精| 成人手机av| 亚洲国产av影院在线观看| 亚洲第一欧美日韩一区二区三区 | 法律面前人人平等表现在哪些方面| 久久久精品国产亚洲av高清涩受| 欧美亚洲 丝袜 人妻 在线| 日韩熟女老妇一区二区性免费视频| 日韩欧美国产一区二区入口| 女同久久另类99精品国产91| 亚洲精品中文字幕一二三四区 | 国产精品欧美亚洲77777| 亚洲欧美日韩高清在线视频 | 午夜福利免费观看在线| 岛国毛片在线播放| 亚洲精品一二三| 久热这里只有精品99| 欧美黑人精品巨大| 免费在线观看完整版高清| 国产有黄有色有爽视频| 久久av网站| 人人妻人人爽人人添夜夜欢视频| 国产午夜精品久久久久久| 男女下面插进去视频免费观看| bbb黄色大片| 高潮久久久久久久久久久不卡| 无限看片的www在线观看| 18禁观看日本| 亚洲精品国产区一区二| 国产日韩欧美在线精品| 视频区欧美日本亚洲| 久久精品91无色码中文字幕| 涩涩av久久男人的天堂| 亚洲精品国产区一区二| 伊人久久大香线蕉亚洲五| 欧美 日韩 精品 国产| 中文字幕制服av| 91成人精品电影| 自线自在国产av| 他把我摸到了高潮在线观看 | 69精品国产乱码久久久| 午夜激情久久久久久久| 午夜91福利影院| 欧美日韩亚洲高清精品| 国产免费av片在线观看野外av| 午夜福利免费观看在线| 亚洲天堂av无毛| 国产精品欧美亚洲77777| 精品午夜福利视频在线观看一区 | svipshipincom国产片| 91大片在线观看| e午夜精品久久久久久久| 热99re8久久精品国产| 精品一区二区三区四区五区乱码| 黄色毛片三级朝国网站| a级毛片黄视频| 亚洲五月色婷婷综合| 另类精品久久| 巨乳人妻的诱惑在线观看| 亚洲成av片中文字幕在线观看| 免费女性裸体啪啪无遮挡网站| tocl精华| 老司机福利观看| 国产成人精品久久二区二区免费| 高清欧美精品videossex| 日韩中文字幕欧美一区二区| 飞空精品影院首页| 不卡一级毛片| 午夜福利视频在线观看免费| 久久毛片免费看一区二区三区| 免费黄频网站在线观看国产| 巨乳人妻的诱惑在线观看| 久久av网站| 18在线观看网站| www.精华液| 五月天丁香电影| 91成人精品电影| 99精国产麻豆久久婷婷| 99热网站在线观看| 黑人猛操日本美女一级片| 黄色怎么调成土黄色| 亚洲成国产人片在线观看| 俄罗斯特黄特色一大片| 久久精品91无色码中文字幕| 一区在线观看完整版| 欧美日韩成人在线一区二区| 十八禁人妻一区二区| 久久久国产一区二区| 亚洲专区字幕在线| 午夜福利视频在线观看免费| 天天添夜夜摸| 后天国语完整版免费观看| 亚洲 欧美一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕 | 国产精品九九99| 日韩 欧美 亚洲 中文字幕| 午夜福利乱码中文字幕| 国产不卡av网站在线观看| 男女下面插进去视频免费观看| 国产成人精品久久二区二区91| 一区在线观看完整版| 夜夜夜夜夜久久久久| 日韩中文字幕视频在线看片| 丰满迷人的少妇在线观看| 亚洲国产av新网站| 国产精品.久久久| 中文字幕人妻熟女乱码| 熟女少妇亚洲综合色aaa.| 丰满迷人的少妇在线观看| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 天堂动漫精品| 国产极品粉嫩免费观看在线| 国产男女内射视频| 在线观看免费午夜福利视频| 91av网站免费观看| 亚洲五月婷婷丁香| 后天国语完整版免费观看| 久久这里只有精品19| 法律面前人人平等表现在哪些方面| 啦啦啦视频在线资源免费观看| 久久久精品区二区三区| 久久精品aⅴ一区二区三区四区| 久久人妻熟女aⅴ| 精品福利永久在线观看| 美女主播在线视频| e午夜精品久久久久久久| 国产人伦9x9x在线观看| 久久精品亚洲熟妇少妇任你| 免费在线观看视频国产中文字幕亚洲| 777久久人妻少妇嫩草av网站| a级毛片黄视频| 国产日韩欧美视频二区| 日本五十路高清| 巨乳人妻的诱惑在线观看| 大陆偷拍与自拍| 99久久国产精品久久久| 啦啦啦在线免费观看视频4| 国产深夜福利视频在线观看| 国产伦人伦偷精品视频| 欧美日韩亚洲国产一区二区在线观看 | 精品国产超薄肉色丝袜足j| 亚洲午夜理论影院| 欧美另类亚洲清纯唯美| 大片电影免费在线观看免费| 激情在线观看视频在线高清 | aaaaa片日本免费| 国产亚洲欧美精品永久| 国产精品1区2区在线观看. | 老熟妇乱子伦视频在线观看| 亚洲精品久久成人aⅴ小说| 十八禁人妻一区二区| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 91精品三级在线观看| 热99re8久久精品国产| 高清欧美精品videossex| 少妇 在线观看| 丝袜喷水一区| 国产伦理片在线播放av一区| 精品久久久久久电影网| 国产精品国产高清国产av | 国产精品98久久久久久宅男小说| 日韩视频在线欧美| 国产免费现黄频在线看| 精品国产乱码久久久久久小说| 最新美女视频免费是黄的| a级毛片黄视频| 国产精品二区激情视频| 麻豆国产av国片精品| 精品一区二区三区av网在线观看 | 国产不卡av网站在线观看| 两性夫妻黄色片| 美女福利国产在线| 精品人妻1区二区| 欧美在线一区亚洲| 亚洲avbb在线观看| 国产亚洲av高清不卡| 搡老岳熟女国产| 啪啪无遮挡十八禁网站| 男女高潮啪啪啪动态图| 欧美 日韩 精品 国产| 亚洲精品美女久久久久99蜜臀| 母亲3免费完整高清在线观看| 国产精品欧美亚洲77777| 久久国产精品影院| 国产精品免费一区二区三区在线 | 一区福利在线观看| 男女边摸边吃奶| 欧美久久黑人一区二区| 亚洲精品国产区一区二| 亚洲熟妇熟女久久| 精品一区二区三区四区五区乱码| 女人爽到高潮嗷嗷叫在线视频| 国产xxxxx性猛交| 午夜福利免费观看在线| 操美女的视频在线观看| 美国免费a级毛片| 少妇精品久久久久久久| 最近最新中文字幕大全免费视频| 国产熟女午夜一区二区三区| 久久久久精品国产欧美久久久| 建设人人有责人人尽责人人享有的| 亚洲熟妇熟女久久| 一区二区av电影网| 国产精品久久久久久精品电影小说| 国产精品免费一区二区三区在线 | 亚洲成人国产一区在线观看| tocl精华| 一本综合久久免费| 热99久久久久精品小说推荐| 免费看十八禁软件| 最近最新中文字幕大全电影3 | 午夜福利乱码中文字幕| 国产熟女午夜一区二区三区| 啦啦啦中文免费视频观看日本| 国产亚洲av高清不卡| 久久久久精品人妻al黑| 如日韩欧美国产精品一区二区三区| 怎么达到女性高潮| 国产精品久久久久久精品古装| 久久中文看片网| 大香蕉久久成人网| 91大片在线观看| 十八禁高潮呻吟视频| av网站免费在线观看视频| 国产成人av激情在线播放| 乱人伦中国视频| 满18在线观看网站| 青青草视频在线视频观看| 免费黄频网站在线观看国产| 桃红色精品国产亚洲av| 热re99久久国产66热| 日韩欧美一区二区三区在线观看 | 少妇精品久久久久久久| 男女边摸边吃奶| 久久久久精品国产欧美久久久| 午夜精品国产一区二区电影| 性色av乱码一区二区三区2| 国产一区二区 视频在线| 男人舔女人的私密视频| 久久久久久久精品吃奶| 50天的宝宝边吃奶边哭怎么回事| 伊人久久大香线蕉亚洲五| 国产福利在线免费观看视频| 91大片在线观看| 伊人久久大香线蕉亚洲五| 女性生殖器流出的白浆| 成年女人毛片免费观看观看9 | 两人在一起打扑克的视频| 9热在线视频观看99| 欧美变态另类bdsm刘玥| 久久这里只有精品19| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 一边摸一边做爽爽视频免费| 国产精品av久久久久免费| www.精华液| 少妇粗大呻吟视频| 国产福利在线免费观看视频| 最近最新中文字幕大全电影3 | 在线天堂中文资源库| 国产单亲对白刺激| 亚洲精品中文字幕在线视频| 国产午夜精品久久久久久| 久久久国产一区二区| 亚洲全国av大片| 香蕉国产在线看| 侵犯人妻中文字幕一二三四区| 日韩熟女老妇一区二区性免费视频| √禁漫天堂资源中文www| 丁香六月天网| 两性夫妻黄色片| 一边摸一边抽搐一进一出视频| 十八禁网站免费在线| 精品欧美一区二区三区在线| 欧美日韩黄片免| 黄频高清免费视频| 啦啦啦视频在线资源免费观看| av视频免费观看在线观看| 亚洲伊人久久精品综合| 久久国产精品影院| 久久人妻熟女aⅴ| 啦啦啦中文免费视频观看日本| 午夜福利乱码中文字幕| 99久久精品国产亚洲精品| 久久久久久免费高清国产稀缺| 满18在线观看网站| 黑人操中国人逼视频| 欧美黑人欧美精品刺激| 法律面前人人平等表现在哪些方面| 亚洲少妇的诱惑av| 嫁个100分男人电影在线观看| 色老头精品视频在线观看| 亚洲人成77777在线视频| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 2018国产大陆天天弄谢| 亚洲国产毛片av蜜桃av| 欧美亚洲 丝袜 人妻 在线| 色播在线永久视频| 91麻豆精品激情在线观看国产 | www日本在线高清视频| 啦啦啦 在线观看视频| 大片电影免费在线观看免费| 飞空精品影院首页| 男人操女人黄网站| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人爽人人添夜夜欢视频| 夫妻午夜视频| 国产一区有黄有色的免费视频| 国产麻豆69| 亚洲精品中文字幕在线视频| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 成人亚洲精品一区在线观看| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| av一本久久久久| 无遮挡黄片免费观看| 国产一区二区在线观看av| 每晚都被弄得嗷嗷叫到高潮| 超色免费av| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人| 国产亚洲精品一区二区www | 国产一区二区三区综合在线观看| 亚洲国产中文字幕在线视频| 国产成人系列免费观看| 亚洲成a人片在线一区二区| 丝瓜视频免费看黄片| av福利片在线| 不卡一级毛片| 亚洲人成电影观看| 一二三四在线观看免费中文在| 日本a在线网址| 精品久久久精品久久久| 亚洲中文av在线| 日本av手机在线免费观看| 亚洲精品一二三| svipshipincom国产片| 精品国产一区二区三区四区第35| 久久久久久亚洲精品国产蜜桃av| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区mp4| av超薄肉色丝袜交足视频| 欧美激情久久久久久爽电影 | 中文字幕人妻丝袜制服| 精品国产国语对白av| 美女高潮到喷水免费观看| 久久青草综合色| 91精品三级在线观看| 午夜免费鲁丝| 91精品三级在线观看| 国产精品一区二区免费欧美| 一进一出好大好爽视频| 国产高清国产精品国产三级| 国产91精品成人一区二区三区 | 无遮挡黄片免费观看| 国产区一区二久久| 啪啪无遮挡十八禁网站| 欧美国产精品va在线观看不卡| 免费观看人在逋| 99国产精品一区二区三区| 中文字幕人妻丝袜制服| 国产精品久久久久成人av| 51午夜福利影视在线观看| 欧美人与性动交α欧美软件| 日韩熟女老妇一区二区性免费视频| 国精品久久久久久国模美| 亚洲精品粉嫩美女一区| 久久热在线av| 搡老岳熟女国产| 午夜老司机福利片| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 欧美性长视频在线观看| 肉色欧美久久久久久久蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 精品少妇一区二区三区视频日本电影| a级毛片在线看网站| 久久国产精品影院| 嫁个100分男人电影在线观看| 亚洲三区欧美一区| 超色免费av| 妹子高潮喷水视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜视频精品福利| 女警被强在线播放| 久久人人97超碰香蕉20202| 日韩一卡2卡3卡4卡2021年| 精品亚洲成国产av| 99久久国产精品久久久| 免费黄频网站在线观看国产| 欧美黄色淫秽网站| 无遮挡黄片免费观看| 性少妇av在线| 99国产极品粉嫩在线观看| 男人操女人黄网站| 每晚都被弄得嗷嗷叫到高潮| 日本撒尿小便嘘嘘汇集6| 精品亚洲乱码少妇综合久久|