• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      BOUNDEDNESS OF TOEPLITZ OPERATORS GENERATED BY THE CAMPANATO-TYPE FUNCTIONS AND RIESZ TRANSFORMS ASSOCIATED WITH SCHDINGER OPERATORS

      2017-04-12 14:31:39MOHuixiaYUDongyanSUIXin
      數(shù)學(xué)雜志 2017年2期
      關(guān)鍵詞:交換子型函數(shù)北京郵電大學(xué)

      MO Hui-xia,YU Dong-yan,SUI Xin

      (School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China)

      BOUNDEDNESS OF TOEPLITZ OPERATORS GENERATED BY THE CAMPANATO-TYPE FUNCTIONS AND RIESZ TRANSFORMS ASSOCIATED WITH SCHDINGER OPERATORS

      MO Hui-xia,YU Dong-yan,SUI Xin

      (School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China)

      In the paper,we study the boundedness ofthe Toeplitz operators generated by the Campanato-type functions and Riesz transforms associated with the Schr¨odinge operators.Using the sharp maximal function estimate,we establish the boundedness of the Toeplitz operator Θbon the Lebesgue space,which extend the previous results about the comutators.

      Commutator;Campanato-type functions;Riesz transform;Schr¨odinger operator

      1 Introduction

      Let L= ?△ +V be a Schr¨odinger operator on Rn(n > 3),where △ is the Laplacian on Rnand V/=0 is a nonnegative locally integrable function.The problems about the Schr¨odinger operators L were wellstudied(see[1–3]for example).Especially,Fefferman[1], Shen[2]and Zhong[3]developed some basic results.

      The commutators generated by the Riesz transforms associated with the Schr¨odinger operators and BMO functions or Lipschitz functions also attracted much attention(see[4–6] for example).Chu[7],consider the boundedness of commutators generalized by the BMOLfunctions and the Riesz transform ▽(?△ +V)?1/2on Lebesgue spaces.Mo et al.[8] established the boundedness of commutators generated by the Campanato-type functions and the Riesz transforms associated with Schr¨odinger operators.

      First,let us introduce some notations.A nonnegative locally Lq(Rn)integrable function V is said to belong to Bq(1 < q < ∞)if there exists C=C(q,V) > 0 such that the reverse H¨older’s inequalityholds for every ball B in Rn.

      About the Toeplitz operator,there are some results.Mo et al.[9]established the boundedness of the Toeplitz operator generalized by the singular integral operator with nonsmooth kerneland the generalized fractional.Liu et al.[11]investigated the boundness of the Toeplitz operator related to the generalized fractionalintegraloperator.

      The commutator[b,T](f)=bT(f)?T(bf)is a particular case ofthe Toeplitz operators. Inspired by[7–10],we willconsider the boundedness ofthe Toeplitz operators generated by the Campanato-type functions and Riesz transforms associated with Sch¨odinger operators.

      Defi nition 1.1Let f ∈ Lloc(Rn),then the sharp maximal function associated with L= ?△ +V is defi ned by

      where ρ is define by

      Defi nition 1.2[12,13]Let L= ?△+V,p ∈ (0,∞)and β ∈ R.Afunction f ∈ Lploc(Rn) is said to be in ΛβL,p(Rn),if there exists a nonnegative constant C such that for all x ∈ Rnand 0 < s < ρ(x) ≤ r,then the kernel K(x,y)of operator ▽(?△ +V)?1/2satisfies the following estimates:there exists a constant δ> 0 such that for any nonnegative integrate i,

      Hence, ▽(?△ +V)?1/2is boundedness on Lp(Rn)space for 1 < p ≤ p0,where 1/p0= 1/q? 1/n.

      Throughout this paper,the letter C always remains to denote a positive constant that may vary at each occurrence but is independent of the essential variable.

      2 Theorems and Lemmas

      Theorems 2.1Let V ∈ Bqsatisfy(1.2)for n/2 ≤ q < n.Let 0 ≤ β < 1,b ∈ ΛβL(Rn), 1 < τ< ∞ and 1 < s < p0,where 1/p0=1/q ? 1/n.Suppose that Θ1f=0 for any f ∈ Lr(Rn)(1 < r < ∞),then there exists a constant C > 0 such that

      Theorems 2.2Let V ∈ Bqsatisfy(1.2)for n/2 ≤ q < n and 1 < p0< ∞ satisfy 1/p0=1/q ? 1/n.Suppose that Θ1f=0 for any f ∈ Lτ(Rn)(1 < τ< ∞),0 < β < 1, and b ∈ ΛβL(Rn).Then for 1 < r < min{1/β,p0}and 1/p=1/r ? β,there exists a constant C > 0,such that

      Theorems 2.3Let V ∈ Bqsatisfy(1.2)for n/2 ≤ q < n and 1 < p0< ∞ satisfy 1/p0= 1/q ? 1/n.Suppose that Θ1f=0 for any f ∈ Lτ(Rn)(1 < τ< ∞)and b ∈ B M OL(Rn), then for 1 < p < p0,there exists a constant C > 0,such that

      To prove the theorems,we need the following lemmas.

      Lemma 2.1(see[7])Let 0 < p0< ∞,p0≤ p < ∞ and δ> 0.If f satisfies the condition M(|f|δ)1/δ∈ Lp0,then exists a constant C > 0 such that

      Lemma 2.2(see[14])For 1 ≤ γ < ∞ and β > 0,letSuppose that γ < p < n/β and 1/q=1/p ? β/n,then ‖Mγ,β(f)‖Lq≤ C‖f‖Lp.

      Remark 2.1When β =0,we denote Mγ,β=Mr.And it is easy to see that Mris boundedness on Lp(Rn),for 1 < r < p.

      Lemma 2.3(see[8])Let B=B(x,r)and 0 < r < ρ(x),then

      3 Proofs of Theorems 2.1–2.2

      First,let us prove Theorem 2.1.

      Fix a ball B=B(x,r0)and let 2B=B(x,2r0).We need only to estimate

      Case IWhen 0 < r0< ρ(x),using the condition Θ1f=0,then we have

      Let τand s be as in Theorem 2.1.Then using H¨older’s inequality and the Lsboundedness of Tj,1(Lemma 1.1),we have

      Let’s estimate I2.From(1.4),it follows that

      For H1,since δ> 0,by H¨older’s inequality,we have

      From Lemma 2.3 and H¨older’s inequality,it follows that

      Thus

      So when Tj,1= ▽(?△ +V)?1/2,we conclude that

      If Tj,1= ±I,it is obvious that

      Thus using the above formula and H¨older’s inequality,we conclude

      Thus for 0 < r0< ρ(x),we conclude that

      Case IIWhen r0> ρ(x),we have

      If Tj,1= ▽(?△ +V)?1/2,then for 1 < τ < ∞ and 1 < s < p0are as in Theorem 2.1, we have

      Thus

      If Tj,1= ±I,then by H¨older’s inequality,we obtain

      And

      Thus for r0> ρ(x),

      So whenever 0 < r0< ρ(x)or r0> ρ(x),we have

      Now,let us turn to prove Theorem 2.2.

      Let s,τbe as in Theorem 2.1 and satisfy 1 < sτ< p.Then applying Theorem 2.1, Lemma 2.1 and Lemma 2.2,we know that

      Thus we complete the proof of Theorems 2.1–2.1.

      4 Proof of Theorem 2.3

      It is obvious that Λ0L=BMOL.Thus from the proof of Theorem 2.1,we have

      Since Msτis boundedness on Lp(Rn),then

      Therefore,we complete the proof of Theorem 2.3.

      References

      [1]Feff erman C.The uncertainty principle[J].Bull.Amer.Math.Soc.,1983,9:129–206.

      [2]Shen Z.Lpestimates for Schr¨odinger operators with certain potentials[J].Ann.Inst.Fourier,1995, 45(2):513–546.

      [3]Zhong J.Harmonic analysis for some Schr¨odinger type operators[D].New Jersey:Princeton Univ., 1993.

      [4]Guo Z,Li P,Peng L.Lpboundedness of commutators of Riesz transforms associated to Schr¨odinger operator[J].J.Math.Anal.Appl.,2008,341:421–32.

      [5]Liu Y.Weighted Lpboundedness of commutators of Schr¨odinger type operators[J].Acta Math. Sinica(Chinese Series),2009,6:1091–1100.

      [6]Bongioanni B,Harboure E,Salinas O.Commutators of Riesz transforms related to Schr¨odinger operators[J].J.Fourier Anal.Appl.,2011,17:115–134.

      [7]Chu T.Boundedness of commutators associated with schr¨odinger operator and fourier multiplier[D]. Changsha:Hunan Univ.,2006.

      [8]Mo H,Zhou H,Yu D.Boundedness of commutators generated by the Campanato-type functions and Riesz transform associated with Schr¨odinger operators[J].Comm.Math.Res.,accepted.

      [9]Lu S,Mo H.Toeplitz type operators on Lebesgue spaces[J].Acta Math.Scientia,2009,29:140–150.

      [10]Zhang L,Zheng Q.Boundedness of commutators for singular integral operators with oscillating kernels on weighted Morrey spaces[J].J.Math.,2014,34(4):684–690.

      [11]Huang C,Liu L.Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator[J].Publ.Inst.Math.,2012,92(106):165–176.

      [12]Jiang Y.Some properties of Riesz potential associated with Schr¨odinger operators[J].Appl.Math. J.Chineses Univ.,2012,7(1):59–68.

      [13]Yang D,Zhou Y.Endpoint properties of localized Riesz transforms and fractional integrals associated to Schr¨odinger operators[J].Potential Anal.,2009,30:271–300.

      [14]Chanillo S.A note on commutators[J].Indiana Univ.Math.J.,1982,31:7–16.

      由Campanato 型函數(shù)和與薛定諤算子相關(guān)的Riesz變換生成的Toeplitz算子的有界性

      默會霞,余東艷,隋 鑫
      (北京郵電大學(xué)理學(xué)院,北京 100876)

      本文研究了由 Campanato 型函數(shù)及與 Schr¨odinger 算子相關(guān)的 Riesz 變換生成的 Toeplitz 算子的有界性. 利用 Sharp 極大函數(shù)估計得到了 Toeplitz 算子 Θb在 Lebesgue空間的有界性, 拓廣了已有交換子的結(jié)果.

      交換子;Campanato 型函數(shù);Riesz 變換;Schr¨odinger 算子

      :42B20;42B30;42B35

      O174.2

      tion:42B20;42B30;42B35

      A < class="emphasis_bold">Article ID:0255-7797(2017)02-0239-08

      0255-7797(2017)02-0239-08

      ?Received date:2014-09-28 Accepted date:2015-02-28

      Foundation item:Supported by National Natural Science Foundation of China(11161042; 11471050;11601035).

      Biography:Mo Huixia(1976–),female,born at Shijiazhung,Hebei,vice professor,major in harmonic analysis.

      猜你喜歡
      交換子型函數(shù)北京郵電大學(xué)
      Ap(φ)權(quán),擬微分算子及其交換子
      幾類“對勾”型函數(shù)最值問題的解法
      基于層次分析—模糊綜合評價的北京郵電大學(xué)新舊食堂的競爭力研究
      智富時代(2018年9期)2018-10-19 18:51:44
      Mobile Phone Using Among Youngsters
      信息環(huán)境下大學(xué)英語實驗教學(xué)成效的綜合研究——以北京郵電大學(xué)為例
      變指標(biāo)Morrey空間上的Marcinkiewicz積分及交換子的有界性
      網(wǎng)絡(luò)平臺漏洞侵權(quán)責(zé)任的承擔(dān)
      與Schr?dinger算子相關(guān)的交換子的L~p-有界性
      Orlicz Sylvester Busemann型函數(shù)的極值研究
      V-型函數(shù)的周期點
      昌吉市| 谷城县| 水城县| 库尔勒市| 都匀市| 会泽县| 金秀| 杭锦后旗| 南投市| 富蕴县| 枣强县| 兰坪| 富蕴县| 清水县| 即墨市| 工布江达县| 盐山县| 平凉市| 郓城县| 崇明县| 淮南市| 湄潭县| 新河县| 灯塔市| 米林县| 嵩明县| 龙游县| 鞍山市| 商水县| 大连市| 宁强县| 乐安县| 深州市| 攀枝花市| 宝应县| 水城县| 襄汾县| 阳山县| 广灵县| 莱西市| 吉林市|