李列列,肖明礫,卓 莉 ,袁 泉,何江達(dá)
(1.四川大學(xué) 水利水電學(xué)院,成都 610065;2.水力學(xué)與山區(qū)河流開(kāi)發(fā)保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室(四川大學(xué)),成都 610065;3.四川省交通運(yùn)輸廳公路規(guī)劃勘察設(shè)計(jì)研究院,成都 610065)
考慮非貫通節(jié)理?yè)p傷演化巖體復(fù)合本構(gòu)模型
李列列1,2,肖明礫1,2,卓 莉1,2,袁 泉3,何江達(dá)1,2
(1.四川大學(xué) 水利水電學(xué)院,成都 610065;2.水力學(xué)與山區(qū)河流開(kāi)發(fā)保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室(四川大學(xué)),成都 610065;3.四川省交通運(yùn)輸廳公路規(guī)劃勘察設(shè)計(jì)研究院,成都 610065)
非貫通節(jié)理巖體的力學(xué)特征與完整巖石相比有較大差異.為推導(dǎo)非貫通節(jié)理巖體在單軸壓縮下的復(fù)合損傷本構(gòu)模型,采用修正自洽方法考慮不同損傷變量之間的復(fù)合.從附加應(yīng)變能增量和損傷應(yīng)變能釋放量相關(guān)聯(lián)的思路出發(fā),采用等效直線裂紋作為節(jié)理裂隙損傷演化軌跡,分別計(jì)算細(xì)觀損傷、初始節(jié)理和節(jié)理裂隙損傷演化引起的附加應(yīng)變能;基于Betti能量互易定理,引入自洽方法考慮節(jié)理裂隙之間的相互作用,并采用逐條添加節(jié)理的方法對(duì)傳統(tǒng)自洽方法進(jìn)行修正,得出巖體不同受力階段細(xì)觀、初始節(jié)理和節(jié)理裂隙損傷演化的復(fù)合損傷本構(gòu)模型;將本構(gòu)模型的理論計(jì)算結(jié)果與現(xiàn)有文獻(xiàn)的室內(nèi)試驗(yàn)結(jié)果進(jìn)行對(duì)比分析,結(jié)果顯示:本構(gòu)模型的理論計(jì)算結(jié)果與室內(nèi)試驗(yàn)結(jié)果規(guī)律一致,隨著節(jié)理個(gè)數(shù)增加,初始彈性模量和荷載峰值均呈下降趨勢(shì),下降幅度較為一致;節(jié)理裂隙的損傷演化對(duì)巖體的力學(xué)特性有重要影響,考慮節(jié)理裂隙損傷演化的理論應(yīng)力應(yīng)變曲線和荷載峰值與室內(nèi)試驗(yàn)結(jié)果更為吻合,有效驗(yàn)證了復(fù)合損傷本構(gòu)模型的正確性與合理性.
非貫通閉合節(jié)理;損傷;演化;復(fù)合;本構(gòu)模型;單軸壓縮
工程建設(shè)中的巖體[1]多含非貫通節(jié)理,在外力作用下的損傷由細(xì)觀損傷和宏觀節(jié)理?yè)p傷組成.針對(duì)細(xì)觀損傷本構(gòu)模型,Weibull[2]首次基于統(tǒng)計(jì)理論提出強(qiáng)度分布函數(shù),稱為Weibull分布函數(shù).眾多學(xué)者基于巖石單元強(qiáng)度服從Weibull函數(shù)分布,推導(dǎo)出細(xì)觀損傷變量表達(dá)式[3-4].針對(duì)巖體的損傷本構(gòu)模型,Kyoya 等[5]首次將損傷力學(xué)理論引入到節(jié)理巖體的研究,通過(guò)二階對(duì)稱張量來(lái)反映宏觀節(jié)理的各向異性特征,采用有效應(yīng)力方法建立起節(jié)理巖體的本構(gòu)關(guān)系,將節(jié)理的幾何特征和力學(xué)特性有效聯(lián)系起來(lái),從而為節(jié)理巖體的研究提供了新思想.基于這種新思想,Chen等[6]將損傷變量定義為節(jié)理頻率,采用平行等間距節(jié)理與巖石彈性矩陣相復(fù)合的方法,推導(dǎo)出節(jié)理巖體的微平面本構(gòu)模型;陳文玲等[7]從應(yīng)變能釋放量出發(fā),基于連續(xù)(半連續(xù))介質(zhì)力學(xué)推導(dǎo)出了宏觀損傷張量的計(jì)算表達(dá)式.
目前已發(fā)表的成果[6-7]多依據(jù)初始宏觀節(jié)理的排距和貫通率引入修正系數(shù)以考慮節(jié)理間的相互影響,取值多具經(jīng)驗(yàn)性;現(xiàn)有文獻(xiàn)中的復(fù)合損傷本構(gòu)模型并沒(méi)有考慮宏觀節(jié)理?yè)p傷演化的影響.為此,本文在前人研究基礎(chǔ)上,針對(duì)非貫通節(jié)理巖體,引用自洽方法[8]考慮節(jié)理之間的相互作用,并采用逐條添加節(jié)理的方法進(jìn)行修正,基于Betti能量互易定理[8],推導(dǎo)出巖體不同受力階段的復(fù)合損傷本構(gòu)模型.
1.1 模型的建立
假設(shè)巖石的強(qiáng)度服從Weibull分布[3-4],微元體的總數(shù)目為Z,某一荷載作用下,破壞的微元數(shù)目為Zi.由于實(shí)際巖石殘余損傷變量小于1,故引入折減系數(shù)η(0≤η<1),則損傷變量表達(dá)式為[9]
(1)
假定巖石微單元破壞前服從胡克定律,根據(jù)Lemaitre有效應(yīng)力定義,可得損傷統(tǒng)計(jì)本構(gòu)模型[9]:
(2)
(3)
式中c、φ分別為材料的粘聚力和摩擦角.
根據(jù)Lemaitre應(yīng)變等效假設(shè)和胡克定律,有效應(yīng)力與名義應(yīng)力有以下關(guān)系式[10]:
(4)
(5)
1.2 分布參數(shù)的確定
設(shè)巖石峰值處的應(yīng)力和應(yīng)變分別為σc和εc,殘余強(qiáng)度處的應(yīng)力和應(yīng)變分別為σu和εu,通過(guò)式(4)~(5)可得荷載峰值和殘余強(qiáng)度的F值,引入3個(gè)條件:
(6)
(7)
(8)
將式(6)~(8)代入式(2),分布參數(shù)m、F0、η可通過(guò)以下3式聯(lián)列計(jì)算得出:
(9)
(10)
(11)
應(yīng)當(dāng)注意,式(11)是一個(gè)隱式方程,需通過(guò)迭代方式求解.
基于損傷力學(xué)理論,將損傷等效為彈性模量的弱化,節(jié)理巖體的損傷本構(gòu)關(guān)系可表示為[11]
σ=E*εi=Eεi(1-D).
(12)
式中:E*為巖體的彈性模量,D為巖體的復(fù)合損傷變量,σ為單軸壓縮應(yīng)力.
2.1 附加應(yīng)變能的計(jì)算
在單軸壓縮應(yīng)力σ作用下,根據(jù)Betti能量互易定律得如下關(guān)系式[8]:
(13)
式中:V為試件的體積,Δφ1為細(xì)觀損傷產(chǎn)生的附加應(yīng)變能,Δφ2為初始節(jié)理產(chǎn)生的附加應(yīng)變能,Δφ3為節(jié)理?yè)p傷演化產(chǎn)生的附加應(yīng)變能.
(14)
2)Δφ2的計(jì)算.對(duì)于平面應(yīng)力問(wèn)題,單個(gè)節(jié)理引起的附加應(yīng)變能通過(guò)式(15)計(jì)算[8]:
(15)
式中:KI、KII分別為節(jié)理尖端的I、II型有效應(yīng)力強(qiáng)度因子,中心節(jié)理T=2,單邊節(jié)理T=1 ,c為節(jié)理半長(zhǎng).
如圖1所示,閉合節(jié)理面的I型有效應(yīng)力強(qiáng)度因子等于零[7].參照袁小清等[11]和Isida[12]的研究成果,按節(jié)理長(zhǎng)度和平板寬度進(jìn)行修正,可得II型有效強(qiáng)度因子表達(dá)式[13]:
(16)
式中:中心節(jié)理a=c,單邊節(jié)理a=2c,w為平板的寬度,cv為傳剪折減系數(shù).
圖1 單節(jié)理受力簡(jiǎn)圖
將式(16)代入式(15),含有N條節(jié)理試件的初始節(jié)理?yè)p傷附加應(yīng)變能可表示為[8]
(17)
3)Δφ3的計(jì)算.壓縮應(yīng)力到一定值后,節(jié)理尖端開(kāi)始擴(kuò)展演化,見(jiàn)圖2(a),PP*為初始節(jié)理,PQ、P*Q*為節(jié)理演化軌跡,Horii等[14]給出了圖2(a)的精確解,但是由于公式復(fù)雜,不利于計(jì)算,根據(jù)Horii等[15]的研究,將圖2(a)等效為圖2(b)、(c)直線裂紋.
根據(jù)Paul[16]的成果,圖2(c)中I型有效應(yīng)力強(qiáng)度因子可表示為
(18)
根據(jù)Kemeny等[13]的研究成果,節(jié)理擴(kuò)展演化方式以I型斷裂為主.根據(jù)式(18)和式(15),利用Maple17.0進(jìn)行計(jì)算,得N條節(jié)理?yè)p傷演化引起的附加應(yīng)變能表達(dá)式為
圖2 裂紋擴(kuò)展模型
裂紋擴(kuò)展直至KI=KIC停止擴(kuò)展,因此式(18)中,令KI=KIC,便可計(jì)算得出節(jié)理演化長(zhǎng)度L[12].
2.2 復(fù)合損傷變量的計(jì)算
假設(shè)宏觀損傷演化過(guò)程中裂紋的數(shù)目不發(fā)生變化,根據(jù)Kemeny[8]的研究成果,采用自洽方法考慮多條節(jié)理之間的相互作用,近似假設(shè)節(jié)理周圍單元體的彈性模量均為初始損傷體的名義彈模.因此,將式(17)中的E以名義彈性模量E*代替,將式(14)、(17)和式(19)代入式(13)整理可得:
(20)
這里,定義G為節(jié)理密度[8].Kemeny[8]和Bruner[17]提出了修正自洽方法,即巖體中依次添加單條節(jié)理,每次節(jié)理添加后對(duì)應(yīng)的巖體彈性模量是一個(gè)變化值,從第一條節(jié)理添加前的巖石彈性模型E變化到最后一條節(jié)理添加完畢后對(duì)應(yīng)的巖體名義彈性模量E*.對(duì)式(20)以G為變量進(jìn)行微分,并以E*代替E,得以下方程和相應(yīng)的初始條件:
(21)
(22)
根據(jù)式(21)、(22)的解,可得3種復(fù)合損傷的損傷變量表達(dá)式:
(23)
2.3 宏觀損傷變量的的張量化
由于宏觀節(jié)理及其損傷演化具有各向異性,因此需要對(duì)應(yīng)力作用方向上的損傷進(jìn)行張量化,本文采用Toshikazu等[18]的方法進(jìn)行張量化.
1)對(duì)于單組非貫通節(jié)理,根據(jù)圖1,設(shè)非貫通節(jié)理的法向向量為n,則有
(24)
2)對(duì)于多組非貫通節(jié)理張量的計(jì)算方法:設(shè)有W組節(jié)理,法向向量為ni(i=1,2,…),則
ei=ni?ni,
(25)
(26)
2.4 復(fù)合損傷方程
巖體損傷分為3個(gè)階段:加載初期為初始節(jié)理宏觀損傷;加載中期為初始節(jié)理?yè)p傷和細(xì)觀損傷的復(fù)合;加載后期為初始節(jié)理?yè)p傷、細(xì)觀損傷、節(jié)理演化損傷的復(fù)合.根據(jù)式(23)可得不同加載階段的復(fù)合損傷變量表達(dá)式:
(27)
式中:e1和e2分別為初始節(jié)理和節(jié)理演化損傷計(jì)算得出的應(yīng)力作用方向標(biāo)量值,根據(jù)式(24)~(26)計(jì)算;Fs為完整巖石屈服強(qiáng)度.
為驗(yàn)證本文所建模型的合理性和有效性,采用楊圣奇等[19]斷續(xù)非貫通節(jié)理脆性大理巖的室內(nèi)試驗(yàn)成果進(jìn)行對(duì)比分析,鑒于研究三維斷裂問(wèn)題存在一定困難,可將三維問(wèn)題概化為二維問(wèn)題進(jìn)行研究,文獻(xiàn)[19]中節(jié)理個(gè)數(shù)概化后的平面模型見(jiàn)圖3.
圖3 二維概化模型
根據(jù)文獻(xiàn)[19]完整巖石應(yīng)力應(yīng)變曲線可以看出,單軸壓縮初期,存在明顯的壓密段.為更直觀地證明模型的合理性,對(duì)室內(nèi)試驗(yàn)曲線進(jìn)行修正,方法為室內(nèi)試驗(yàn)應(yīng)力應(yīng)變曲線減去壓密段引起的附加應(yīng)變,得到修正后室內(nèi)試驗(yàn)應(yīng)力應(yīng)變曲線.脆性大理巖的粘聚力為31.64 MPa,內(nèi)摩擦角為22.5°,泊松比為0.25,根據(jù)修正后的完整巖石應(yīng)力應(yīng)變曲線,由式(9)~(10)計(jì)算得出細(xì)觀損傷最優(yōu)參數(shù)為m=11.359,F(xiàn)0=69.13,η=0.997.
文獻(xiàn)[19]中預(yù)制節(jié)理中填充有軟石膏,故按閉合節(jié)理處理,根據(jù)Toshikazu等[18]提出的試算方法,得到傳剪折減系數(shù)cv=0.46.加載初期,預(yù)制節(jié)理的夾角為45°,可得初始節(jié)理的二階對(duì)稱張量為
根據(jù)初始節(jié)理的二階對(duì)稱張量和式(27)計(jì)算加載初期的宏觀損傷變量D,再由式(12)計(jì)算可得不同節(jié)理個(gè)數(shù)的等效彈性模量,圖4給出初始損傷體彈性模量隨節(jié)理個(gè)數(shù)的變化曲線.
圖4 彈性模量對(duì)比曲線
由文獻(xiàn)[19]試驗(yàn)結(jié)果可看出,節(jié)理巖體荷載峰值前出現(xiàn)應(yīng)力下墜點(diǎn),可認(rèn)為此時(shí)節(jié)理開(kāi)始損傷演化[19-20],且節(jié)理演化長(zhǎng)度保持不變[19-20];由于文獻(xiàn)[19]中沒(méi)有巖體的斷裂韌度,根據(jù)文獻(xiàn)[19]的試驗(yàn)結(jié)果和文獻(xiàn)[21]的研究成果,取文獻(xiàn)[19]中巖體的受壓I型斷裂韌度為6.96 MPa·m1/2;根據(jù)節(jié)理演化的起裂角70.5°,可得節(jié)理演化引起的二階對(duì)稱張量為
隨著軸向應(yīng)力的下墜,巖體的損傷為細(xì)觀、初始節(jié)理、節(jié)理擴(kuò)展演化3種損傷的復(fù)合.節(jié)理的起裂長(zhǎng)度,可根據(jù)I型斷裂韌度由式(18)計(jì)算得出.根據(jù)損傷變量的定義,巖體的荷載峰值強(qiáng)度為
σc=E(1-D)εc.
(28)
圖5給出荷載峰值隨節(jié)理個(gè)數(shù)的變化曲線.由圖4、5可知,N為2、3和4的巖體,室內(nèi)試驗(yàn)與理論計(jì)算的彈性模量、荷載峰值均有較好的吻合度,由此可證明本文損傷變量理論值的正確性.
根據(jù)式(12)和式(27)分別計(jì)算考慮節(jié)理?yè)p傷演化和未考慮節(jié)理?yè)p傷演化的理論應(yīng)力應(yīng)變曲線,并與室內(nèi)試驗(yàn)曲線、修正的室內(nèi)試驗(yàn)曲線進(jìn)行對(duì)比,這里給出N=2的擬合結(jié)果,見(jiàn)圖6.
圖5 荷載峰值曲線
圖6 室內(nèi)試驗(yàn)與計(jì)算結(jié)果對(duì)比
由圖6可看出,室內(nèi)試驗(yàn)顯示節(jié)理巖體荷載峰值前出現(xiàn)了明顯的應(yīng)力低落,考慮節(jié)理?yè)p傷演化的理論曲線較好擬合了修正后室內(nèi)試驗(yàn)結(jié)果.分析認(rèn)為,節(jié)理?yè)p傷演化會(huì)引起損傷變量增加,巖體彈性模量的降低,對(duì)其力學(xué)特性有重要影響.
本文針對(duì)非貫通閉合節(jié)理巖體,從附加應(yīng)變能增量和損傷應(yīng)變能釋放量相關(guān)聯(lián)的思路出發(fā),基于Betti能量互易定理,采用修正自洽方法推導(dǎo)巖體單軸壓縮不同受力階段的復(fù)合損傷本構(gòu)模型:
1)將本文模型的理論計(jì)算結(jié)果與室內(nèi)試驗(yàn)結(jié)果進(jìn)行對(duì)比分析,本文模型的理論計(jì)算結(jié)果與室內(nèi)試驗(yàn)結(jié)果規(guī)律一致,隨著節(jié)理個(gè)數(shù)的增加,初始彈性模量和荷載峰值均呈下降趨勢(shì),下降幅度較為一致;節(jié)理的損傷演化對(duì)巖體的力學(xué)特性有重要影響,考慮節(jié)理?yè)p傷演化的理論應(yīng)力應(yīng)變曲線和荷載峰值與室內(nèi)試驗(yàn)結(jié)果更為吻合,有效驗(yàn)證了本文復(fù)合損傷本構(gòu)模型的正確性和合理性.
2)巖體斷裂韌度根據(jù)遠(yuǎn)場(chǎng)應(yīng)力計(jì)算求得,并不完全準(zhǔn)確.同時(shí),由于峰后節(jié)理?yè)p傷演化軌跡的復(fù)雜性,需要對(duì)峰后節(jié)理演化以及有限邊界的有效應(yīng)力強(qiáng)度因子理論做進(jìn)一步探索,以得到更為精確的結(jié)果;本文假設(shè)巖體中的細(xì)觀損傷依然符合統(tǒng)計(jì)損傷模型,更為準(zhǔn)確的含節(jié)理巖體細(xì)觀損傷模型有待進(jìn)一步研究.
[1] 盧志堂,王志亮. 近場(chǎng)動(dòng)力學(xué)法頻散特性及其在巖石層裂分析中應(yīng)用[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2016,48(2):131-137. DOI: 10.11918/j.issn.0367-6234.2016.02.022. LU Zhitang, WANG Zhiliang. Dispersion characteristics of peridynamics method and its application [J]. Journal of Harbin Institute of Technology,2016,48(2):131-137. DOI: 10.11918/j.issn.0367-6234.2016.02.022.
[2] WEIBULL W. A statistical distribution function of wide applicability. Journal of Applied Mechanics[J].1951,18:293-297.
[3] WANG Zhiliang, LI Yongchi, WANG J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences,2007,3:1-9.
[4] 曹文貴,張升,趙明華.軟化與硬化特性轉(zhuǎn)化的巖石損傷統(tǒng)計(jì)本構(gòu)模型之研究[J].工程力學(xué),2006,23(11):110-115. CAO Wengui, ZHANG Sheng, ZHAO Minghua. Study on a statistical damage constitutive model with conversion between softening and hardening properties of rock[J].Engineering Mechanics,2006,23(11):110-115.
[5] KYOYA T, ICHIKAWA Y, KAWAMOTO T A. Damage mechanics theory for discontinuous rock mass[C]//5th International Conference on Numerical Methods in Geomechanics. Innsbruck:[s.n.], 1985: 469-480.
[6] CHEN Xin, ZDENEK P B. Microplane damage model for jointed rock masses[J]. International journal for numerical and analytical methods in geomechanics,2014,38(14):1431-1452.
[7] 陳文玲,李寧.含非貫通裂隙巖體介質(zhì)的損傷模型[J].巖土工程學(xué)報(bào),2000,22(4):430-434 CHEN Wenling, LI Ning. Damage model of the rock mass medium with intermittent cracks[J]. Chinese Journal of Geotechnical Engineering,2000,22(4):430-434.
[8] KEMENY J. Effective moduli, non-linear deformation and strength of a cracked elastic solid[J]. Int.J.Rock.Mech.Min,1986,23(2): 107-118.
[9] 曹瑞瑯,賀少輝,韋京,等.基于殘余強(qiáng)度修正的巖石損傷軟化統(tǒng)計(jì)本構(gòu)模型研究[J].巖土力學(xué),2013,34(6):1652-1660. DOI:10.16285/j.rsm.2013.06.018. CAO Ruilang, HE Shaohui, WEI Jing, et al. Study of modified statistical damage softening constitutive model for rock considering residual strength[J].Rock and Soil Mechanics, 2013,34(6):1652-1660. DOI:10.16285/j.rsm.2013.06.018.
[10]張明,王菲,楊強(qiáng).基于三軸壓縮試驗(yàn)的巖石統(tǒng)計(jì)損傷本構(gòu)模型[J].巖土工程學(xué)報(bào),2013,35(11):1965-1971. ZHANG Ming, WANG Fei, YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering,2013,35(11):1965-1971.
[11]袁小清,劉紅巖,劉京平. 基于宏細(xì)觀損傷耦合的非貫通裂隙巖體本構(gòu)模型[J]. 巖土力學(xué),2015,36(10):2804-2813. DOI:10.16285/j.rsm.2015.10.009. YUAN Xiaoqing, LIU Hongyan, LIU Jingping. Constitutive model of rock mass with non-persistent joints based on coupling macroscopic and mesoscopic damages[J]. Rock and Soil Mechanics, 2015,36(10):2804-2813. DOI:10.16285/j.rsm.2015.10.009.
[12]ISIDA M. On the tension of a strip with a central elliptical hole[J]. Transactions of the Japan Society of Mechanical Engineering, 1955, 21(107): 507-518.
[13]KEMENY J M,COOK N G W. Micromechanics of deformation in rocks[J].Toughening Mechanisms in Quasi-Brittle Materials,1991, 195:155-188.
[14]HORII S, NEMAT N. Estimate of stress intensity factor for interacting cracks[J].In Advances in Aerospace Structures, materials and dynamics,1983,6:111-117.
[15]HORII S, NEMAT N. Brittle failure in compression: splitting, faulting and brittle-ductile transition[J]. Phil. Mathematical and Physical Sciences,1986,319(1549): 319,337-374.
[16]PAUL S. Crack extension under compressive loading[J]. Engineering Fracture Mechanics.1984, 3: 463-473.
[17]BRUNER W M. Comment on seismic velocities in dry and statured cracked solids by Oconnell budiansky[J]. Geophys Res,1976,81:2573-2576.
[18]TOSHIKAZU K,YASUAKI I,TAKASHI K. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Method in Geomechanics, 1988,12(1): 1-30.
[19]楊圣奇,戴永浩,韓立軍,等. 斷續(xù)預(yù)制裂隙脆性大理巖變形破壞特性單軸壓縮試驗(yàn)研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2009,28(12):2391-2404. YANG Shengqi, DAI Yonghao, HAN Lijun, et al. Uniaxial compression experimental research on deformation and failure properties of brittle marble specimen with pre-existing fissures[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(12):2391-2404.
[20]楊圣奇. 斷續(xù)三裂隙砂巖強(qiáng)度破壞和裂紋擴(kuò)展特征研究[J]. 巖土力學(xué),2013,34(1):31-39. DOI:10.16285/j.rsm.2013.01.009. YANG Shengqi. Study of strength failure and crack coalescence behavior of sandstone containing three pre-existing fissures[J]. Rock and Soil Mechanics,2013,34(1):31-39. DOI:10.16285/j.rsm.2013.01.009.
[21]崔智麗.巖石類材料中心裂紋圓盤(pán)試件動(dòng)態(tài)斷裂韌性測(cè)試系統(tǒng)的動(dòng)力學(xué)有限元分析及測(cè)試方法的研究[D].安徽:安徽理工大學(xué),2011. CUI Zhili. Research on dynamics finite element analysis and testing methods of dynamic fracture toughness test system of central cracked circular disk specimen of rock[D].Anhui: Anhui University of Science and Technology,2011.
Compound constitutive model considering damage evolution of non-persistent fractured rock mass
LI Lielie1,2, XIAO Mingli1,2, ZHUO Li1,2, YUAN Quan3, HE Jiangda1,2
(1.College of Water Resources & Hydropower, Sichuan University, Chengdu 610065, China; 2.State Key Laboratory of Hydraulics and Mountain River Engineering (Sichuan University),Chengdu 610065, China; 3. Sichuan Provincial Transport Department Highway Planning, Survey, Design and Research Institute, Chengdu 610065, China)
Comparing with intact rock, the mechanical characteristics of non-persistent closed jointed rock mass have relatively large differences. A revised self-consistent method was used to consider the coupling between different damages, as a result, the compound constitutive model was deduced for non-persistent closed jointed rock mass under uniaxial compression. Based on the correlation between additional strain energy increment and damage strain energy release, the equivalent linear crack as jointed crack damage evolution trajectories was adopted, and then the additional strain energy for micromechanical damage, initial joints and jointed crack damage evolution was respectively calculated. In accordance to the Betti energy reciprocity theorem, a self-consistent method was introduced to account for the correlation among cracks, moreover, an approach for adding joints one by one was utilized to correct the traditional self-consistent method, in which the compound damage constitutive model was deduced in regard to different stages during uniaxial compression. The theoretical calculation results of the proposed model were compared with in-house experimental results in existing literature. The results show that: the theoretical calculation results are consistent with the experimental results. With the increase the number of joints, the initial elastic modulus and peak load show a downward trend, and the reducing value is in the same extent; there are significant impacts for the damage evolution of joints crack damage on the mechanical characteristics of the rock mass. The theoretical stress-strain curve and peak load for joint fissure damage evolution are consistent with in-house experimental results, which apparently verify the correctness and reasonability of the compound damage constitutive model.
non-persistent closed joint; damage; evolution; compound; constitutive model; uniaxial compression
(編輯 趙麗瑩)
10.11918/j.issn.0367-6234.201610052
2016-10-17
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2015CB057903)
李列列(1983—),男,博士研究生; 何江達(dá)(1961—),男,教授,博士生導(dǎo)師
肖明礫,xiaomingli@scu.edu.cn
TU45
A
0367-6234(2017)06-0096-06