• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      擬南芥開(kāi)花抑制因子TFL1與GRFs蛋白的相互作用

      2017-06-15 15:46:35袁敏邢繼紅王莉葛偉娜郭棣張嵐
      關(guān)鍵詞:雙雜交入門擬南芥

      袁敏,邢繼紅,王莉,葛偉娜,郭棣,張嵐

      (1華北理工大學(xué)生命科學(xué)學(xué)院基因組學(xué)與計(jì)算生物學(xué)研究中心,河北唐山 063000;2河北農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院真菌毒素與植物分子病理學(xué)實(shí)驗(yàn)室,河北保定 071001)

      擬南芥開(kāi)花抑制因子TFL1與GRFs蛋白的相互作用

      袁敏1,邢繼紅2,王莉1,葛偉娜1,郭棣1,張嵐1

      (1華北理工大學(xué)生命科學(xué)學(xué)院基因組學(xué)與計(jì)算生物學(xué)研究中心,河北唐山 063000;2河北農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院真菌毒素與植物分子病理學(xué)實(shí)驗(yàn)室,河北保定 071001)

      【目的】研究擬南芥開(kāi)花抑制因子TFL1與2個(gè)GRFs家族成員GRF4和GRF7之間的互作關(guān)系,為進(jìn)一步解析TFL1抑制植物開(kāi)花的分子機(jī)制奠定基礎(chǔ)?!痉椒ā恳詳M南芥cDNA作為模板,利用基因特異性引物,克隆TFL1、GRF4和GRF7,分別連接入門載體pCR8,經(jīng)菌落PCR擴(kuò)增和測(cè)序鑒定分別獲得這3個(gè)基因的入門載體 TFL1-pCR8、GRF4-pCR8和 GRF7-pCR8。利用 LR重組的方法將上述 3個(gè)入門載體分別與目標(biāo)載體pGADT7和 pGBKT7重組獲得酵母雙雜交試驗(yàn)載體 TFL1-BD、GRF4-AD和 GRF7-AD。將 TFL1-BD載體分別與GRF4-AD或GRF7-AD載體共同轉(zhuǎn)化酵母感受態(tài)細(xì)胞,于雙缺(-Leu/-Trp)培養(yǎng)基上30℃培養(yǎng)2—3 d直至長(zhǎng)出酵母克隆,選取合適大小的酵母菌落轉(zhuǎn)移到雙缺(-Leu/-Trp)和四缺(-Leu/-Trp/-His/-Ade)缺陷培養(yǎng)基上,通過(guò)觀察酵母菌落的生長(zhǎng)情況判斷TFL1與GRFs之間的互作關(guān)系。利用LR重組的方法將上述3個(gè)入門載體分別與目標(biāo)載體px-nYFP和px-cYFP重組獲得TFL1-nYFP、TFL1-cYFP、GRFs-nYFP、GRFs-cYFP雙分子熒光互補(bǔ)試驗(yàn)載體,并分別轉(zhuǎn)化農(nóng)桿菌感受態(tài)細(xì)胞。將轉(zhuǎn)化TFL1-nYFP或TFL1-cYFP載體的農(nóng)桿菌分別與轉(zhuǎn)化GRFs-nYFP或GRFs-cYFP載體的農(nóng)桿菌共注射煙草葉片,培養(yǎng)48 h后在熒光共聚焦顯微鏡下觀察煙草細(xì)胞中YFP熒光的表達(dá)情況。通過(guò)YFP熒光信號(hào)的有無(wú)來(lái)判斷TFL1與GRFs之間的互作關(guān)系?!窘Y(jié)果】成功克隆到擬南芥中的3個(gè)基因,分別是534 bp的TFL1、888 bp的GRF4和798 bp的GRF7,并分別獲得其入門載體(TFL1-pCR8、GRF4-pCR8和GRF7-pCR8)、酵母雙雜交試驗(yàn)載體(TFL1-BD、GRF4-AD和GRF7-AD)和雙分子熒光互補(bǔ)試驗(yàn)載體(TFL1-nYFP、TFL1-cYFP、GRFs-nYFP和GRFs-cYFP)。在酵母雙雜交試驗(yàn)中,相較于陰性對(duì)照組,共同轉(zhuǎn)化TFL1-BD與GRFs載體的酵母菌落在雙缺(-Leu/-Trp)和四缺(-Leu/-Trp/-His/-Ade)培養(yǎng)基上都生長(zhǎng)較好,結(jié)果表明TFL1與GRF4、GRF7在酵母中直接相互作用。在雙分子熒光互補(bǔ)試驗(yàn)中,相較于陰性對(duì)照組,將轉(zhuǎn)化TFL1-cYFP載體的農(nóng)桿菌與轉(zhuǎn)化GRFs-nYFP載體的農(nóng)桿菌共注射煙草細(xì)胞之后均在煙草細(xì)胞核內(nèi)產(chǎn)生較強(qiáng)的YFP熒光信號(hào);與此同時(shí),將轉(zhuǎn)化TFL1-nYFP載體的農(nóng)桿菌與轉(zhuǎn)化GRFs-cYFP載體的農(nóng)桿菌共注射煙草細(xì)胞之后同樣在煙草細(xì)胞核內(nèi)產(chǎn)生較強(qiáng)的YFP熒光信號(hào)。結(jié)果表明,TFL1與GRF4、GRF7在煙草中直接相互作用?!窘Y(jié)論】擬南芥開(kāi)花抑制因子TFL1與GRFs家族的2個(gè)成員GRF4和GRF7均直接相互作用。

      擬南芥;TFL1;GRFs;酵母雙雜交;雙分子熒光互補(bǔ)

      0 引言

      【研究意義】開(kāi)花是高等植物生長(zhǎng)發(fā)育進(jìn)程中一個(gè)非常關(guān)鍵的階段,受多種因素的共同調(diào)控。絕大多數(shù)的植物在開(kāi)花之前會(huì)持續(xù)一定時(shí)間的營(yíng)養(yǎng)生長(zhǎng),不斷長(zhǎng)出新的葉片。但是,當(dāng)內(nèi)外因素變化時(shí),尤其是光照時(shí)間長(zhǎng)短的變化會(huì)導(dǎo)致植物結(jié)束營(yíng)養(yǎng)生長(zhǎng)階段進(jìn)入生殖生長(zhǎng)階段,繼而開(kāi)花、結(jié)果、繁衍后代[1-6]。研究植物開(kāi)花的分子機(jī)理、調(diào)控模式以及控制開(kāi)花重要基因的功能,最終實(shí)現(xiàn)人為干預(yù)植物的開(kāi)花時(shí)間以及花期長(zhǎng)短將對(duì)園藝園林具有十分重要的意義。此外,人為調(diào)節(jié)農(nóng)作物的開(kāi)花結(jié)果時(shí)間也將為農(nóng)業(yè)增產(chǎn)增收提供保障?!厩叭搜芯窟M(jìn)展】在植物從營(yíng)養(yǎng)生長(zhǎng)到生殖生長(zhǎng)這一成花轉(zhuǎn)化過(guò)程中,2個(gè)控制植物開(kāi)花的同源基因 TERMINAL FLOWER 1 (TFL1)和FLOWERING LOCUS T(FT)扮演非常重要的角色[7-9]。二者同屬于磷脂酰乙醇胺結(jié)合蛋白家族(phosphatidylethanolamine-binding protein,PEBP)[10],盡管它們的氨基酸序列具有60%的同源性,但是發(fā)揮的生理功能截然相反,TFL1抑制開(kāi)花,而FT促進(jìn)植物開(kāi)花[11-15]。近年來(lái),關(guān)于這對(duì)同源基因發(fā)揮相反功能的分子機(jī)制研究已經(jīng)取得了一些突破性的進(jìn)展。FT蛋白被稱作開(kāi)花素,在植物葉片中合成,經(jīng)過(guò)韌皮部的運(yùn)輸?shù)竭_(dá)植物的頂端分生組織處[7,16-18]。在頂端分生組織,F(xiàn)T蛋白與bZIP轉(zhuǎn)錄因子家族成員FD蛋白形成復(fù)合體調(diào)控下游基因AP1的表達(dá)[19-20]。在水稻中,過(guò)表達(dá)OsFD1與Hd3a(FT的同源基因)能夠上調(diào) OsMADS15的表達(dá)[21]。目前,在一些物種中研究者們進(jìn)一步證實(shí)FD與FT蛋白之間并不直接互作,而是由GRFs蛋白作為媒介介導(dǎo)形成復(fù)合體發(fā)揮作用[22-24]。番茄中GRFs的同源基因GRF/74與番茄中FT的同源基因SP相互作用。在水稻中,已經(jīng)有4個(gè)GRFs的亞型被報(bào)道與FT的同源基因Hd3a相互作用[25-26]。GRFs蛋白是一類調(diào)節(jié)因子(general regulatory factors,GRFs),也被稱作14-3-3蛋白,擬南芥中存在從GRF1—GRF15共15個(gè)成員,廣泛參與調(diào)控生物體內(nèi)的多種生理、生化,以及信號(hào)轉(zhuǎn)導(dǎo)過(guò)程。比如,在 BR信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,轉(zhuǎn)錄因子BZR1存在磷酸化與脫磷酸化2種狀態(tài)。脫磷酸化狀態(tài)的BZR1能夠與下游基因的啟動(dòng)子結(jié)合,調(diào)控基因表達(dá)。而磷酸化狀態(tài)的 BZR1會(huì)被 GRFs蛋白結(jié)合而滯留在胞質(zhì)內(nèi),不能進(jìn)入細(xì)胞核內(nèi)發(fā)揮轉(zhuǎn)錄因子的功能[27-28]。在擬南芥中,fd-2突變體植株晚花,tfl1-1突變體植株早花,而tfl1-1/fd-2雙重突變體植株并沒(méi)沒(méi)有表現(xiàn)出明顯的早花表型。由此說(shuō)明,TFL1抑制開(kāi)花可能也是依賴于FD的,TFL1也與FD形成蛋白復(fù)合體發(fā)揮功能[29-30]?!颈狙芯壳腥朦c(diǎn)】擬南芥中TFL1與FD的作用是否同樣需要GRFs作為媒介介導(dǎo)?擬南芥中TFL1是否也像FT一樣與GRFs直接相互作用?關(guān)于這些問(wèn)題目前還不十分清楚。【擬解決的關(guān)鍵問(wèn)題】本研究擬采用酵母雙雜交和雙分子熒光互補(bǔ)(BiFC)2種技術(shù)研究擬南芥開(kāi)花抑制因子TFL1與調(diào)節(jié)因子GRFs是否直接相互作用,分析擬南芥TFL1與FD之間的作用是否同樣需要GRFs作為媒介介導(dǎo),為進(jìn)一步解答FT與TFL1如何協(xié)調(diào)控制植物開(kāi)花時(shí)間提供新的證據(jù)和見(jiàn)解。

      1 材料與方法

      1.1 試驗(yàn)材料

      試驗(yàn)于2016年進(jìn)行,載體PGBKT7和PGADT7,酵母菌株AH109由華北理工大學(xué)生命科學(xué)學(xué)院保存;酵母培養(yǎng)基和轉(zhuǎn)化試劑購(gòu)于美國(guó) Clontech公司;LR克隆試劑盒(11791020)和 pCR8克隆試劑盒(K2520-20)購(gòu)于美國(guó)Invitrogen公司;擬南芥Col-0種子購(gòu)于ABRC。

      1.2 TFL1與GRFs酵母雙雜交載體的構(gòu)建

      從擬南芥葉片中提取總RNA,通過(guò)反轉(zhuǎn)錄獲得其cDNA。使用TFL1特異性上下游引物擴(kuò)增TFL1(表1),與載體pCR8連接,轉(zhuǎn)化DH5α,對(duì)長(zhǎng)出的菌落進(jìn)行菌落PCR檢測(cè)及測(cè)序,鑒定獲得TFL1入門載體(TFL1-pCR8)。利用 LR重組試劑盒,將TFL1-pCR8與目標(biāo)載體PGBKT7進(jìn)行LR重組獲得酵母雙雜交載體TFL1/PGBKT7(TFL1-BD)。利用同樣的方法分別將GRFs入門載體與酵母雙雜交載體PGADT7重組。

      1.3 酵母雙雜交

      將1 μg TFL1-BD和1 μg GRFs-AD質(zhì)粒加入200 μL酵母感受態(tài)細(xì)胞AH109中,室溫孵育1—2 h,42℃熱激30 min后,冰浴1—2 min。將酵母細(xì)胞涂布在-LT雙缺固體培養(yǎng)基上,30℃培養(yǎng)2—3 d直至長(zhǎng)出酵母克隆。利用同樣的方法進(jìn)行對(duì)照組TFL1-BD與AD、BD與AD、BD與GRFs-AD的轉(zhuǎn)化。選取雙缺培養(yǎng)基上生長(zhǎng)較好的酵母單克隆于加有100 μL無(wú)菌水的EP管中混勻,吸取10 μL置于-LTHA四缺培養(yǎng)基,30℃繼續(xù)培養(yǎng)2—3 d觀察酵母生長(zhǎng)情況。每個(gè)組合各選取3個(gè)酵母菌落作為3個(gè)重復(fù)。

      表1 本研究所用引物Table 1 The primers used in this study

      1.4 BiFC系統(tǒng)載體構(gòu)建

      將入門載體TFL1-pCR8、GRFs-pCR8分別與目標(biāo)載體px-cYFP和px-nYFP進(jìn)行LR重組,獲得BiFC試驗(yàn)載體 TFL1-cYFP、TFL1-nYFP、GRFs-cYFP、GRFs-nYFP,并轉(zhuǎn)化農(nóng)桿菌GV3101。

      1.5 煙草葉片注射與YFP熒光信號(hào)觀察

      室溫離心過(guò)夜培養(yǎng)的農(nóng)桿菌收集菌體,利用注射緩沖液(10 mmol·L-1MES,pH5.6;150 μmol·L-1acetosyringone;10 mmol·L-1MgCl2)洗滌菌體沉淀2—3次后重懸至菌液的OD600為0.6—0.8,室溫孵育4—6 h。將煙草從培養(yǎng)室取出,在試驗(yàn)臺(tái)弱光條件下事先放置1—2 h,將要共同注射的2種農(nóng)桿菌菌液等體積混勻,然后用不帶針頭的注射器注射入煙草葉片下表皮,并做好標(biāo)記。將注射好的煙草在試驗(yàn)臺(tái)繼續(xù)弱光培養(yǎng) 1—2 h后放回正常光照條件下培養(yǎng)36—48 h。在注射過(guò)的煙草葉片上距離針孔周圍2—3 mm處剪下約1 cm見(jiàn)方的葉片,平放于載玻片上,然后熒光顯微鏡下觀察有無(wú) YFP熒光信號(hào)。

      2 結(jié)果

      2.1 TFL1與GRFs酵母雙雜交載體的構(gòu)建

      利用TFL1特異性引物擴(kuò)增得到534 bp的基因片段(圖1-A),與入門載體pCR8連接,獲得TFL1的入門載體TFL1-pCR8(圖1-B)。將入門載體TFL1-pCR8與目標(biāo)載體PGBKT7經(jīng)過(guò)LR重組反應(yīng)獲得酵母雙雜交載體TFL1/PGBKT7(TFL1-BD)。

      利用基因特異性引物擴(kuò)增得到888 bp的GRF4 和798 bp的GRF7全長(zhǎng)基因片段(圖2-A),分別連接入門載體pCR8,經(jīng)菌落PCR擴(kuò)增檢測(cè)(圖2-B)和測(cè)序驗(yàn)證獲得正確的入門載體 GRF4-pCR8和GRF7-pCR8。將這兩個(gè)入門載體分別與目標(biāo)載體PGADT7重組,獲得酵母雙雜交載體GRF4-AD和GRF7-AD。

      2.2 酵母雙雜交驗(yàn)證TFL1與GRFs的相互作用情況

      當(dāng)所有酵母菌落在-LT雙缺培養(yǎng)基上生長(zhǎng)較好時(shí),通過(guò)觀察-LTHA四缺培養(yǎng)基上試驗(yàn)組與對(duì)照組的酵母菌落生長(zhǎng)情況判斷 TFL1是否與 GRFs直接互作。共同轉(zhuǎn)化陰性對(duì)照組 TFL1-BD與 AD、BD與GRFs-AD、BD與AD質(zhì)粒的酵母菌落在-LTHA四缺培養(yǎng)基上都不生長(zhǎng),而共同轉(zhuǎn)化 TFL1-BD與GRF4-AD或GRF7-AD質(zhì)粒的酵母菌落在LTHA上正常生長(zhǎng)(圖3)。結(jié)果表明,在酵母中TFL1與GRF4、GRF7直接互作。

      2.3 BiFC驗(yàn)證TFL1與GRFs的相互作用情況

      圖1 入門載體TFL1-pCR8的構(gòu)建Fig.1 Construction of TFL1-pCR8 entry vector

      圖2 入門載體GRF7-pCR8和GRF4-pCR8的構(gòu)建Fig.2 Construction of GRF7-pCR8 and GRF4-pCR8 entry vectors

      利用BiFC試驗(yàn)驗(yàn)證煙草中TFL1與GRFs是否直接相互作用。將轉(zhuǎn)化TFL1-cYFP質(zhì)粒的農(nóng)桿菌分別與轉(zhuǎn)化 GRFs-nYFP質(zhì)粒的農(nóng)桿菌共同注射煙草葉片下表皮,培養(yǎng)48 h后均在煙草細(xì)胞核內(nèi)有較強(qiáng)的YFP熒光信號(hào)(圖4-A)。所有的陰性對(duì)照組,即轉(zhuǎn)化 px-cYFP空載體的農(nóng)桿菌分別與轉(zhuǎn)化 GRF4-nYFP或GRF7-nYFP質(zhì)粒的農(nóng)桿菌共同注射煙草后沒(méi)有出現(xiàn)YFP熒光信號(hào);轉(zhuǎn)化px-nYFP空載體與轉(zhuǎn)化TFL1-cYFP質(zhì)粒的農(nóng)桿菌共同注射煙草后也未出現(xiàn)YFP熒光信號(hào)(圖4-B)。

      圖3 在酵母中TFL1與GRF4、GRF7直接互作Fig.3 TFL1 directly interacts with GRF4 and GRF7 in yeast two hybrid assays

      為排除標(biāo)簽造成假陽(yáng)性結(jié)果的可能,試驗(yàn)中交換標(biāo)簽后重新利用BiFC試驗(yàn)驗(yàn)證了TFL1與GRFs的互作情況。將轉(zhuǎn)化TFL1-nYFP質(zhì)粒的農(nóng)桿菌分別與轉(zhuǎn)化GRF4-cYFP或GRF7-cYFP質(zhì)粒的農(nóng)桿菌共同注射煙草后仍然在細(xì)胞核內(nèi)出現(xiàn)較強(qiáng)的YFP熒光信號(hào)(圖 5-A)。所有的陰性對(duì)照組,即轉(zhuǎn)化 px-nYFP空載體的農(nóng)桿菌分別與轉(zhuǎn)化 GRF4-cYFP或 GRF7-cYFP質(zhì)粒的農(nóng)桿菌共同注射煙草后沒(méi)有出現(xiàn) YFP熒光信號(hào);轉(zhuǎn)化px-cYFP空載體與轉(zhuǎn)化TFL1-nYFP質(zhì)粒的農(nóng)桿菌共同注射煙草后也未出現(xiàn)YFP熒光信號(hào)(圖5-B)。由此證實(shí),在煙草中TFL1與GRF4、GRF7直接相互作用。

      3 討論

      蛋白質(zhì)互作是生命體一項(xiàng)基本的生命活動(dòng),幾乎發(fā)生在細(xì)胞中的每一個(gè)生理生化過(guò)程中,諸如 DNA的包裝、基因表達(dá)調(diào)控、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)等。確定蛋白質(zhì)間的相互作用在何時(shí)何處發(fā)生以及如何形成蛋白質(zhì)復(fù)合體將為闡明蛋白質(zhì)的生物學(xué)功能及其作用機(jī)制提供至關(guān)重要的線索。證實(shí)和闡明功能蛋白質(zhì)間的互作關(guān)系對(duì)于研究蛋白質(zhì)發(fā)揮的生物學(xué)功能,參與調(diào)控的生物學(xué)過(guò)程具有十分重要的意義。

      目前,研究蛋白質(zhì)間互作的方法很多,如酵母雙雜交、雙分子熒光互補(bǔ)(BiFC)、免疫共沉淀和凝膠孵育等。其中,酵母雙雜交技術(shù)是研究蛋白質(zhì)間互作比較簡(jiǎn)便和靈敏的一種方法,并且可以精確地測(cè)定蛋白質(zhì)之間微弱的相互作用,因其操作是在核酸水平上,不需要純化大量的蛋白質(zhì),操作簡(jiǎn)單容易[31]。研究者們已經(jīng)利用酵母雙雜交技術(shù)在蛋白質(zhì)組學(xué)、基因組學(xué)、細(xì)胞周期調(diào)控、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)等眾多領(lǐng)域取得了很重要的研究成果。但是,酵母雙雜交技術(shù)存在一些自身缺陷,很明顯的一個(gè)缺陷就是存在假陽(yáng)性。所謂假陽(yáng)性,即通過(guò)酵母雙雜交觀察到的蛋白質(zhì)間的相互作用在其他互作系統(tǒng)驗(yàn)證中并不是陽(yáng)性結(jié)果,在真實(shí)情況下不一定發(fā)生。因此,酵母雙雜交驗(yàn)證的蛋白質(zhì)相互作用往往還需要其他的試驗(yàn)證據(jù)進(jìn)一步的支持。

      雙分子熒光互補(bǔ)技術(shù)是近些年發(fā)展起來(lái)的一項(xiàng)新技術(shù),該方法較直觀,利用熒光顯微鏡在最接近活細(xì)胞生理狀態(tài)的條件下直接觀察熒光信號(hào)的有無(wú)來(lái)判別目標(biāo)蛋白質(zhì)間是否存在直接相互作用,該方法已逐漸成為研究活細(xì)胞內(nèi)蛋白質(zhì)的動(dòng)態(tài)關(guān)系和功能的一個(gè)強(qiáng)有力的工具[32]。但該技術(shù)存在的一個(gè)明顯缺陷也是假陽(yáng)性的存在,熒光片段在沒(méi)有連接目標(biāo)蛋白質(zhì)時(shí)也可能發(fā)生自發(fā)互補(bǔ)互作,這也是該技術(shù)中背景信號(hào)的主要來(lái)源。因此需要通過(guò)連接不發(fā)生互作的蛋白以及各種合適的陰性對(duì)照來(lái)排除這種假陽(yáng)性結(jié)果。

      圖4 在煙草中TFL1-cYFP與GRF4-nYFP、GRF7-nYFP直接互作Fig.4 TFL1-cYFP directly interacts with GRF4-nYFP and GRF7-nYFP in tobacco

      本研究中,利用酵母雙雜交和雙分子熒光互補(bǔ)2種技術(shù)互為補(bǔ)充,互相印證,更加確定了結(jié)果的真實(shí)性和可靠性。研究結(jié)果為進(jìn)一步解析 TFL1抑制植物開(kāi)花的分子機(jī)制提供了新的證據(jù),也為在農(nóng)業(yè)生產(chǎn)上人為控制農(nóng)作物的開(kāi)花時(shí)間以及花期提供理論基礎(chǔ)。

      圖5 在煙草中TFL1-nYFP與GRF4-cYFP、GRF7-cYFP直接互作Fig.5 TFL1-nYFP directly interacts with GRF4-cYFP and GRF7-cYFP in tobacco

      4 結(jié)論

      酵母雙雜交和雙分子熒光互補(bǔ)2個(gè)試驗(yàn)共同證實(shí)了擬南芥開(kāi)花抑制因子TFL1與調(diào)節(jié)因子蛋白GRFs家族的2個(gè)成員GRF4和GRF7直接相互作用,擬南芥中TFL1與FD之間的作用同樣需要GRFs作為媒介介導(dǎo)。

      References

      [1] CAI Y H, CHEN X J, XIE K, XING Q K, WU Y W, LI J, DU C H, SUN Z X, GUO Z J. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS ONE, 2014, 9(7): e102529.

      [2] ANDRES F, COUPLAND G. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 2010, 13(9): 627-639.

      [3] AMASINO R. Seasonal and developmental timing of flowering. The Plant Journal, 2010, 61(6): 1001-1013.

      [4] WICKLAND D P, HANZAWA Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms. Molecular Plant, 2015, 8(7): 983-997.

      [5] 李莉, 李旭, 劉亞文, 劉宏濤. 光和溫度調(diào)控開(kāi)花時(shí)間的研究進(jìn)展.中國(guó)科學(xué)(生命科學(xué)), 2016, 46(3): 253-259. LI L, LI X, LIU Y W, LIU H T. Flowering responses to light and temperature (Science China: Life Sciences), 2016, 46(3): 253-259. (in Chinese)

      [6] HIGUCHI Y, NARUMI T, ODA A, NAKANO Y, SUMITOMO K, FUKAI S, HISAMATSU T. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proceedings of the National Academy of Sciences of the USA, 2013, 110(42): 17137-17142.

      [7] HO W W H, WEIGEL D. Structural features determining flowerpromoting activity of Arabidopsis FLOWERING LOCUS T. The Plant Cell, 2014, 26(2): 552-564.

      [8] LI Q, FAN C M, ZHANG X M, WANG X, WU F Q, HU R B, FU Y F. Identification of a soybean MOTHER OF FT AND TFL1 homolog involved in regulation of seed germination. PLoS ONE, 2014, 9(6): e99462.

      [9] HANANO S, GOTO K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell, 2011, 23(9): 3172-3184.

      [10] HARIG L, BEINECKE F A, OLTMANNS J, MUTH J, MULLER O, RUPING B, TWYMAN R M, FISCHER R, PRUFER D, NOLL G A. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. The Plant Journal, 2012, 72(6): 908-921.

      [11] ANDO E, OHNISHI M, WANG Y, MATSUSHITA T, WATANABE A, HAYASHI Y, FUJII M, MA J F, INOUE S, KINOSHITA T. Twin sister of FT, GIGANTEA, and constans have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis. Plant Physiology, 2013, 162(3): 1529-1538.

      [12] FOUCHER F, MORIN J, COURTIADE J, CADIOUX S, ELLIS N, BANFIELD M J, RAMEAU C. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. The Plant Cell, 2003, 15(11): 2742-2754.

      [13] AHN J H, MILLER D, WINTER V J, BANFIELD M J, LEE J H, YOO S Y, HENZ S R, BRADY R L, WEIGEL D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal, 2006, 25(3): 605-614.

      [14] CHEN Y H, JIANG P, THAMMANNAGOWDA S, LIANG H Y, WILDE H D. Characterization of peach TFL1 and comparison with FT/TFL1 gene families of the rosaceae. Journal of the American Society for Horticultural Science, 2013, 138(1): 12-17.

      [15] COELHO C P, MINOW M A, CHALFUN A, COLASANTI J. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis. Frontiers In Plant Science, 2014, 221(5): 1-12.

      [16] TAOKA K, OHKI I, TSUJI H, KOJIMA C, SHIMAMOTO K. Structure and function of florigen and the receptor complex. Trends in Plant Science, 2013, 18(5): 287-294.

      [17] 李敬, 谷慧英, 王志敏, 湯青林, 宋明. 擬南芥成花關(guān)鍵基因調(diào)控網(wǎng)絡(luò)研究進(jìn)展. 生物技術(shù)通報(bào), 2014, 30(12): 1-8. LI J, GU H Y, WANG Z M, TANG Q L, SONG M. Research progress of flowering gene regulatory networks in Arabidopsis thaliana. Biotechnology Bulletin, 2014, 30(12): 1-8. (in Chinese)

      [18] CORBESIER L, VINCENT C, JANG S, FORNARA F, FAN Q, SEARLE I, GIAKOUNTIS A, FARRONA S, GISSOT L, TURNBULL C. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316(5827): 1030-1033.

      [19] JAEGER K E, PULLEN N, LAMZIN S, MORRIS R J, WIGGE P A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. The Plant Cell, 2013, 25(3): 820-833.

      [20] ABE M, KOBAYASHI Y, YAMAMOTO S, DAIMON Y, YAMAGUCHI A, IKEDA Y, ICHINOKI H, NOTAGUCHI M, GOTO K, ARAKI T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737): 1052-1056.

      [21] KOMIYA R, IKEGAMI A, TAMAKI S, YOKOI S, SHIMAMOTO K. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135(4): 767-774.

      [22] TAOKA K, OHKI I, TSUJI H, FURUITA K, HAYASHI K, YANASE T, YAMAGUCHI M, NAKASHIMA C, PURWESTRI Y A, TAMAKIS. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 2011, 476(7360): 332-335.

      [23] NAN H Y, CAO D, ZHANG D Y, LI Y, LU S J, TANG L L, YUAN X H, LIU B H, KONG F J. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS ONE, 2014, 9(5): e97669.

      [24] PURWESTRI Y A, OGAKI Y, TAMAKI S, TSUJI H, SHIMAMOTO K. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant and Cell Physiology, 2009, 50(3): 429-438.

      [25] PNUELI L, GUTFINGER T, HAREVEN D, BEN-NAIM O, RON N, ADIR N, LIFSCHITZ E. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. The Plant Cell, 2001, 13(12): 2687-2702.

      [26] JIANG K, LIBERATORE K L, PARK S J, ALVAREZ J P, LIPPMAN Z B. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genetics, 2014, 9(12): e1004043.

      [27] GAMPALA S S, KIM T W, HE J X, TANG W Q, DENG Z P, BAI M Y, GUAN S H, LALONDE S, SUN Y, GENDRON J M. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Developmental Cell, 2007, 13(2): 177-189.

      [28] BAI M Y, ZHANG L Y, GAMPALA S S, ZHU S W, SONG W Y, CHONG K, WANG Z Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Sciences of the USA, 2007, 104(34): 13839-13844.

      [29] WIGGE P A, KIM M C, JAEGER K E, BUSCH W, SCHMID M, LOHMANN J U, WEIGEL D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005, 309(5737): 1056-1059.

      [30] JAEGER K E, PULLEN N, LAMZIN S, MORRIS R J, WIGGE P A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. The Plant Cell, 2013, 25(3): 820-833.

      [31] 李先昆, 聶智毅, 曾日中. 酵母雙雜交技術(shù)研究與應(yīng)用進(jìn)展. 安徽農(nóng)業(yè)科學(xué), 2009, 37(7): 2867-2869. LI X K, NIE Z Y, ZENG R Z. Research and application advances of yeast two-hybrid technique. Journal of Anhui Agricultural Science, 2009, 37(7): 2867-2869. (in Chinese)

      [32] 王豐青, 張重義, 童治軍, 魏荷, 吳為人. 應(yīng)用雙分子熒光互補(bǔ)(Bi FC)方法分析煙草中介體亞基之間的互作. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2012, 20(1): 38-47. WANG F Q, ZHANG Z Y, TONG Z J, WEI H, WU W R. Interactions among mediator subunits of tobacco by bimolecular fluorescence complementation (BiFC) method. Journal of Agricultural Biotechnology, 2012, 20(1): 38-47. (in Chinese)

      (責(zé)任編輯 李莉)

      Interaction Between TFL1 and GRFs in Arabidopsis thaliana

      YUAN Min1, XING JiHong2, WANG Li1, GE WeiNa1, GUO Di1, ZHANG Lan1
      (1Center for Genomics and Computational Biology, College of Life Sciences, North China University of Science and Technology, Tangshan 063000, Hebei;2Mycotoxin and Molecular Plant Pathology Laboratory, College of Life Sciences, Agricultural University of Hebei, Baoding 071001, Hebei)

      Arabidopsis thaliana; TFL1; GRFs; yeast two hybrid; BiFC

      2016-11-25;接受日期:2017-02-13

      國(guó)家自然科學(xué)基金(31401212)、河北省自然科學(xué)基金(C2014209134)、唐山市科技局項(xiàng)目(14130274a)

      聯(lián)系方式:袁敏,E-mail:yuanmin308@163.com。邢繼紅,E-mail:13323221155@126.com。袁敏和邢繼紅為同等貢獻(xiàn)作者

      Abstract:【Objective】The objective of this study is to identify whether the flowering repressor TFL1 interacts with the two GRFs family members GRF4 and GRF7, and to provide a basis for illustrating the mechanism of TFL1 repressing flowering. 【Method】The TFL1, GRF4 and GRF7 genes were cloned by specific primers using the Arabidopsis cDNA as the templates. These three genes were linked into pCR8 vector to get the entry vectors. The correct entry vectors TFL1-pCR8, GRF4-pCR8 and GRF7-pCR8 were obtained by colony PCR screening and sequencing. The yeast two hybrid assay vectors, including TFL1-BD, GRF4-AD and GRF7-AD, were obtained by LR reaction between these three entry vectors and the destination vectors pGADT7 or pGBKT7. The yeast competent cells which were co-transformed with TFL1-BD plus GRF4-AD or GRF7-AD vectors were incubated on –Leu/-Trp growth medium under 30℃ for 2-3 days until the yeast colonies show up. The yeast colonies in proper size were chosen and transferred to both –Leu/-Trp and -Leu/-Trp/-His/-Ade growth medium. The interaction between TFL1 and GRFs was determined through observing the growth conditions of those yeast colonies on -Leu/-Trp/-His/-Ade growth medium. The BiFC assay vectors, including TFL1-nYFP, TFL1-cYFP, GRFs-nYFP and GRFs-cYFP, were also obtained by LR reaction between these three entry vectors and the destination vectors px-nYFP or px-cYFP, and were transformed into Agrobacterium competent cells. The tobaccos, which were co-transformed by the Agrobacterium harboring TFL1-nYFP or TFL1-cYFP vector and the Agrobacterium harboring GRFs-nYFP or GRFs-cYFP vector, were grown for more 48 hours before observing YFP fluorescence signals under confocal microscopy. The interaction between TFL1 and GRFs was determined if the fluorescence signals in tobacco cells were observed under confocal microscopy.【Result】The three genes, including 534 bp TFL1, 888 bp GRF4 and 798 bp GRF7, were cloned successfully. The entry vectors (TFL1-pCR8, GRF4-pCR8 and GRF7-pCR8), yeast two hybrid assay vectors (TFL1-BD, GRF4-AD and GRF7-AD), and BiFC assay vectors (TFL1-nYFP, TFL1-cYFP, GRFs-nYFP and GRFs-cYFP) of the three genes were obtained successfully. Compared with the negative controls, the yeast colonies which were co-transformed with TFL1-BD plus GRFs-AD vectors grew well in both -Leu/-Trp and -Leu/-Trp/-His/-Ade media in yeast two hybrid assay. Compared with the negative controls, the obvious nuclear YFP fluorescence signals were observed in the tobacco cells which were co-transformed with the Agrobacterium harboring TFL1-cYFP vector or GRFs-nYFP vector. Meanwhile, the obvious nuclear YFP fluorescence signals were also observed in the tobacco cells which were co-transformed with the Agrobacterium harboring TFL1-nYFP vector or GRFs-cYFP vector.【Conclusion】The flowering repressor TFL1 directly interacts with the two GRFs family members GRF4 and GRF7 in Arabidopsis.

      猜你喜歡
      雙雜交入門擬南芥
      擬南芥:活得粗糙,才讓我有了上太空的資格
      酵母雙雜交技術(shù)篩選與綿羊微管解聚蛋白相互作用的蛋白
      受青枯菌誘導(dǎo)的花生根酵母雙雜交文庫(kù)構(gòu)建和AhRRS5互作蛋白的篩選
      名偵探入門測(cè)試
      酵母雙雜交技術(shù)研究進(jìn)展
      學(xué)習(xí)和自己的相處之道 獨(dú)木舟的入門 CANOE
      尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
      兩種LED光源作為擬南芥生長(zhǎng)光源的應(yīng)用探究
      幾何入門,四個(gè)“重視”
      擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
      潢川县| 天长市| 南川市| 民勤县| 永州市| 太湖县| 盘锦市| 永康市| 东山县| 宜兴市| 石首市| 蒙城县| 越西县| 松江区| 喀什市| 广安市| 贵港市| 凤山市| 永定县| 武平县| 大埔县| 肥城市| 洛浦县| 郎溪县| 图木舒克市| 遵义市| 大厂| 汝阳县| 沭阳县| 息烽县| 武胜县| 长阳| 株洲县| 昌图县| 疏附县| 剑川县| 沿河| 高台县| 永新县| 奈曼旗| 琼海市|