沈嬌嬌 呂為群
摘要:【目的】探析褐牙鲆仔魚(yú)早期發(fā)育階段促腎上腺皮質(zhì)激素釋放激素基因(CRH)的表達(dá)情況及受甲狀腺激素的影響作用,為開(kāi)展牙鲆的人工繁育提供科學(xué)依據(jù)?!痉椒ā客ㄟ^(guò)實(shí)時(shí)熒光定量PCR檢測(cè)褐牙鲆早期發(fā)育階段CRH基因表達(dá)量,以ELISA測(cè)定褐牙鲆仔魚(yú)甲狀腺激素(T3和T4)水平,并測(cè)定經(jīng)外源T3浸泡處理后早期發(fā)育褐牙鲆仔魚(yú)CRH基因表達(dá)量的變化情況,探究CRH和甲狀腺激素在褐牙鲆早期發(fā)育階段的影響及作用關(guān)系?!窘Y(jié)果】1~8日齡褐牙鲆仔魚(yú)CRH基因相對(duì)表達(dá)量呈先升高后降低的變化趨勢(shì),在5日齡達(dá)最高值,顯著高于其他日齡的仔魚(yú)(P<0.05,下同)。10~42日齡褐牙鲆仔魚(yú)CRH基因主要在其頭部表達(dá),尾部CRH基因的相對(duì)表達(dá)量隨著生長(zhǎng)發(fā)育的進(jìn)程而逐漸增加。褐牙鲆仔魚(yú)變態(tài)前期甲狀腺激素T4含量逐漸增加,變態(tài)高峰期迅速升高,在變態(tài)后期呈下降趨勢(shì)。較其他早期發(fā)育時(shí)期,甲狀腺激素T3在褐牙鲆變態(tài)期維持高水平,但含量低于甲狀腺激素T4。22日齡褐牙鲆仔魚(yú)經(jīng)50 nmol/L外源T3處理2 h后,其頭部和尾部CRH基因的相對(duì)表達(dá)量顯著升高;但以外源T3處理8 h后,無(wú)論是頭部還是尾部,CRH基因的相對(duì)表達(dá)量均呈顯著下降趨勢(shì)?!窘Y(jié)論】褐牙鲆早期變態(tài)發(fā)育需CRH基因高表達(dá)及甲狀腺激素積累,二者對(duì)褐牙鲆早期變態(tài)發(fā)育階段具有重要作用并呈互相代償效應(yīng)。
關(guān)鍵詞: 褐牙鲆;促腎上腺激素釋放激素基因(CRH);甲狀腺激素;變態(tài)發(fā)育
中圖分類(lèi)號(hào): S965.399 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2017)02-0323-05
Abstract:【Objective】The present study investigated expression of corticotropin releasing hormone(CRH) gene and influence of thyroid hormone on it, in order to provide reference for artificial breeding of Paralichthys olivaceus. 【Method】CRH gene expression of P. olivaceus at early development was detected by real-time fluorescence quantitative PCR. Thyroid hormone(T3 and T4) level of P. olivaceus larvae and CRH gene expression after exogenous T3 immersion treatment were measured by ELISA method. The interaction between CRH and thyroid hormone at early development stage of P. olivaceus was studied. 【Result】During 1-8 dph, CRH gene expression went through up-down variation, and reached the peak at 5 dph, which was significantly higher than the value at other day ages(P<0.05, the same below). At 10-42 dph, CHR gene expression was mainly in head, and expression in tail increased with growth of P. olivaceus. T4 content gradually increased before metamorphosis, and soared at metamorphosis climax, then decreased at metamorphosis postclimax. Compared with other early development stages, T3 maintained at a high level during metamorphosis, but the content was lower than T4. After P. olivaceus at 22 dph treated with 50 nmol/L exogenous T3 for 2 hours, the expression of CRH in head and tail significantly increased; but aftet 8 hours, the expression in head and tail significantly decreased. 【Conclusion】At early metamorphosis stage, P. olivaceus needs to increase CRH expression and accumulate thyroid hormone. Both of them play important roles at early development stage of P. olivaceus and have compensatory effect between each other.
Key words: Paralichthys olivaceus; corticotropin releasing hormone(CRH); thyroid hormone; metamorphosis
0 引言
【研究意義】褐牙鲆(Paralichthys olivaceus)是一種重要經(jīng)濟(jì)魚(yú)類(lèi),廣泛分布在我國(guó)、日本和朝鮮等國(guó)家。變態(tài)前的褐牙鲆仔魚(yú)形態(tài)與其他硬骨魚(yú)類(lèi)極其相似(Russell,1976),但其幼魚(yú)和成魚(yú)在形態(tài)結(jié)構(gòu)和生活習(xí)性上存在極大差別,從仔魚(yú)向稚魚(yú)生長(zhǎng)發(fā)育過(guò)程中須經(jīng)歷一個(gè)劇烈的變態(tài)過(guò)程,決定著幼魚(yú)和成魚(yú)的生長(zhǎng)發(fā)育狀況。在魚(yú)類(lèi)中,尾部神經(jīng)內(nèi)分泌系統(tǒng)(Caudal neurosecretory system,CNSS)多肽可能從尾垂腺直接分泌進(jìn)入尾靜脈和腎靜脈系統(tǒng),以確保其快速傳送到靶器官(腎臟、腸、性腺和肝臟)。CNSS是提供促腎上腺皮質(zhì)激素釋放激素(CRH)的主要場(chǎng)所(Lu et al.,2004,2006),且有大量研究表明魚(yú)類(lèi)CNSS的組織結(jié)構(gòu)與下丘腦—垂體系統(tǒng)有一定的相似性,其分泌物進(jìn)入血液與靶組織結(jié)合,在魚(yú)類(lèi)新陳代謝、滲透壓調(diào)節(jié)、應(yīng)激等生理活動(dòng)中發(fā)揮重要作用(McCrohan et al.,2007)。絕大多數(shù)魚(yú)類(lèi)的甲狀腺不是一個(gè)單獨(dú)的腺體,其在形式和位置上也多變,如多數(shù)魚(yú)類(lèi)的甲狀腺組織為彌漫性濾泡(Eales and Barrington,1979)。魚(yú)類(lèi)甲狀腺的內(nèi)穩(wěn)態(tài)受下丘腦—垂體—甲狀腺軸(HPT)的內(nèi)分泌系統(tǒng)調(diào)控,如下丘腦分泌的促甲狀腺激素釋放激素(TRH)和CRH能促進(jìn)垂體釋放促甲狀腺激素(TSH),TSH刺激甲狀腺濾泡分泌甲狀腺激素(THs),而甲狀腺激素對(duì)脊椎動(dòng)物正常生理功能的維持起重要作用。因此,深入了解褐牙鲆早期發(fā)育階段CRH基因表達(dá)及甲狀腺激素的影響作用,對(duì)揭示褐牙鲆的生長(zhǎng)發(fā)育機(jī)理具有重要意義?!厩叭搜芯窟M(jìn)展】甲狀腺激素主要協(xié)助參與機(jī)體滲透壓調(diào)節(jié)、新陳代謝、皮膚色素沉著、生長(zhǎng)發(fā)育和孵化后的形態(tài)等。Brown等(1987)研究證實(shí),將硬骨魚(yú)類(lèi)幼魚(yú)暴露在非常高劑量的外源甲狀腺素T3中數(shù)周,能普遍促進(jìn)其生長(zhǎng)發(fā)育及卵黃囊的吸收。Janz(2000)研究認(rèn)為,與其他任何激素相比,甲狀腺激素對(duì)各組織的活力和生物功能影響更廣泛。Brown和Cai(2007)研究發(fā)現(xiàn),在切除甲狀腺后蝌蚪幼體停止變態(tài)發(fā)育,但采用外源甲狀腺激素對(duì)其進(jìn)行治療,蝌蚪幼體又重新生長(zhǎng)發(fā)育至變態(tài)期。甲狀腺激素在魚(yú)類(lèi)生長(zhǎng)發(fā)育階段發(fā)揮重要作用,尤其在早期胚胎發(fā)育階段。Ishizuya-Oka(2011)研究認(rèn)為,甲狀腺激素是兩棲動(dòng)物自身重塑適應(yīng)從水生到陸生生活及幼蟲(chóng)器官/組織向成熟器官/組織轉(zhuǎn)變的必需激素。Kawakami等(2013)發(fā)現(xiàn)甲狀腺激素可通過(guò)甲狀腺激素受體控制日本鰻魚(yú)的早期生長(zhǎng)發(fā)育,Stinckens等(2016)研究表明,在斑馬魚(yú)幼年階段破壞甲狀腺激素的合成可對(duì)其魚(yú)鰾產(chǎn)生影響。此外,有研究表明甲狀腺激素在類(lèi)胚胎發(fā)育過(guò)程中對(duì)相關(guān)基因起調(diào)控作用,即佐證其對(duì)魚(yú)類(lèi)早期胚胎發(fā)育也發(fā)揮著決定作用。Liu和Chan(2002)在斑馬魚(yú)胚胎中發(fā)現(xiàn)有TRa和TRb基因表達(dá),且響應(yīng)外源甲狀腺激素。Nelson和Habibi(2016)研究認(rèn)為,甲狀腺激素可能影響金魚(yú)卵黃生成素的生成,但經(jīng)外源甲狀腺素T3處理后只在雌性金魚(yú)中產(chǎn)生影響?!颈狙芯壳腥朦c(diǎn)】在牙鲆的變態(tài)過(guò)程中甲狀腺激素發(fā)揮著重要作用,Miwa和Inui(1987)研究證實(shí)外源添加適量的甲狀腺激素可使牙鲆變態(tài)加快,且發(fā)現(xiàn)甲狀腺素T3的作用效果遠(yuǎn)高于甲狀腺激素T4。但至今鮮見(jiàn)從基因角度揭示甲狀腺激素對(duì)牙鲆早期變態(tài)發(fā)育影響的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】探析褐牙鲆仔魚(yú)早期發(fā)育階段CRH基因的表達(dá)情況及受甲狀腺激素的影響作用,為開(kāi)展牙鲆的人工繁育提供科學(xué)依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
供試褐牙鲆購(gòu)自中國(guó)水產(chǎn)科學(xué)研究院北戴河中心實(shí)驗(yàn)站,選用發(fā)育優(yōu)良的雌、雄性親魚(yú)進(jìn)行繁殖,授精和孵化用的自然海水(鹽度30‰)均經(jīng)沙濾處理。受精卵孵化前5 d采用靜水孵化,之后以流水培育。孵化后2 d(2日齡)開(kāi)始投喂褶皺臂尾輪蟲(chóng),20日齡后開(kāi)始馴化人工配合餌料(鲆鰈鰨魚(yú)類(lèi)專(zhuān)用料)。甲狀腺激素T3購(gòu)自美國(guó)Sigma公司,先用二甲基亞砜(DMSO)進(jìn)行溶解,再用海水稀釋至所需濃度(海水中DMSO為0.005%)。ELISA檢測(cè)試劑盒購(gòu)自上海裕平生物科技有限公司。
1. 2 樣品采集與保存
選取1~8日齡褐牙鲆仔魚(yú),每日齡取全魚(yú)20尾,在8~42日齡期間每隔2~5 d取樣一次,并按頭、身、尾分成3部分,以RNAfixer固定,用于CRH基因定量表達(dá)分析。每隔2 d選取19~40日齡仔魚(yú)樣品凍存,用于甲狀腺激素水平測(cè)定。同時(shí)選取22日齡褐牙鲆變態(tài)前仔魚(yú)為研究對(duì)象,甲狀腺激素T3設(shè)2個(gè)濃度梯度(5和50 nmol/L)和2個(gè)處理時(shí)間點(diǎn)(2和8 h),以未添加T3為空白對(duì)照組。每個(gè)時(shí)間點(diǎn)和濃度各取10尾仔魚(yú)用RNAfixer進(jìn)行固定,用于CRH基因定量表達(dá)分析。
1. 3 組織RNA提取及反轉(zhuǎn)錄
參照RNAisoTM Plus操作說(shuō)明,對(duì)取樣的褐牙鲆各組織進(jìn)行總RNA提取及反轉(zhuǎn)錄合成cDNA模板。
1. 4 實(shí)時(shí)熒光定量PCR檢測(cè)分析
根據(jù)褐牙鲆CRH基因序列設(shè)計(jì)實(shí)時(shí)熒光定量PCR擴(kuò)增引物(表1),并制作內(nèi)參基因β-actin和目的基因的標(biāo)準(zhǔn)曲線(xiàn)。實(shí)時(shí)熒光定量PCR的反應(yīng)體系20.0 μL:5倍梯度稀釋的cDNA模板2.0 μL,SYBR Premix Ex Taq(Tli RnaseH Plus)10.0 μL,正、反向引物各0.4 μL,RNase Free ddH2O 7.2 μL。擴(kuò)增程序:95 ℃預(yù)變性30 s;95 ℃ 5 s,60 ℃ 34 s,95 ℃ 15 s,60 ℃ 1 min,95 ℃ 15 s,進(jìn)行40個(gè)循環(huán);隨后設(shè)計(jì)溶解曲線(xiàn)擴(kuò)增期間檢測(cè)熒光信號(hào),相應(yīng)的擴(kuò)增效率達(dá)96%~100%,R均大于0.99,且目的基因和內(nèi)參基因的M相差小于0.10,隨后進(jìn)行定量測(cè)定。采用2-ΔΔCt計(jì)算目的基因的相對(duì)表達(dá)量。
1. 5 組織甲狀腺激素水平測(cè)定
將褐牙鲆仔魚(yú)加入適量生理鹽水研磨,1000×g離心10 min,吸取上清液,采用ELISA檢測(cè)組織中甲狀腺激素(T3和T4)水平。
1. 6 統(tǒng)計(jì)分析
采用GraphPad Prism v5.0進(jìn)行單因素方差分析,并以Tukeys進(jìn)行多重比較。
2 結(jié)果與分析
2. 1 褐牙鲆早期發(fā)育階段CRH基因的相對(duì)表達(dá)情況
由圖1可看出,1~8日齡褐牙鲆仔魚(yú)CRH基因的相對(duì)表達(dá)量呈先升高后降低的變化趨勢(shì),在5日齡達(dá)最高值,顯著高于其他日齡的仔魚(yú)(P<0.05,下同)。10~42日齡褐牙鲆仔魚(yú)CRH基因主要集中在其頭部表達(dá),但隨著生長(zhǎng)發(fā)育的進(jìn)程,其尾部的相對(duì)表達(dá)量逐漸增加,說(shuō)明CRH基因可能對(duì)尾部神經(jīng)系統(tǒng)的發(fā)育起重要調(diào)控作用。
2. 2 褐牙鲆早期發(fā)育階段甲狀腺激素水平變化
由圖2可看出,褐牙鲆仔魚(yú)甲狀腺素T4在變態(tài)前期(24日齡)的含量逐漸增加,變態(tài)高峰期(31日齡)迅速升高,在變態(tài)后期(37日齡)呈下降趨勢(shì)。甲狀腺素T3雖然在變態(tài)時(shí)期的含量高于其他早期發(fā)育時(shí)期,約是變態(tài)前的1.5倍,但含量低于甲狀腺素T4。甲狀腺軸產(chǎn)生的甲狀腺激素主要是T4,T3則是T4經(jīng)脫碘轉(zhuǎn)化形成,需通過(guò)與核受體結(jié)合才能發(fā)揮生物學(xué)功能。
2. 3 外源T3對(duì)褐牙鲆早期發(fā)育階段CRH基因表達(dá)的影響
由圖3可看出,22日齡褐牙鲆仔魚(yú)經(jīng)50 nmol/L外源T3處理2 h后,其頭部和尾部CRH基因的相對(duì)表達(dá)量均顯著升高;但以50 nmol/L外源T3處理8 h后,無(wú)論是頭部還是尾部,CRH基因的相對(duì)表達(dá)量均呈顯著的下降趨勢(shì),可能是外源T3水平升高而引起甲狀腺激素負(fù)反饋?zhàn)饔谩?/p>
3 討論
CRH是一個(gè)重要的神經(jīng)內(nèi)分泌多肽,控制應(yīng)激誘導(dǎo)垂體促腎上腺皮質(zhì)激素(ACTH)的分泌,從而促進(jìn)彌散的腎間細(xì)胞合成皮質(zhì)醇(Olivereau and Olivereau,1988;Tran et al.,1990;Mommsen et al.,1999)。在應(yīng)激狀態(tài)下,CRH調(diào)節(jié)機(jī)體的HPA軸功能,協(xié)調(diào)機(jī)體的免疫、神經(jīng)、內(nèi)分泌、生理及行為學(xué)等反應(yīng)(Fuzzen et al.,2011)。Pavlidis等(2011)研究發(fā)現(xiàn),在第1次投喂褶皺臂尾輪蟲(chóng)后褐牙鲆仔魚(yú)的CRH逐漸增加,其生活方式從內(nèi)源向外源營(yíng)養(yǎng)轉(zhuǎn)變。類(lèi)似結(jié)果在日本鱸魚(yú)、花鱸等其他海洋硬骨魚(yú)上已得到印證(Pérez et al.,1999)。本研究于孵化后2 d(2日齡)開(kāi)始對(duì)褐牙鲆仔魚(yú)投喂褶皺臂尾輪蟲(chóng),20日齡后開(kāi)始馴化人工配合餌料(鲆鰈鰨魚(yú)類(lèi)專(zhuān)用料),經(jīng)實(shí)時(shí)熒光定量PCR檢測(cè)發(fā)現(xiàn)1~8日齡褐牙鲆仔魚(yú)CRH基因的相對(duì)表達(dá)量呈先升高后降低的變化趨勢(shì),在5日齡達(dá)最高值,顯著高于其他日齡的仔魚(yú),此時(shí)仔魚(yú)處于由內(nèi)源性營(yíng)養(yǎng)轉(zhuǎn)變?yōu)橥庠葱誀I(yíng)養(yǎng)階段,個(gè)體器官發(fā)育尚未完善,生理機(jī)能尚不成熟,對(duì)環(huán)境變化極其敏感,與Pérez等(1999)、Pavlidis等(2011)的研究結(jié)果相似。
機(jī)體內(nèi)的糖皮質(zhì)激素和甲狀腺激素在生活過(guò)渡階段起協(xié)同作用,調(diào)節(jié)其他激素的生物活性或組織對(duì)其他激素的敏感性(Bagamasbad and Denver,2011)。糖皮質(zhì)激素通過(guò)影響脫碘酶活性及表達(dá)而調(diào)節(jié)組織對(duì)甲狀腺激素作用的敏感性,也可改變循環(huán)中甲狀腺激素的含量。Denver(1988)運(yùn)用T4處理鯉魚(yú)后發(fā)現(xiàn)其下丘腦CRH結(jié)合蛋白(CRH-BP)水平提高了40%。Terrien等(2011)研究發(fā)現(xiàn),在斑馬魚(yú)胚胎發(fā)育的最后一周糖皮質(zhì)激素的上升會(huì)使其肝臟的3型脫碘酶活性下降,增加循環(huán)T3水平而誘導(dǎo)孵化。此外,CRH被認(rèn)為是魚(yú)類(lèi)HPT軸和HPA/HPI軸的一個(gè)共同調(diào)節(jié)因子,對(duì)ACTH和TSH分泌起調(diào)控作用,同時(shí)CRH和TSH對(duì)甲狀腺激素的合成起調(diào)控作用(De Groef et al.,2006)。本研究結(jié)果表明,經(jīng)外源T3處理2 h后,褐牙鲆仔魚(yú)頭部和尾部的CRH基因表達(dá)量均有所升高,可能是短時(shí)間的應(yīng)激反應(yīng)能促使CRH分泌增加(Jiang et al.,2012);但處理8 h后CRH基因相對(duì)表達(dá)量呈下降趨勢(shì)可能是長(zhǎng)時(shí)間的外源T3作用引起負(fù)反饋?zhàn)饔茫⊿hi et al.,2009)。Geven等(2009)研究表明,在鯉魚(yú)視前區(qū)T4可通過(guò)上調(diào)CRH結(jié)合蛋白的表達(dá)減少下丘腦分泌CRH;Lema等(2009)研究認(rèn)為黑頭呆魚(yú)CRH基因表達(dá)上調(diào)與T4的減少相關(guān);Mohácsik等(2016)研究發(fā)現(xiàn)HPT軸由下丘腦室旁核促腦垂體TRH-合成神經(jīng)元控制甲狀腺激素的負(fù)反饋。可見(jiàn),CRH基因表達(dá)上調(diào)可能歸因于下丘腦和垂體間的負(fù)反饋機(jī)制補(bǔ)償T4水平下降。
4 結(jié)論
褐牙鲆早期變態(tài)發(fā)育需CRH基因高表達(dá)及甲狀腺激素積累,二者對(duì)褐牙鲆早期變態(tài)發(fā)育階段具有重要作用并呈互相代償效應(yīng)。
參考文獻(xiàn):
Bagamasbad P,Denver R J. 2011. Mechanisms and significance of nuclear receptor auto-and cross-regulation[J]. General and Comparative Endocrinology,170(1):3-17.
Brown C,Sullivan C V,Bern H A,Dickhoff W W. 1987. Occurrence of thyroid hormones in early developmental stages of teleost fish[J]. American Fisheries Society Symposium, 2:144-150.
Brown D D,Cai L Q. 2007. Amphibian metamorphosis[J]. Developmental Biology, 306(1): 20-33.
De Groef B,Van der Geyten S,Darras V M,Kühn E R. 2006. Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates[J]. General and Comparative Endocrinology,146(1):62-68.
Denver R J. 1988. Several hypothalamic peptides stimulate in vitro thyrotropin secretion by pituitaries of anuran amphi-
bians[J]. General and Comparative Endocrinology,72(3):383-393.
Eales J G, Barrington E G W. 1979. Thyroid function in cyclostomes and fishes[J]. Hormones and Evolution, 1: 341-436.
Fuzzen M L,Alderman S L,Bristow E N,Bernier N J. 2011. Ontogeny of the corticotropin-releasing factor system in rainbow trout and differential effects of hypoxia on the endocrine and cellular stress responses during development[J]. General and Comparative Endocrinology,170(3):604-612.
Geven E J,F(xiàn)lik G,Klaren P H. 2009. Central and peripheral integration of interrenal and thyroid axes signals in common carp(Cyprinus carpio L.)[J]. The Journal of Endocrinology,200(1):117-123.
Ishizuya-Oka A. 2011. Amphibian organ remodeling during metamorphosis:Insight into thyroid hormone-induced apoptosis[J]. Development,Growth and Differentiation,53(2):202-212.
Janz D M. 2000. Chapter 13-Endocrine System[M]//Ostrander G. The Laboratory Fish. New York: Academic Press: 189-217.
Jiang J,Shi Y,Shan Z,Yang L,Wang X,Shi L. 2012. Bioaccumulation, oxidative stress and HSP70 expression in Cyprinus carpio L. exposed to microcystin-LR under laboratory conditions[J]. Comparative Biochemistry and Physiology,155(3):483-490.
Kawakami Y,Nomura K,Ohta H,Tanaka H. 2013. Characterization of thyroid hormone receptors during early development of the Japanese eel(Anguilla japonica)[J]. General and Comparative Endocrinology,194:300-310.
Lema S C,Dickey J T,Schultz I R,Swanson P. 2009. Thyroid hormone regulation of mRNAs encoding thyrotropin β-subunit,glycoprotein α-subunit,and thyroid hormone receptors alpha and beta in brain,pituitary gland,liver,and gonads of an adult teleost,Pimephales promelas[J]. The Journal of Endocrinology,202(1):43-54.
Liu Y W,Chan W K. 2002. Thyroid hormones are important for embryonic to larval transitory phase in Zebrafish[J]. Diffe-
rentiation,70(1):36-45.
Lu W,Dow L,Gumusgoz S,Brierley M J,Warne J M,McCrohan C R,Balment R J,Riccardi D. 2004. Coexpression of corticotropin-releasing hormone and urotensin i precursor genes in the caudal neurosecretory system of the euryhaline flounder(Platichthys flesus):A possible shared role in peripheral regulation[J]. Endocrinology,145(12):5786-5797.
Lu W,Greenwood M,Dow L,Yuill J,Worthington J,Brierley M J,McCrohan C R,Riccardi D,Balment R J. 2006. Molecular characterization and expression of urotensin II and its receptor in the flounder(Platichthys flesus):A hormone system supporting body fluid homeostasis in euryhaline fish[J]. Endocrinology,147(8):3692-3708.
McCrohan C R,Lu W,Brierley M J,Dow L,Balment R J. 2007. Fish caudal neurosecretory system:A model for the study of neuroendocrine secretion[J]. General and Comparative Endocrinology,153(1-3):243-250.
Miwa S,Inui Y. 1987. Effects of various doses of thyroxine and triiodothyronine on the metamorphosis of flounder(Paralich-
thys olivaceus)[J]. General and Comparative Endocrinology,67(3):356-363.
Mohácsik P, Füzesi T, Doleschall M, Szilvásy-Szabó A, Vancamp P, Hadadi ■, Darras V M, Fekete C, Gereben B. 2016. Increased thyroid hormone activation accompanies the formation of thyroid hormone-dependent negative feedback in developing chicken hypothalamus[J]. Endocrino-
logy,157(3): 1211-1221.
Mommsen T P,Vijayan M M,Moon T. 1999. Cortisol in teleosts:Dynamics,mechanisms of action,and metabolic regulation[J]. Reviews in Fish Biology and Fisheries,9(3):211-268.
Nelson E R,Habibi H R. 2016. Thyroid hormone regulates vitellogenin by inducing estrogen receptor alpha in the goldfish liver[J]. Molecular and Cellular Endocrinology,436:259-67.
Olivereau M,Olivereau J. 1988. Localization of CRF-like immunoreactivity in the brain and pituitary of teleost fish[J]. Peptides,9(1):13-21.
Pavlidis M,Karantzali E,F(xiàn)anouraki E,Barsakis C,Kollias S,Papandroulakis N. 2011. Onset of the primary stress in European sea bass Dicentrarhus labrax,as indicated by whole body cortisol in relation to glucocorticoid receptor during early development[J]. Aquaculture,315(1-2):125-130.
Pérez R,Tagawa M,Seikai T,Hirai N,Takahashi Y,Tanaka M. 1999. Developmental changes in tissue thyroid hormones and cortisol in Japanese sea bass Lateolabrax japonicus Larvae and Juveniles[J]. Fisheries Science,65(1):91-97.
Russell F S. 1976. The Eggs and Planktonic Stages of British Marine Fishes[M]. London:Academic Press.
Shi X,Liu C,Wu G,Zhou B. 2009. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae[J]. Chemosphere,77(7):1010- 1018.
Stinckens E,Vergauwen L,Schroeder A L,Maho W,Blackwell B R,Witters H,Blust R,Ankley G T,Covaci A,Villeneuve D L,Knapen D. 2016. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II:Zebrafish[J]. Aquatic Toxi-
cology,173:204-217.
Terrien X,F(xiàn)ini J B,Demeneix B A,Schramm K W,Prunet P. 2011. Generation of fluorescent zebrafish to study endocrine disruption and potential crosstalk between thyroid hormone and corticosteroids[J]. Aquatic Toxicology,105(1-2):13-20.
Tran T N,F(xiàn)ryer J N,Lederis K,Vaudry H. 1990. CRF,Urotensin I,and sauvagine stimulate the release of POMC-derived peptides from goldfish neurointermediate lobe cells[J]. Gene-
ral and Comparative Endocrinology,78(3):351-360.
(責(zé)任編輯 蘭宗寶)