張 靜,王 哲
(北京交通大學(xué) 土木建筑工程學(xué)院,北京100044)
循環(huán)荷載三面本構(gòu)模型及與實(shí)驗(yàn)結(jié)果比較
張 靜,王 哲
(北京交通大學(xué) 土木建筑工程學(xué)院,北京100044)
為探求形式簡(jiǎn)潔,參數(shù)較少,便于工程應(yīng)用的循環(huán)本構(gòu)模型,本文基于邊界面模型和多面模型理論,建立了一個(gè)可描述金屬材料三軸循環(huán)加載力學(xué)行為的三面本構(gòu)模型.把塑性應(yīng)變分解成塑性應(yīng)變1和塑性應(yīng)變2,塑性應(yīng)變1對(duì)應(yīng)于一套屈服面-邊界面模型,塑性應(yīng)變2對(duì)應(yīng)于一套單屈服面模型.提出了當(dāng)前應(yīng)力點(diǎn)與邊界面上對(duì)偶點(diǎn)之間距離的演變公式,基于一致性條件得出邊界面模型中塑性模量的計(jì)算與運(yùn)動(dòng)硬化準(zhǔn)則的聯(lián)系.采用塑性應(yīng)變作為硬化參數(shù),應(yīng)用關(guān)聯(lián)流動(dòng)法則計(jì)算塑性應(yīng)變.相比于經(jīng)典的邊界面模型,本文模型形式簡(jiǎn)明;相比于前人修正隨動(dòng)硬化準(zhǔn)則模型,本文模型需要的材料參數(shù)較少.結(jié)合金屬穩(wěn)定材料U71Mn的單軸循環(huán)實(shí)驗(yàn)結(jié)果,對(duì)其4種力學(xué)行為進(jìn)行模擬,分析了非對(duì)稱應(yīng)力循環(huán)下平均應(yīng)力和應(yīng)力幅值對(duì)穩(wěn)定材料棘輪效應(yīng)的影響,以及對(duì)稱應(yīng)變循環(huán)下材料的最大應(yīng)變幅值記憶效應(yīng).研究結(jié)果表明,本文模型的模擬結(jié)果與前人文獻(xiàn)的實(shí)驗(yàn)結(jié)果一致性較好,可為研究材料的本構(gòu)行為提供一條新的途徑.
邊界面;三面;本構(gòu)模型;單軸;循環(huán)加載;模擬
一些結(jié)構(gòu)在使用過(guò)程中會(huì)受到循環(huán)荷載的作用,例如,鐵路橋梁在列車通過(guò)時(shí),建筑物受到風(fēng)荷載作用時(shí),潛艇多次潛入水下和浮出水面時(shí).對(duì)這些結(jié)構(gòu)進(jìn)行受力分析以及可靠性、安全性和疲勞壽命評(píng)估時(shí),既需要通過(guò)實(shí)驗(yàn)來(lái)研究循環(huán)加載條件下材料的力學(xué)行為,也需要建立本構(gòu)模型來(lái)描述這些行為.
材料在循環(huán)荷載作用下將產(chǎn)生塑性變形隨循環(huán)周次逐漸累積的現(xiàn)象,即棘輪行為.對(duì)金屬材料單軸棘輪現(xiàn)象的模擬,有很多文獻(xiàn)進(jìn)行過(guò)報(bào)道.Mroz多面模型中,每個(gè)屈服面對(duì)應(yīng)有恒定的塑性模量,文獻(xiàn)[1-2]指出這種形式的Mroz多面模型不能預(yù)測(cè)比例加載下的棘輪效應(yīng).文獻(xiàn)[3-4]在兩面模型中提出了新的運(yùn)動(dòng)硬化準(zhǔn)則,側(cè)重針對(duì)比例和非比例應(yīng)變路徑下的循環(huán)加載進(jìn)行模擬.文獻(xiàn)[5]首先對(duì)chaboche模型[6]、Ohno and Wang模型[7]和Mcdowell 模型[8]等幾種本構(gòu)模型進(jìn)行了評(píng)價(jià),之后基于chaboche模型[6,9],提出了新的運(yùn)動(dòng)硬化準(zhǔn)則.該文中所有模型的主要區(qū)別在于運(yùn)動(dòng)硬化準(zhǔn)則的不同,這類模型采用了若干分項(xiàng)疊加的運(yùn)動(dòng)硬化準(zhǔn)則,參數(shù)繁多,部分模型的預(yù)測(cè)結(jié)果和實(shí)驗(yàn)結(jié)果有較大差異.文獻(xiàn)[10-11]應(yīng)用Tseng-Lee兩面模型模擬材料受到定平均值或定幅值循環(huán)荷載作用下的力學(xué)行為.計(jì)算結(jié)果表明,對(duì)定平均值的情況,當(dāng)材料參數(shù)適用于較小應(yīng)力幅值的循環(huán)加載時(shí),若用來(lái)計(jì)算較大幅值循環(huán)加載時(shí)的材料響應(yīng),則產(chǎn)生的誤差較大;反之也如此.對(duì)定幅值的情況也存在上述類似問(wèn)題,這說(shuō)明模型還需要改進(jìn).文獻(xiàn)[11]研究了修正的邊界面模型,先建立邊界面上對(duì)偶點(diǎn)處的塑性模量,通過(guò)約束隨動(dòng)中心的運(yùn)動(dòng)方向來(lái)保證屈服面與邊界面只能相切,此模型形式上不夠直觀、簡(jiǎn)潔.
本文以邊界面模型為基礎(chǔ),建立一種三面本構(gòu)模型,即一套邊界面模型和一套單個(gè)屈服面模型的結(jié)合,對(duì)金屬材料在單軸循環(huán)加載條件下的力學(xué)行為進(jìn)行模擬,并與前人的實(shí)驗(yàn)結(jié)果進(jìn)行比較.
本文研究對(duì)象為金屬穩(wěn)定材料,其特征是材料在受到平均值和幅值都固定的循環(huán)應(yīng)變作用時(shí),隨著循環(huán)周數(shù)增加,名義應(yīng)力幅值σa變化不大且很快趨于穩(wěn)定.本文建模時(shí),假設(shè):材料的不可逆響應(yīng)與時(shí)間無(wú)關(guān);受力變形過(guò)程中材料的溫度不發(fā)生改變.
1.1 應(yīng)力-應(yīng)變?cè)隽筷P(guān)系
應(yīng)變?cè)隽康寞B加法則為
(1)
彈性部分應(yīng)用胡克定律有
(2)
1.2 模型的本構(gòu)方程
(3)
第一種塑性機(jī)制對(duì)應(yīng)于一套邊界面模型,包含一個(gè)邊界面和一個(gè)屈服面,對(duì)應(yīng)變量和函數(shù)使用的編號(hào)為1;第二種塑性機(jī)制對(duì)應(yīng)于一套單個(gè)屈服面模型,包含有一個(gè)屈服面,沒(méi)有邊界面,對(duì)應(yīng)的編號(hào)為2.
某些情況下一個(gè)邊界面模型模擬時(shí)有一定困難,再疊加一個(gè)屈服面模型可增加模型模擬的靈活度和選擇性.
邊界面模型中的塑性模量通常是直接給出的,其計(jì)算與運(yùn)動(dòng)硬化準(zhǔn)則無(wú)關(guān).本文考慮的邊界面模型, 其塑性模量由硬化準(zhǔn)則、流動(dòng)法則和一致性條件得出.
1.2.1 塑性變形1的相關(guān)方程
塑性變形1及其相關(guān)量的描述采用邊界面模型.模型包含一個(gè)由f1=0決定的屈服面和一個(gè)由F=0決定的邊界面,它們與偏平面的交線見(jiàn)圖1.設(shè)屈服函數(shù)f1和邊界面函數(shù)F的形式為:
(4)
(5)
圖1 偏平面下屈服面f1=0與邊界面F=0的示意
Fig.1 Schematic illustration of yield and bounding surface in deviatoric stress space
圖1中各點(diǎn)之間連線存在矢量關(guān)系:
)
(6a)
(6b)
本文研究的對(duì)象是循環(huán)穩(wěn)定材料,相應(yīng)的r1、R應(yīng)該取為常數(shù),所以:
dr1=0,
(7)
dR=0.
(8)
選取βij的演化方程為Prager形式:
(9)
(10)
式中dλ1為比例因子(非負(fù)標(biāo)量).
(11)
(12)
(13)
對(duì)式(6b)等號(hào)兩邊取微分,再把式(7)、(8)帶入其中,整理得
(14)
(15)
對(duì)上式求微分,并考慮式(7),有
(16)
把式(9)、(11)、(16)帶入式(14),得
(17)
在整個(gè)塑性加載中,一致性條件成立,所以
df1=0.
(18a)
將式(4)進(jìn)行微分,有
(18b)
將式(7)~(17)帶入式(18b),可求得
(19)
1.2.2 塑性變形2的相關(guān)方程
塑性變形2及其相關(guān)量的描述采用只有屈服面(無(wú)邊界面)的模型形式.屈服面方程為f2=0,設(shè)屈服函數(shù)f2為
(20)
(21)
dr2=b(a-r2)dq.
(22)
其中dq為有效塑性應(yīng)變?cè)隽?,?/p>
(23)
(24)
由一致性條件有df2=0,再將式(21)~(24)帶入df2=0,就可求得比例因子dλ2為
(25)
1.3 加卸載判斷準(zhǔn)則
為了對(duì)第k(k=1、2)個(gè)塑性變形對(duì)應(yīng)的加載、卸載進(jìn)行判斷,引入加載函數(shù)Lk:
(26)
1) 當(dāng)fk<0時(shí),材料狀態(tài)在彈性區(qū)域內(nèi),相應(yīng)不可逆變化量的增量為零;
2) 當(dāng)fk=0時(shí),材料狀態(tài)在屈服面上,進(jìn)一步分為兩種情況:Lk>0時(shí),應(yīng)力變化為加載,相應(yīng)內(nèi)變量的變化分別使用式(7)~(19)和(21)~(25)來(lái)計(jì)算;Lk≤0時(shí),應(yīng)力變化為卸載或中性變載,相應(yīng)的內(nèi)變量不發(fā)生變化.
把與屈服函數(shù)f1相關(guān)的加載準(zhǔn)則分解為3種情況:①f1<0; ②f1=0,L1>0;③f1=0,L1≤0.再把與屈服函數(shù)f2相關(guān)的加載準(zhǔn)則分解為3種情況:(a)f2<0;(b)f2=0,L2>0;(c)f2=0,L2≤0.二者組合有3種情況:1) 當(dāng)同時(shí)滿足②和(a)時(shí),僅f1參與塑性計(jì)算;2) 當(dāng)同時(shí)滿足①和(b)時(shí),僅f2參與塑性計(jì)算;3) 當(dāng)同時(shí)滿足②和(b)時(shí),兩個(gè)屈服面都參與塑性計(jì)算.
1.4 邊界面模型的修正
文獻(xiàn)[11-13]報(bào)道了對(duì)穩(wěn)定材料施加非對(duì)稱循環(huán)應(yīng)力的實(shí)驗(yàn).給出了通過(guò)實(shí)驗(yàn)得到的滯回環(huán)卸載點(diǎn)應(yīng)變?chǔ)舖ax與循環(huán)周次N之間的關(guān)系曲線,指出開(kāi)始時(shí)應(yīng)變隨循環(huán)次數(shù)的增加而增加,但增加的速率逐漸減慢,當(dāng)棘輪應(yīng)變達(dá)到一定值時(shí),棘輪應(yīng)變率將保持相對(duì)穩(wěn)定.棘輪應(yīng)變率的含義是dεmax/dN,即每增加一次荷載循環(huán)引起的滯回環(huán)中卸載點(diǎn)應(yīng)變?chǔ)舖ax的增加量.
本文模型引入?yún)?shù)p,當(dāng)?shù)刃苄詰?yīng)變值大于此參數(shù)時(shí),邊界面的隨動(dòng)中心保持不變.
采用文獻(xiàn)[12]中材料U71Mn在單軸對(duì)稱應(yīng)變循環(huán)下和單軸非對(duì)稱應(yīng)力控制循環(huán)加載下的實(shí)驗(yàn)數(shù)據(jù),對(duì)本文構(gòu)建的模型進(jìn)行驗(yàn)證.采用Compaq Visual Fortran6.6編寫(xiě)計(jì)算程序.以應(yīng)力驅(qū)動(dòng)給出所建本構(gòu)模型的計(jì)算流程見(jiàn)圖2.
2.1 加載參數(shù)符號(hào)的定義和材料參數(shù)的確定
表1 材料U71Mn的參數(shù)
圖2 本構(gòu)模型計(jì)算流程圖
2.2 本構(gòu)模型模擬結(jié)果
2.2.1 材料U71Mn的模擬結(jié)果與實(shí)驗(yàn)結(jié)果比較
模擬以下幾種單軸循環(huán)加載時(shí)材料U71Mn的力學(xué)行為:1) 循環(huán)荷載上下限為358±447 MPa(120周),見(jiàn)圖3;2)σxa恒定,分級(jí)變化σxm(各20周),見(jiàn)圖4;3)σxm恒定,分級(jí)增加σxa(各20周),見(jiàn)圖 5;4) 平均應(yīng)變?yōu)?,分級(jí)變化應(yīng)變循環(huán)幅值,這時(shí)作用量是應(yīng)變,響應(yīng)量是應(yīng)力,模擬的應(yīng)力響應(yīng)幅值σxa與循環(huán)周次N的關(guān)系見(jiàn)圖6.
2.2.2 材料U71Mn的模擬結(jié)果分析
圖3~5給出了材料U71Mn的軸向應(yīng)力-應(yīng)變曲線的模擬結(jié)果與實(shí)驗(yàn)結(jié)果的比較,以及εmax-N關(guān)系曲線的模擬結(jié)果.圖6給出了應(yīng)力幅值-循環(huán)周次曲線的模擬結(jié)果與實(shí)驗(yàn)結(jié)果的比較.
從圖3~5可看出,U71Mn材料具有以下兩個(gè)力學(xué)行為:1) 在循環(huán)初期,棘輪應(yīng)變率隨循環(huán)周次的增加而逐漸下降(見(jiàn)圖3),達(dá)到一定的循環(huán)周次后,趨近于一個(gè)非零常值;2) 在應(yīng)力幅值為定值時(shí), 棘輪應(yīng)變率隨平均應(yīng)力的增大而增大(見(jiàn)圖4);在平均應(yīng)力為定值時(shí), 棘輪應(yīng)變率隨應(yīng)力幅值的增大而增大(見(jiàn)圖5).本文模型能夠模擬這兩個(gè)性質(zhì).
在圖4中,L表示循環(huán)應(yīng)力的幅值(411 MPa);H1、H2分別為兩段循環(huán)加載產(chǎn)生的塑性應(yīng)變,這兩段加載中平均應(yīng)力、循環(huán)幅值及循環(huán)周數(shù)都相同.在這兩段循環(huán)加載之間,材料經(jīng)歷了一段應(yīng)力幅值和循環(huán)周數(shù)都與之相同、但平均應(yīng)力更高的循環(huán)加載.從圖4可看出,H2
從圖4、5可看出,本文模型在采用相同的參數(shù)時(shí),即可對(duì)定平均值(幅值變動(dòng))或定幅值(平均值變動(dòng))循環(huán)荷載作用下的應(yīng)力-應(yīng)變曲線進(jìn)行較好地模擬.克服了Tseng-Lee兩面模型中模擬結(jié)果過(guò)度依賴參數(shù)的局限性.
從圖6可看出,該材料沒(méi)有明顯的最大應(yīng)變幅值記憶效應(yīng),即在經(jīng)歷較大應(yīng)變幅值循環(huán)之前和之后,兩段上下限相同的應(yīng)變循環(huán)加載產(chǎn)生的循環(huán)應(yīng)力幅值基本相同.本文模型能夠模擬材料的這種行為特征.
圖3 U71Mn的單軸棘輪行為(358±447 MPa)
圖4 平均應(yīng)力逐級(jí)變化時(shí)U71Mn的單軸棘輪行為
圖5 應(yīng)力幅值逐級(jí)增加時(shí)U71Mn的單軸棘輪行為
圖6 應(yīng)力響應(yīng)幅值σxa與循環(huán)周次N的關(guān)系曲線的模擬結(jié)果與實(shí)驗(yàn)結(jié)果比較(U71Mn材料,單軸應(yīng)變對(duì)稱循環(huán)加載)
Fig.6 Comparison of stress amplitude-number of cycles curves between prediction and experiment(U71Mn under uniaxial symmetric strain cycling)
1) 在假設(shè)材料的不可逆行為是與時(shí)間、溫度無(wú)關(guān)的條件下,基于邊界面模型和多面模型理論,建立一個(gè)適用于描述金屬穩(wěn)定材料在循環(huán)加載情形下行為的三面本構(gòu)模型.
3) 對(duì)室溫下穩(wěn)定材料U71Mn的單軸棘輪實(shí)驗(yàn)現(xiàn)象進(jìn)行模擬,模擬曲線與實(shí)驗(yàn)曲線吻合較好,驗(yàn)證了模型的正確性和有效性.相比重在考慮由若干分項(xiàng)疊加的運(yùn)動(dòng)硬化準(zhǔn)則的模型[12,14-15],本文模型方程形式簡(jiǎn)單,參數(shù)較少,便于應(yīng)用.
[1] JIANG Y, SEHITOGLU H.Comments on the Mroz multiple surface type plasticity models[J].Int.J.Solids structures, 1996, 33(7):1053-1068.DOI:10.1016/ 0020-7683(95)00088-7.
[2] HASHIGUCHI K.Mechanical requirements and structures of cyclic plasticity models[J].International Journal of Plasticity, 1993, 9(6):721-748. DOI: 10.1016/0749-6419(93)90035-0.
[3] VOYIADJIS G Z,BASUROYCHOWDHURY I N.A plasticity model for multiaxial cyclic loading and ratcheting[J]. Acta Mechanica, 1998, 126(1/2/3/4):19-35. DOI:10.1007/BF01172796.
[4] ITOH T, CHEN X, NAKAGAWA T, et al. A simple model for stable cyclic stress-strain relationship of type 304 stainless steel under nonproportional loading[J].Journal of Engineering Materials and Technology, 2000, 122(1):1-9. DOI: 10.1115/1.482758.
[5] BARI S, HASSAN T.An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation[J].International Journal of Plasticity, 2002, 18(7):873-894.DOI:10.1016/S0749-6419(01)00012-2.
[6] CHABOCHE J L.Modeling of ratchetting: evaluation of various approaches[J].European journal of mechanics, 1994, 13(4):501-518.
[7] OHNO N,WANG J D.Kinematic hardening rules with critical state of dynamic recovery,part Ⅱ: application to experiments of ratcheting behavior[J]. International Journal of Plasticity, 1993, 9(3):391-403.
[8] MCDOWELL D L.Stress state dependence of cyclic ratcheting behavior of two rail steels[J]. International Journal of Plasticity, 1995, 11(4): 397-421. DOI:10.1016/S0749-6419(95)00005-4.
[9] CHABOCHE J L.On some modifications of kinematic hardening to improve the description of ratcheting effects[J].International Journal of Plasticity, 1991,7(7):661-678.DOI:10.1016/0749-6419(91)90050-9.
[10]TSENG N T, LEE G C.Simple plasticity model of two-surface type[J].Journal of Engineering Mechanics, 1983,109(3):795-810.DOI:10.1061/(ASCE)0733-9399(1983)109:3(795).
[11]HASSAN T. Ratcheting in cyclic plasticity of metals experiments and modeling [D]. Austin: The University of Texas at Austin, 1993.
[12]康國(guó)政,高慶.循環(huán)穩(wěn)定材料的棘輪行為:I.實(shí)驗(yàn)和本構(gòu)模型[J].工程力學(xué), 2005, 22(2):206-211. KANG Guozheng,GAO Qing.Ratcheting of cyclically stable material: I. experiments and a visco-plastic constitutive model[J].Engineering Mechanics, 2005, 22(2):206-211.
[13]郭嚴(yán),康國(guó)政,劉宇杰,等. LZ50鋼真應(yīng)力控制下單軸棘輪行為的實(shí)驗(yàn)研究[J].工程力學(xué), 2010, 27(9):216-220. GUO Yan, KANG Guozheng, LIU Yujie,et.al. Experimental study on uniaxial ratcheting of LZ50 steel under true stress-controlled cyclic loading[J]. Engineering Mechanics, 2010, 27(9):216-220.
[14]ABDEL-KARIM M.Modified kinematic hardening rules for simulations of ratcheting[J]. International Journal of Plasticity, 2009,25(8):1560-1587.DOI:10.1016/j.ijplas.2008.10.004.
[15]HAMIDINEJAD S M, VARVANI-FARAHANI A. Ratcheting assessment of steel samples under various non-proportional loading paths by means of kinematic hardening rules[J].Materials and Design, 2015, 85:367-376.DOI:10.1016/j.matdes.2015. 06.153.
(編輯 趙麗瑩)
A three-surface cyclic constitutive model and comparison between experimental and numerical results
ZHANG Jing, WANG Zhe
(Department of Civil Engineering,Beijing Jiaotong University, Beijing 100044,China)
Based on the theories of bounding surface and multiple surface, a three-surface cyclic constitutive model, which is applicable for engineering because of the simple form and less parameters, was established to describe metal material behavior under the triaxial cyclic loadings. The plastic strain was decomposed into plastic strain 1 corresponding to a bounding surface model and plastic strain 2 corresponding to a single yield surface model. An evolution formula of the distance between the current stress and the image stress on the bounding surface was developed, which makes the plastic modulus calculation be coupled with the kinematic hardening rule through the consistency condition of the yield surface. As the hardening parameter, the plastic strain was calculated according to the associated flow rule. Compared with the classic bounding surface models, it has a concise form, and compared with the modified kinematic hardening rule models, it has less parameters. The existing experimental results about stable metal material U71Mn under uniaxial cyclic loading were adopted, and four mechanical behaviors were considered. The ratcheting were simulated by the model considering the effect of mean stress and stress amplitude under asymmetrical stress cycling, and the maximum strain amplitude memory effect was analyzed under symmetrical strain cycling. The calculated results agree well with the experimental results, which means the proposed model provides a new method to study the constitutive relation.
bounding surface; three-surface; constitutive model; uniaxial; cyclic loading; simulation
10.11918/j.issn.0367-6234.201607017
2016-07-06
國(guó)家自然科學(xué)基金(51279003,51078024)
張 靜(1986―),女,博士研究生; 王 哲(1961―),男,研究員,博士生導(dǎo)師
王 哲,zhwang@bjtu.edu.cn
O344.1;TU511
A
0367-6234(2017)06-0183-06