趙 巍
(淮海工學(xué)院 商學(xué)院,江蘇 連云港222005)
?
股價和執(zhí)行價受雙分?jǐn)?shù)布朗運(yùn)動驅(qū)動期權(quán)定價
趙 巍
(淮海工學(xué)院 商學(xué)院,江蘇 連云港222005)
雙分?jǐn)?shù)布朗運(yùn)動能滿足分形特征,同時在一定條件下能夠滿足半鞅,已替代分?jǐn)?shù)布朗運(yùn)動成為數(shù)理金融研究中更為合適的工具.在雙分?jǐn)?shù)布朗運(yùn)動假定下,基于擬鞅定價思路給出了雙分?jǐn)?shù)Black-Scholes定價模型的解析解;在此基礎(chǔ)上,著重討論了股價和執(zhí)行價共同受雙分?jǐn)?shù)布朗運(yùn)動驅(qū)動的期權(quán)定價模型,使分?jǐn)?shù)布朗運(yùn)動和標(biāo)準(zhǔn)布朗運(yùn)動驅(qū)動的定價模型都成為其特例.本研究方法對求解各類擴(kuò)展的布朗運(yùn)動族驅(qū)動的定價模型都具有借鑒價值.
雙分?jǐn)?shù)布朗運(yùn)動;擬條件數(shù)學(xué)期望;擬鞅定價;雙分?jǐn)?shù)Black-Scholes模型
金融衍生資產(chǎn)定價是現(xiàn)代金融理論的核心內(nèi)容,Black和Scholes[1]假定股票價格服從幾何布朗運(yùn)動,得出了著名的Black-Scholes公式.然而實證研究表明,金融資產(chǎn)價格并非隨機(jī)游走,而是存在著長期相關(guān)性[2].Mandelbrot和Van Ness[3]提出的分?jǐn)?shù)布朗運(yùn)動能夠有效描述金融資產(chǎn)的長期相關(guān)特征,但分?jǐn)?shù)布朗運(yùn)動不是半鞅,無法用隨機(jī)積分進(jìn)行分析,且導(dǎo)致市場不完備[4-6].Hu和Oksendal[7]通過定義分?jǐn)?shù)伊藤積分,構(gòu)建了無套利且完備的分?jǐn)?shù)Black-Scholes市場.但在該積分定義下的自融資策略不符合經(jīng)濟(jì)學(xué)理論,影響了模型的使用效果,雙分?jǐn)?shù)布朗運(yùn)動是對分?jǐn)?shù)布朗運(yùn)動的擴(kuò)展和修正,既能夠刻畫金融資產(chǎn)分形特征,且在一定限制條件下滿足半鞅,且經(jīng)濟(jì)含義明確,可以用隨機(jī)分析理論求解期權(quán)定價模型[8].隨后,董瑩瑩,薛紅[9-10]基于保險精算方法,研究雙分?jǐn)?shù)布朗運(yùn)動環(huán)境下的重置期權(quán)定價公式.
雖然Hu和Oksendal定義的積分經(jīng)濟(jì)意義欠缺,但其對于采用隨機(jī)積分方法求解期權(quán)定價的思想值得推廣.本文將這一思路用于雙分?jǐn)?shù)布朗移動驅(qū)動的期權(quán)定價問題研究,通過構(gòu)建分?jǐn)?shù)金融市場和擬鞅定價方法,在分?jǐn)?shù)風(fēng)險中性測度下以簡單積分變換得到了雙分?jǐn)?shù)Black-Scholes公式,進(jìn)而將結(jié)論應(yīng)用于股價和執(zhí)行價共同受雙分?jǐn)?shù)布朗運(yùn)動驅(qū)動的期權(quán)定價模型,最后對雙分?jǐn)?shù)期權(quán)價格和標(biāo)準(zhǔn)期權(quán)價格進(jìn)行了比較.
1.1 雙分?jǐn)?shù)布朗運(yùn)動
隨機(jī)過程Xt稱為分?jǐn)?shù)It過程,如果滿足:
其中:μx,t為Xt的均值(時變),σx,t為Xt的方差(時變).
引理1[8]考慮分?jǐn)?shù)差分方程
則有
其中:μ,σ為常數(shù).
引理2[8]考慮分?jǐn)?shù)差分方程
則有
考慮另一風(fēng)險中性測度R,若
考慮股價St滿足雙分?jǐn)?shù)布朗運(yùn)動:
若Black-Scholes模型其余條件不變,則此時市場為It型雙分?jǐn)?shù)Black-Scholes市場.假定當(dāng)前存在兩種資產(chǎn).一種是無風(fēng)險資產(chǎn)債券,滿足:
dMt=rMtdt
其中:r為無風(fēng)險利率;另一種風(fēng)險資產(chǎn)股票,由雙分?jǐn)?shù)布朗運(yùn)動驅(qū)動,且在風(fēng)險中性測度Q下,有
由引理2,有
定理1 標(biāo)的資產(chǎn)S,到期日為T,執(zhí)行價為M的歐式買權(quán)t時刻的價格為
Ct=StN(d1)-Me-r(T-t)N(d2)
其中
證明 由引理2
也即
所以
由引理4
而
所以,歐式買權(quán)的價格為
Ct=StN(d1)-Me-r(T-t)N(d2)
定理得證.
假設(shè)Lt為時刻t的執(zhí)行價格,則期權(quán)在時刻T以執(zhí)行價格LT執(zhí)行.假定在分?jǐn)?shù)風(fēng)險中性測度Q下,Lt滿足隨機(jī)微分方程
此時,歐式看漲期權(quán)的到期收益為
則由定理1有
其中
從而有
其中
從而有
因此
雙分?jǐn)?shù)布朗運(yùn)動在積分意義上和經(jīng)濟(jì)意義上具有顯著優(yōu)勢,成為描述資產(chǎn)價格的合適工具.以此為基礎(chǔ),本文結(jié)合雙分?jǐn)?shù)布朗運(yùn)動的統(tǒng)計特性和傳統(tǒng)鞅定價思路,得到了雙分?jǐn)?shù)Black-Scholes公式,進(jìn)而對股價和執(zhí)行價同受雙分?jǐn)?shù)布朗運(yùn)動驅(qū)動的期權(quán)定價模型進(jìn)行求解.研究結(jié)果表明,雙分?jǐn)?shù)期權(quán)價格取決于到期時間和雙分形參數(shù)HK.本研究借助分?jǐn)?shù)布朗運(yùn)動環(huán)境下的鞅定價思路,擴(kuò)展到雙分?jǐn)?shù)布朗運(yùn)動驅(qū)動的定價問題,將隨機(jī)積分意義和經(jīng)濟(jì)意義完美結(jié)合,對各類修正的分?jǐn)?shù)布朗運(yùn)動族驅(qū)動的定價模型具有推廣價值.
[1]BLACKF,SCHOLESM.Thepricingofoptionsandcorporateliabilities[J].PoliticalEconomy, 1973, 81(3): 637-659.
[2] FAMA E. The behavior of stoek market price [J]. The Journal of Business, 1965, 38(1): 34-105.
[3] MANDELBROT B B, VAN NESS J W. Fractional Brownian motion, fractional noises and application [J]. SIAM Review, 1968, 10:422-437.
[4] LIN S J. Stochastic analysis of fractional Brownian motion, fractional noise and applications [J]. SIAM Review, 1995, 10: 422-437.
[5] ROGER L C G. Arbitrage with fractional Brownian motion [J]. Mathematical Finance, 1997, 7: 95-105.
[6] DECREUSEFOND L, USTUNEL A S. Stochastic analysis of the fractional Brownian motion [J]. Potential Analysis, 1999, 10: 177-214.
[7] HU Y, OKSENDAL B. Fractional white noise calculus and application to Finance [J]. Infinite Dimensional Analysis Quantum Probability and Related Topics, 2000, 1(6): 1-32.
[8] 肖煒麟, 張衛(wèi)國, 徐維東. 雙分式布朗運(yùn)動下股本權(quán)證的定價[J]. 系統(tǒng)工程學(xué)報, 2013, 28(3): 348-354.
[9] 董瑩瑩, 薛 紅. 分?jǐn)?shù)布朗運(yùn)動環(huán)境下重置期權(quán)定價[J]. 哈爾濱商業(yè)大學(xué)學(xué)報:自然科學(xué)版, 2016, 32(3): 242-245.
[10] 董瑩瑩, 薛 紅,雙分?jǐn)?shù)跳-擴(kuò)散過程下重置期權(quán)定價[J]. 寧夏大學(xué)學(xué)報:自然科學(xué)版, 2016, 37(1): 1-4.
[11] RUSSO F, TUDOR C. On the bifractional Brownian motion [J]. Stochastic Processes and Application, 2006, 116(5): 830-856.
[12] ESSEBAIY K, TUDOR C. Multidimensional bifractional Brownian motion: Ito and Tanaka formulas [J]. Stochastic and Dynamics, 2007, 7(3): 365-388.
[13] BENDER C, SOTTINE T, VALKEILA E. Arbitrage with fractional Brownian motion J]. Theory of Stochastic Processes, 2006, 12(3): 1-12.
Option pricing model with stock and exercise price driven by FBM
ZHAO Wei
(School of Business, Huaihai Institute of Technology, Lianyungang 222005, China)
Bifractional Brownian motion has become the more suitable tool for field in mathematical finance. Because it has self similar and long term correlation properties, and it is also a semi-martingale. This paper set the assert price followed Bifractional Brownian Motion (BFBM), and construct bifractional Black-Scholes market. Based on the statistic property of BFBM and quasi-martingale method, bifractional Black-Scholes model was solved. Moreover Option pricing model with stock and exercise price droved by BFBM was discussed. The results showed Motion and standard Brownian Motion became a special example, and the method was important significance of option pricing driven by many kinds of modified Brownian motion.
bifractional Brownian motion; quasi-conditional expectation; quasi-martingale pricing; bifractional Black-Scholes mode
2016-09-21.
趙 巍(1980-), 男,博士,副教授,研究方向:金融復(fù)雜性和金融工程.
O177
A
1672-0946(2017)03-0347-03