秦 源,賈戰(zhàn)生,張 穎 (第四軍醫(yī)大學(xué)唐都醫(yī)院感染科,陜西西安710038)
·專家述評(píng)·
鐵穩(wěn)態(tài)與宿主防御
秦 源,賈戰(zhàn)生,張 穎 (第四軍醫(yī)大學(xué)唐都醫(yī)院感染科,陜西西安710038)
鐵是多細(xì)胞生物和幾乎所有微生物所需的重要微量元素.雖然環(huán)境中鐵儲(chǔ)量豐富,但鐵常見化合物是微溶的,生物難以獲取.感染和炎癥會(huì)破壞鐵代謝反饋回路.哺乳動(dòng)物體內(nèi)多種宿主防御機(jī)制限制了病原微生物獲取鐵源,降低了其致病性.機(jī)體內(nèi)鐵水平也調(diào)控了宿主防御作用,如巨噬細(xì)胞中鐵含量調(diào)節(jié)細(xì)胞因子的產(chǎn)生.本文綜述了機(jī)體和細(xì)胞調(diào)控鐵代謝保護(hù)宿主免受病原微生物感染的作用機(jī)制.
鐵穩(wěn)態(tài);感染;宿主;預(yù)防
在脊椎動(dòng)物中,鐵作為多種蛋白分子的重要功能組件廣泛參與生化代謝,如氧運(yùn)輸.鐵也是幾乎所有微生物、植物和動(dòng)物的必需元素.鐵作為酶的催化成分介導(dǎo)多種氧化還原反應(yīng),在能量生成和代謝中發(fā)揮至關(guān)重要的作用.蛋白分子可直接綁定鐵離子、血紅素及鐵硫簇.雖然對(duì)于鐵穩(wěn)態(tài)研究始于80多年前,但對(duì)其分子機(jī)制的詳細(xì)研究?jī)H出現(xiàn)在近二十年,且仍未完全闡明.早期的研究者認(rèn)識(shí)到鐵穩(wěn)態(tài)調(diào)節(jié)在宿主防御中的作用,形成了有關(guān)鐵代謝營(yíng)養(yǎng)免疫機(jī)制的概念[1].
健康人體內(nèi)血漿鐵離子維持在一個(gè)特定濃度.盡管飲食中的鐵供給量常常波動(dòng),但肝細(xì)胞、脾細(xì)胞和巨噬細(xì)胞中的鐵存儲(chǔ)一直處于恒定水平.這種調(diào)節(jié)機(jī)制與調(diào)控葡萄糖和鈣離子濃度的機(jī)制類似.鐵調(diào)素作為負(fù)性調(diào)控分子對(duì)維持鐵代謝穩(wěn)態(tài)起著關(guān)鍵性作用.鐵調(diào)素通過作用于B2微球蛋白/組織相融性復(fù)合物/轉(zhuǎn)鐵蛋白受體1復(fù)合物(B2?Microglobulin/HemochromatosisGene/TransferrinReceptor,B2M/HFE/TfR1)降低鐵調(diào)蛋白(Iron Regulatory Proteins,IRP)活性抑制鐵運(yùn)輸?shù)鞍妆磉_(dá),減少小腸上皮細(xì)胞對(duì)鐵離子的吸收.同時(shí)鐵調(diào)素也可使小腸上皮細(xì)胞膜鐵轉(zhuǎn)運(yùn)蛋白1(Ferroportin1,F(xiàn)PN1)內(nèi)化降解,從而減少小腸上皮細(xì)胞鐵離子輸出.對(duì)于巨噬細(xì)胞,鐵調(diào)素可直接抑制巨噬細(xì)胞鐵輸出導(dǎo)致胞內(nèi)鐵離子蓄積.當(dāng)體內(nèi)鐵含量減少,鐵調(diào)素的生成相應(yīng)下調(diào),血漿中的鐵濃度增加.鐵調(diào)素偶聯(lián)膜鐵轉(zhuǎn)運(yùn)蛋白構(gòu)成了一個(gè)調(diào)控血漿及組織中鐵離子水平的反饋回路[2-3].
感染和炎癥會(huì)破壞鐵代謝反饋回路.由于大多數(shù)微生物生存對(duì)外源鐵有絕對(duì)依賴性,因此感染和炎癥抑制鐵調(diào)素表達(dá)引起的血鐵過少可能具有宿主防御作用.鐵調(diào)素和血鐵過少對(duì)宿主防御作用的直接證據(jù)已經(jīng)被最近的研究所證實(shí)[4].
鐵是地殼中最豐富的元素之一,但鐵的氧化形式(氧化鐵)多數(shù)是不溶性的,很難被植物和動(dòng)物所吸收.機(jī)體通過調(diào)節(jié)和吸收補(bǔ)償體內(nèi)鐵流失,吸收和運(yùn)輸膳食中的鐵是由十二指腸上皮細(xì)胞膜鐵轉(zhuǎn)運(yùn)蛋白1介導(dǎo).約有超過一半的鐵以血紅蛋白形式存在于體內(nèi),約四分之一的鐵儲(chǔ)存在肝細(xì)胞和巨噬細(xì)胞內(nèi).大部分鐵從衰老的紅細(xì)胞回收,少量鐵從其他衰老細(xì)胞回收,而飲食中吸收的鐵通常只占血漿鐵總量的5%.
轉(zhuǎn)鐵蛋白結(jié)合鐵(Transferrin?Fe,TF?Fe)濃度和肝鐵含量對(duì)鐵調(diào)素調(diào)控構(gòu)成了鐵穩(wěn)態(tài)反饋機(jī)制.骨形態(tài)發(fā)生蛋白/SMAD(bone morphogenetic protein/small mother against decapentaplegichomolog,BMP/SMAD)和信號(hào)轉(zhuǎn)化器及轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)通路參與了鐵調(diào)素表達(dá)調(diào)控.BMP/SMAD通路與轉(zhuǎn)鐵蛋白結(jié)合鐵以及細(xì)胞內(nèi)鐵濃度相關(guān).BMP/SMAD通路中的BMP2、BMP4、BMP9和BMP6分子都參與了鐵調(diào)素基因表達(dá)的調(diào)控.雖然鐵離子主要在肝細(xì)胞蓄積,但BMP6主要由其他類型細(xì)胞分泌,如巨噬細(xì)胞.細(xì)胞炎癥因子白介素?6(Interleukin?6,IL?6)在固有免疫中發(fā)揮作用.研究表明IL?6可通過激活STAT3通路完成對(duì)鐵調(diào)素表達(dá)調(diào)控.磷酸化的STAT3與HAMP基因啟動(dòng)子區(qū)域STAT應(yīng)答元件結(jié)合,從而增強(qiáng)HAMP基因轉(zhuǎn)錄活性,促進(jìn)鐵調(diào)素表達(dá)[5].
感染與炎癥引起的血鐵過少對(duì)宿主防御微生物有重要作用.感染期間血漿中的鐵濃度從正常范圍(10~30 μmol/L)減少至1~3 μmol/L.血鐵過少應(yīng)答機(jī)制提高了轉(zhuǎn)鐵蛋白結(jié)合鐵的親和力,限制了微生物利用鐵離子.鐵與轉(zhuǎn)鐵蛋白保持緊密結(jié)合,使微生物無法獲得鐵離子.此外,鐵離子可催化活性氧簇(reac?tive oxygen species,ROS)產(chǎn)生,造成組織損傷.但機(jī)體鐵濃度的改變?nèi)绾斡绊懳⑸镨F代謝仍未闡明[6].
2000~2001年,Krause等[7]和Park等[8]分別從人血清和尿中分離得到鐵調(diào)素,該分子由25個(gè)氨基酸組成,在體外具有直接抗菌活性.鐵調(diào)素生成受3個(gè)主要的病理生理機(jī)制影響:鐵離子、炎癥刺激和促紅細(xì)胞生成素(圖1).所有的途徑都是在HAMP基因轉(zhuǎn)錄水平調(diào)節(jié)鐵調(diào)素表達(dá).感染或炎癥刺激促進(jìn)鐵調(diào)素分泌會(huì)導(dǎo)致血鐵過少.這種情況常發(fā)生在全身感染、注射病原微生物或某些細(xì)胞因子后幾小時(shí)內(nèi).高濃度鐵調(diào)素可引起巨噬細(xì)胞中鐵蓄積,從而有效地改變血漿及肝細(xì)胞中鐵離子濃度.由于在感染過程中骨髓紅細(xì)胞生成缺少鐵離子供給,長(zhǎng)期啟動(dòng)這種機(jī)制會(huì)導(dǎo)致炎癥性貧血.
圖1 鐵穩(wěn)態(tài)與鐵調(diào)素調(diào)控
在小鼠實(shí)驗(yàn)中,炎癥刺激會(huì)導(dǎo)致健康小鼠出現(xiàn)血鐵過少癥,但對(duì)鐵調(diào)素敲除的小鼠沒有作用,其血清鐵濃度甚至在感染或炎癥中會(huì)增加.最近研究[9]已經(jīng)證實(shí)鐵調(diào)素可保護(hù)小鼠免受嗜鐵細(xì)菌感染,鐵調(diào)素基因敲除小鼠會(huì)在16 h內(nèi)死于特定劑量創(chuàng)傷弧菌(vibrio vulnificus)感染,而野生型小鼠則可耐受該劑量.鐵調(diào)素基因敲除小鼠也比野生型小鼠更容易死于感染小腸結(jié)腸炎耶爾森菌(yersinia enterocolitica)和減毒鼠疫耶爾森菌(yersinia pestis)菌株,而小鼠感染嗜鐵細(xì)菌后可以被鐵調(diào)素促進(jìn)劑誘發(fā)的血鐵過少治愈.在感染過程中鐵調(diào)素誘發(fā)血鐵過少,從而限制非轉(zhuǎn)鐵蛋白結(jié)合鐵的機(jī)制,對(duì)抑制缺乏鐵載體介導(dǎo)鐵攝取的細(xì)菌特別有效[10].由于血鐵過少癥會(huì)導(dǎo)致炎癥性貧血,機(jī)體誘發(fā)血鐵過少抵御病原微生物的保護(hù)機(jī)制仍存在爭(zhēng)議.
值得注意的是,盡管在人類和小鼠中多數(shù)細(xì)菌和病毒感染(如流感病毒和HIV病毒)會(huì)顯著促進(jìn)鐵調(diào)素合成,但乙型肝炎和丙型肝炎病毒感染未能促進(jìn)鐵調(diào)素合成,這些嗜肝病毒感染引起的炎癥和鐵應(yīng)答機(jī)制仍不清楚.
遺傳性血色?。╤ereditary haemochromatosis)可導(dǎo)致組織中大量的鐵沉積.大量的鐵離子進(jìn)入血漿會(huì)引起早發(fā)型器官失調(diào),包括心力衰竭和內(nèi)分泌物不足.研究證實(shí),鐵調(diào)素基因突變會(huì)導(dǎo)致體內(nèi)鐵調(diào)素表達(dá)下降造成嚴(yán)重的鐵過載,進(jìn)而發(fā)展為血色病.在遺傳性血色病和β?地中海貧血癥(β?thalassaemia)患者中,鐵過載是肝臟纖維化、肥胖和心力衰竭的主要原因.遺傳性血色病患者常同時(shí)感染兩種革蘭氏陰性細(xì)菌:創(chuàng)傷弧菌[11]和人畜共患結(jié)腸炎耶爾森桿菌[12].有病例報(bào)道血色病患者感染嗜鐵菌(siderophilic bacteria)后致死[13].在一個(gè)特殊病例中,一位患遺傳性血色病的研究員在實(shí)驗(yàn)室接觸減毒鼠疫桿菌后死亡,而這種減毒株需要充足的鐵供給[14].類似的菌株致病力在血色病小鼠體內(nèi)顯著增強(qiáng),這類小鼠編碼鐵調(diào)素的基因及其調(diào)節(jié)子鐵調(diào)素調(diào)節(jié)蛋白(hemojuvel?in,HJV)缺失.β?地中海貧血患者是否會(huì)增加感染嗜鐵細(xì)菌風(fēng)險(xiǎn)以及其他病原微生物有待進(jìn)一步確認(rèn).
越來越多有關(guān)小鼠模型的研究顯示巨噬細(xì)胞鐵耗竭可能有促炎癥作用.鐵是低氧誘導(dǎo)因子1α(Hypoxia?inducible factor 1?α,HIF1α)羥基化必需的輔助因子,從而導(dǎo)致該轉(zhuǎn)錄因子降解.巨噬細(xì)胞鐵耗竭可以模擬缺氧的影響,穩(wěn)定促進(jìn)HIF1α、IL?1β和其他細(xì)胞因子轉(zhuǎn)錄及合成,IL?1β介導(dǎo)全身炎癥反應(yīng)和激活宿主防御機(jī)制[15].也有學(xué)者認(rèn)為鐵調(diào)素直接通過膜鐵轉(zhuǎn)運(yùn)蛋白和JAK?信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子(janus kinase?signal transducer and activator of tran?scription,JAK?STAT)通路介導(dǎo)抗炎作用[16].雖然IL?1β不受鐵調(diào)素調(diào)控,但鐵調(diào)素導(dǎo)致巨噬細(xì)胞鐵蓄積具有抗炎作用.
寄生蟲生長(zhǎng)依賴于宿主肝細(xì)胞和紅細(xì)胞中的鐵源.瘧原蟲感染肝細(xì)胞后在胞內(nèi)大量復(fù)制,其裂殖子再感染紅細(xì)胞繼續(xù)增殖.紅細(xì)胞是機(jī)體儲(chǔ)存鐵最多的細(xì)胞.在缺鐵狀態(tài)下,肝臟的鐵存儲(chǔ)枯竭,紅細(xì)胞變小,血紅蛋白減少.流行病學(xué)證據(jù)表明,鐵缺乏可保護(hù)免受寄生蟲和瘧疾感染[17],這也解釋了為什么血色病在熱帶地區(qū)比在歐洲北部更常見.瘧疾感染引起的炎癥促進(jìn)了鐵調(diào)素表達(dá),抑制了巨噬細(xì)胞釋放鐵離子.這種機(jī)制可以起到防止瘧疾和寄生蟲感染,為適應(yīng)性免疫系統(tǒng)尚未完全發(fā)育的嬰兒和兒童提供了一個(gè)先天免疫保護(hù)屏障.
鐵缺乏普遍存在于發(fā)展中國(guó)家,是導(dǎo)致慢性疾病的一個(gè)主要原因.為了解決這個(gè)問題,各種通過膳食補(bǔ)充鐵的方法被實(shí)施.但越來越多的數(shù)據(jù)表明過分補(bǔ)鐵可能會(huì)增加瘧疾、腹瀉和肺結(jié)核的發(fā)病率及死亡率.這些影響被歸因于多種機(jī)制,如腸道殘留鐵導(dǎo)致腸道菌群結(jié)構(gòu)改變;血漿或特定器官的鐵濃度升高刺激了病原菌生長(zhǎng)或影響了宿主防御功能[18-19].因此推測(cè),熱帶地區(qū)普遍流行的鐵缺乏癥能夠預(yù)防某些感染性疾病.
對(duì)于胞內(nèi)寄生微生物,鐵調(diào)素誘導(dǎo)的巨噬細(xì)胞鐵蓄積反而會(huì)提高鐵的可用性,包括利什曼原蟲(leish?mania spp.)、衣原體屬(chlamydia spp.)、軍團(tuán)菌(legi?onella spp.)以及鼠傷寒沙門氏菌(salmonella typhi?murium)[20-22].鼠傷寒沙門氏菌引起這種反應(yīng)的機(jī)制依賴于IL?6和雌激素相關(guān)受體?γ(Estrogen?related receptor,ESRR?γ).在微生物感染早期,機(jī)體IL?6水平上調(diào)促進(jìn)了ESRR?γ生成,并通過JAK2?STAT3信號(hào)通路促進(jìn)STAT3與HAMP的啟動(dòng)子綁定增強(qiáng)鐵調(diào)素轉(zhuǎn)錄.在小鼠模型中,化學(xué)抑制ESRR?γ通路能顯著抑制細(xì)菌感染,并改善感染小鼠生存狀況[22].
雖然針對(duì)病原微生物鐵需求設(shè)計(jì)藥物靶點(diǎn)非常具有吸引力,但鐵螯合劑藥物研制較為困難.有效的鐵螯合劑必須是無毒的,且比微生物鐵載體有更高親和力.盡管近幾十年在這一領(lǐng)域的研究已經(jīng)成功獲得了三種用于治療鐵過載的藥物[23],但尚無作為抗菌治療的鐵螯合劑.另一方面,在基于感染創(chuàng)傷弧菌或小腸結(jié)腸炎耶爾森菌的動(dòng)物模型中開發(fā)了鐵調(diào)素類似物,這是一種模擬鐵調(diào)素功能的小肽.這種藥物可以有效地治療創(chuàng)傷弧菌感染的鐵調(diào)素基因敲除小鼠,鐵調(diào)素類似物顯著降低了血漿和細(xì)胞外液鐵含量,從而降低了非轉(zhuǎn)鐵蛋白結(jié)合鐵濃度,抑制了嗜鐵菌的鐵源[9].
感染與炎癥引起的鐵調(diào)素上調(diào)和血鐵過少癥限制了病原微生物鐵攝取,對(duì)宿主防御病原微生物有重要作用.而某些致病微生物也進(jìn)化出對(duì)抗這種鐵限制機(jī)制策略,從而在宿主內(nèi)增殖.對(duì)微生物和宿主之間的鐵源競(jìng)爭(zhēng)機(jī)制在許多方面仍未闡明,是進(jìn)一步研究的重要內(nèi)容,包括炎癥導(dǎo)致的血鐵過少對(duì)常見致病菌的影響,鐵元素在微生物細(xì)胞內(nèi)的亞細(xì)胞環(huán)境調(diào)控,缺鐵對(duì)宿主防御和炎癥的影響.最后,基于微生物對(duì)鐵元素的依賴,可設(shè)計(jì)針對(duì)病原微生物的新藥物.
[1]Nairz M,Schroll A,Demetz E,et al.‘Ride on the ferrous wheel’——the cycle of iron in macrophages in health and disease[J].Immunobiology,2015,220(2):280-294.
[2]秦 源,郭永紅,張 穎,等.慢性丙型肝炎鐵代謝的失調(diào)機(jī)制[J].臨床肝膽病雜志,2015,31(2):291-294.
[3]Ganz T.Systemic iron homeostasis[J].Physiol Rev,2013,93(4):1721-1741.
[4]Nairz M,Haschka D,Demetz E,et al.Iron at the interface of immu?nity and infection[J].Front Pharmacol,2014,5:152.
[5]秦 源,郭永紅,王亞寧,等.鐵調(diào)素調(diào)控與肝臟疾病引起的鐵代謝紊亂[J].肝臟,2016,21(6):509-512.
[6]Scindia Y,Dey P,Thirunagari A,et al.Hepcidin mitigates renal ischemia?reperfusion injury by modulating systemic iron homeostasis[J].J Am Soc Nephrol,2015,26(11):2800-2814.
[7]Krause A,Neitz S,M?gert HJ,et al.LEAP?1,a novel highly disulfide?bonded human peptide,exhibits antimicrobial activity[J].FEBS Lett,2000,480(2-3):147-150.
[8]Park CH,Valore EV,Waring AJ,et al.Hepcidin,a urinary antimi?crobial peptide synthesized in the liver[J].J Biol Chem,2001,276:7806-7810.
[9]Arezes J,Jung G,Gabayan V,et al.Hepcidin?induced hypoferremia is a critical host defense mechanism against the siderophilic bacteri?um Vibrio vulnificus[J].Cell Host MIcrobe,2015,17(1):47-57.
[10]Quenee LE,Hermanas TM,Ciletti N,et al.Hereditary hemochro?matosis restores the virulence of plague vaccine strains[J].J Infect Dis,2012,206(7):1050-1058.
[11]Barton JC,Acton RT.Hemochromatosis and Vibrio vulnificus wound infections[J].J Clin Gastroenterol,2009,43(9):890-893.
[12]Bergmann TK,Vinding K,Hey H.Multiple hepatic abscesses due to Yersinia enterocolitica infection secondary to primary haemochroma?tosis[J].Scand J Gastroenterol,2001,36(8):891-895.
[13]Gerhard GS,Levin KA,Goldstein JP,et al.Vibrio vulnificus septice?mia in a patient with the hemochromatosis HFE C282Y mutation[J].Arch Pathol Lab Med,2001,125(8):1107-1109.
[14]Frank KM,Schneewind O,Shieh WJ.Investigation of a researcher's death due to septicemic plague[J].N Engl J Med,2011,364(26):2563-2564.
[15]Pagani A,Nai A,Corna G,et al.Low hepcidin accounts for the proinflammatory status associated with iron deficiency[J].Blood,2011,118(3):736-746.
[16]Ross SL,Tran L,Winters A,et al.Molecular mechanism of hepci?din?mediated ferroportin internalization requires ferroportin lysines,not tyrosines or JAK?STAT[J].Cell Metab,2012,15(6):905-917.
[17]Gwamaka M,Kurtis JD,Sorensen B E,et al.Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children[J].Clin Infect Dis,2012:54(8):1137-1144.
[18]Sazawal S,Black RE,Ramsan M,et al.Effects of routine prophy?lactic supplementation with iron and folic acid on admission to hos?pital and mortality in preschool children in a high malaria transmis?sion setting:community?based,randomised,placebo?controlled trial[J].Lancet,2006,367(9505):133-143.
[19]Michels K,Nemeth E,Ganz T,et al.Hepcidin and host defense against infectious diseases[J].PLoS Pathog,2015,11(8):e1004998.
[20]Ben?Othman R,F(xiàn)lannery AR,Miguel DC,et al.Leishmania?media?ted inhibition of iron export promotes parasite replication in macro?phages[J].PLoS Pathog,2014,10(1):e1003901.
[21]Paradkar PN,De Domenico I,Durchfort N,et al.Iron depletion limits intracellular bacterial growth in macrophages[J].Blood,2008,112(3):866-874.
[22]Kim DK,Jeong JH,Lee JM,et al.Inverse agonist of estrogen?related receptor γ controls Salmonella typhimurium infection by modulating host iron homeostasis[J].Nat med,2014,20(4):419-424.
[23]Thompson MG,Corey BW,Si Y,et al.Antibacterial activities of iron chelators against common nosocomial pathogens[J].Antimicrobial agents and chemotherapy,2012,56(10):5419-5421.
Iron homeostasis and host defense
QIN Yuan,JIA Zhan?Sheng,ZHANG Ying
Department of Infectious Disease,Tangdu Hospital,The Fourth Military Medical University,Xi'an 710038,China
Iron is an important trace element for multicellular organisms and almost all microorganisms.Although iron is rich in the environment,common forms of iron are largely insoluble and therefore poorly absorbed by biological organisms.Accordingly,iron metabolism in vertebrates is characterized by the conservation and recycling.Infection and inflammation disrupt the iron metabo?lism feedback loop.The pathogenic microbes that enter the mam?malian host face a variety of defense mechanisms that limit their ability to obtain iron and thereby restrict their pathogenicity.Iron levels also regulate host defense,such as the cytokines production in the regulation of iron content in macrophages.This review sum?marizes the mechanisms of body and cellular iron regulation in the protection of the host from pathogenic microbial infection.
iron homeostasis;infection;host defense
Q93
A
2095?6894(2017)04?01?04
2016-12-07;接受日期:2016-12-23
國(guó)家自然科學(xué)基金面上項(xiàng)目(81270499)
秦 源.E?mail:qinyuan_k@126.com
張 穎.副教授.E?mail:zyfmmu@hotmail.com