• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified Backstepping Controller for Path Following of Marine Crafts with Actuator Dynamics

    2017-06-22 14:44:22YangHaixiangWenzhao
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:武漢理工大學(xué)徐海循跡

    Qü Yang,Xü Hai-xiang,Yü Wen-zhao

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Modified Backstepping Controller for Path Following of Marine Crafts with Actuator Dynamics

    Qü Yanga,b,Xü Hai-xianga,b,Yü Wen-zhaoa,b

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    A simple geometric method for generating curvature-continuous paths in a plan is presented.Based on the curvature-continuous paths,a line-of-sight(LOS)guidance law is utilized to minimize the cross-track error.To attenuate the oscillation of the control signal and obtain smooth control outputs,a modified backstepping controller with actuator dynamics is proposed for path following of overactuated marine crafts.It is worth mentioning that an integral action is added to adapt the slow-varying environmental forces of wind,wave and current forces.Numerical simulations demonstrate the validity of the proposed controller.

    path following;path planning;line-of-sight guidance;backstepping control; actuator dynamics

    0 Introduction

    In many applications,a marine ship has to move along a given path with a desired speed[1]. Different from trajectory tracking which requires the vessel to track pre-specified time functions of all state,path following removes temporal constraints and reduces the tracking problem to only a subset of states[2].The paths usually consist of a set of waypoints using Cartesian coordinate(xk,yk).In addition,each waypoint is usually connected by a circle before and after the waypoint[3].The path following problems can be summarized as following the desired path and obtaining the desired surge speed of the ship[4].

    In path following,the shape and properties of the path have a direct influence on the guidance system.The reason is that the path is defined by a set of ordered waypoints on the map and the discontinuous-curvature paths affect the heading angle commands.Connecting the waypoints can be achieved in many ways,with each one having its own advantages and disad vantages.Two main categories are using spines and combining straight lines and arcs.Dubins[5]showed that for a particle that moves forward with unity speed,the shortest path that meets a curvature bound between a starting point and a finishing point consists of the parts which is astraight line or an arc of a circle of radius R>0.Breivik and Fossen[6]designed paths of straight lines and circles for a fully actuated vessel to comply with the guidance commands.Shanmugavel and Tsourdos et al[7]used Dubins paths with clothoid arcs in the path planning of multiple UAVs to produce feasible paths.Different from Dubins paths,Lekkas and Dahl et al[8]proposed a method for path planning using Fermat’s spiral which has a zero curvature at its origin.Similar to the work of Lekkas and Dahl et al[8],Candeloro and Lekkas et al[9]proposed a two-dimensional curvature-continuous path planning algorithm based on Voronoi diagrams and Fermat’s spirals.The main objectives of the above publications are to find a smooth continuous-curvature path.

    For the controller design for path following,Yuh,Nie and Lee[10]and Sun and Cheah[11]used the adaptive control to stabilize the control system of path following in the presence of unmodelled dynamics and various noise;In Skjetne[12],three different controllers for the elliptical path following were designed,that is the adaptive backstepping procedure,sliding mode control and the nonlinear PID control,and the effectivenesses were compared among them based on experimental tests on the model ship CyberShip II.Based on the LOS guidance, Breivik[13]focused on the two-step backstepping control design for path following of marine crafts.However,these publications did not take into account the influence of actuator dynamics.Actuator dynamics are usually neglected by choosing the bandwidth of the control law sufficient low.As the actuators like propellers,thrusters and rudders have the bandwidth which is close to the bandwidth of most ship,the control signal will have oscillation and the actuator dynamics can not be neglected.Fossen and Berge[14]proposed a nonlinear vectorial backstepping controller for the marine crafts with the actuator dynamics added into the ship maneuvering model.For further research,Morishita and Souza[15]developed a backstepping controller with a passive observer and the actuator dynamics.But the obstacle of the methods proposed by Fossen and Berge[14]and Morishita and Souza[15]are that the controllers were designed for station keeping mode and cannot be applied to path following.

    The main contribution of this paper is twofold.First,a simple geometric method is used to generate the paths consisting of straight lines and arcs.This method allows the straight line to connect with the arc smoothly without curvature discontinuity.Second,the actuator dynamics have been included in the backstepping controller design for path following and the backstepping procedure was extended into three steps.

    The text is organized as follows:Chapter 1 mainly shows the procedure of the proposed path planing.Chapter 2 briefly presents the review of LOS guidance law.Chapter 3 gives a general ship maneuvering model with actuator dynamics in the inertial reference frame and body-fixed reference frame.Chapter 4 shows the proposed backstepping controller design in three steps using the Lyapunov stability analysis.Chapter 5 presents the simulation results.The paper ends with the conclusion.

    1 Continuous curvature path planning

    Path planning is a procedure to determine which route to be taken when moving from one location to another,given a certain number of waypoints to reach along the path.In path following,the line-of-sight angle is presented in the Path Parallel(PP)frame which rotates an angle relative to the inertial frame.The heading angle is determined by the line-of-sight angle and that rotated angle.Thus,discontinuous-curvature of the path will result in sharp variations of the desired heading angle.Here,we will use a simple geometric method to generate the path consisting of straight lines and arcs.

    1.1 The center of circle planning

    Let Pk(k=1,2,3…)denote the available waypoints.Assuming that all the radiuses are given and all the centers locate at the angle bisector of the nearby straight lines,the centers’locations can be easily achieved by the angle bisector theorem. Next,we will use nearby three waypoints to illustrate this problem shown in Fig.1.

    Fig.1 The center of circle planning

    where Rkis the radius of these circles.According to the angle bisector theorem:

    1.2 Path planning with clockwise or anti-clockwise motion

    In this part,the paths with clockwise or anti-clockwise motion will be defined by a mathematic method.For convenience,we will use 4 waypoints to illustrate this problem.The problem of the path planning for this case can be converted into the solving of the tangency points Ti,the central angles θiof arcs and the rotation directions as shown in Fig.2.

    Fig.2 Path planning with clockwise or anti-clockwise motion

    Firstly,we have to know whether the motion between the nearby two straight lines is clockwise or anti-clockwise.Here,we will utilize the concept of the cross product of vectors.

    where γiis the rotation angle and sgn is the sign function.CWi=1 represents the motion is clockwise and CWi=-1 represents the motion is anti-clockwise.The corresponding angular relations are formed as:

    Then,it is easy to solve the tangency point location problem for the beginning and finishing waypoints.

    2 LOS guidance law design

    2.1 LOS guidance law for general paths

    Fossen and Pettersen[16]showed that LOS guidance law for a ship is uniform semiglobal exponential stability(USGES)which is slightly weaker than global exponential stability(GES).Consider that a point particle moves in the two-dimensional plane.Let θ≥0 denotes the path variable.The paths can be parameterized as(xp(θ),yp(θ))by a set of given waypoints(xk,yk)for k=1,2,…as illustrated in Fig.3.In this section,a path parallel(PP)frame hasbeen used,which is rotated around an angle:

    Fig.3 LOS guidance law for a general path

    with respect to the North-East reference frame.For the particle located at the positionx,()y, the cross-track error can be computed as the orthogonal distance in the PP frame defined by the point(xp(θ),yp(θ)).Thus,we can put:

    Expanding Eq.(16)gives the normal form:

    According to Breivik and Fossen[6],the global minimized θ*subjected to Eq.(16)can be defined by:

    In Fossen[17],the kinematic equations can be expressed as the following form:

    Using Eqs.(15),(17),(20)and(21),the differentiation of Eq.(18)gives:

    here the look-ahead distance△can be time-varying using the following equation[18]:

    where ρ is the convergence rate of△.Inserting Eq.(24)into Eq.(23)gives:

    2.2 LOS guidance law for a straight line and a circle

    For a straight line,the PP frame is rotated around an angle α relative to the inertial North-East reference frame shown in Fig.4.Hence,the LOS guidance law in Eq.(24)can be computed as:

    For the circle having non-zero curvature,the LOS guidance law χcis time-varying.By analyzing Fig.5,this angle can be calculated as:

    Fig.4 LOS guidance law for a straight line

    Fig.5 LOS guidance law for a circle

    3 Dynamic position mathematical model

    Motivated by the actuator dynamics adopted by Morishita and Souza[15]and Fossen and Berge[14],the mathematical model for path following can be modified as:

    where η=[x,y,ψ]Tis the generalized position in the inertial reference frame;The body-fixed velocitiy is defined by the vector v=[u,υ,r]T;R(ψ)is the rotation matrix;M∈R3×3is the inertia matrix,D∈R3×3is the damping matrix,Bu∈R3×nis the configuration matrix with n actuators.up∈Rn×1is the return of the propeller thrusts;b∈R3×1is the slow varying environmental forces including wind,waves,currents as well as those induced by actuators;Tn∈Rn×nis a dialogue matrix of positive time constants;uc∈Rn×1is the vector of control outputs determined by the controller;Considering the saturation of the actuators,the control forces in surge,sway and yaw can be limited and represented as:

    where umax∈R3×1and umin∈R3×1are the vectors with maximum and minimum saturation values.Specially,the matrices used in the nonlinear maneuvering model can be given as:

    4 Control system design

    Breivik[19]proposed a two-step backstepping controller for path following without actuator dynamics.In this Chapter,the modified control system design with actuator dynamics will be separated into three parts using a backstepping control.The process of the control system design will be stated as follows.

    Defining the projection vector h:

    The first error variable z1is defined as:

    where ψdis the LOS guidance law angle χ given in Chapter 3.For a straight line,ψd=χsand ψd=χcfor a circle.Similarly,the second error variable z2can be defined as:

    Step 1:Defining the first Lyapunov Function(LF)as:

    The differentiation of Eq.(36)gives:

    Inserting Eq.(35)into Eq.(37)gives:

    Thus,the stabilizing function α13can be chosen as:

    where c1>0 and Eq.(38)will become:

    Step 2:Defining the second Lyapunov Function(LF)as:

    The differentiation of Eq.(41)gives:

    Based on Eqs.(30)and(35),we will have the following result:

    Thus Buupcan be chosen as the second stabilizing function α2.Hence,Eq.(42)can be rewritten as:

    The second stabilizing function can be designed as:

    where K2is a positive diagonal matrix and the adaptive integral action can be chosen as:

    Step 3:Defining the second error variable z3:

    The third Lyapunov Function(LF)can be expressed as:

    The differentiation of Eq.(48)with the insertion of Eqs.(31),(44)and(45)gives:

    Hence,the control law can be given by:

    where K3is a positive diagonal matrix.In path following,we want that the ship moves forward with the given surge speed udand also desire that the sway velocity of the vessel is kept at zero.For the heading angle control,the stabilizing function α13will be used.Thus,the stabilizing functions α1can be written as:

    5 Simulation results

    To evaluate the performance and robustness of this method,the computer simulation with the waypoints given in Tab.1 has been used.This work is based on an over-actuated offshore supply vessel model.The configurations of the actuators are shown in Tab.2.The vessel hydrodynamic coefficients of the matrices M and D used in Chapter 4 are calculated by Computational Fluid Dynamics(CFD)and given in Tab.3.To take into account the differences between the realistic model and the model used in Chapter 3,the vessel realistic model will be adopted in this simulation where the wind,current and wave forces are calculated separately(Appendix A).Therefore,the calculated matrices M and D will be used for controller design and the vessel realistic model in Appendix A will be adopted to represent the real ship motion. The matrices used in this paper are illustrated in Appendix B.The other parameters related to the controller,desired speed and initial states are displayed in Tab.4.

    Tab.2 The configurations of the actuators

    Tab.3 The used parameters for the model ship

    Tab.4 The other parameters used in the simulation

    To illustrate the validity of the proposed method,the simulation will be adopted in the computer.The results of path following and heading angle tracking are depicted in Fig.6 and Fig.7.Fig.6 shows the path planning with the given waypoints and the ship can follow the smoothpaths consisting of straight lines and circle arcs.Fig.7 presents the desired heading angle generated by the LOS guidance law and the actual ship heading angle.The sharp change heading angle demonstrates that the ship locates in the circle arcs and the almost constant heading angle represents the ship locates in the straight lines.

    Fig.6 Path following for the model ship

    Fig.7 Actual yaw angle tracks the desired LOS angle

    In order to demonstrate the advantages of including the actuators in the modified controller,the performances with actuator dynamics and without the inclusion of the actuator dynamics are compared shown in Fig.8(a)and Fig.8(b).Taking into account the actuator dynamics,the control outputs are smoother than those without actuator dynamics.The time lag between the control outputs and the real propeller forces caused by the actuator dynamics tends to retard the ship motion,and the controller without actuator dynamics will compensate for it by magnifying the control outputs.Thus,the control outputs without actuator dynamics have the sharp changes to the saturation values,which is impossible for the actuators to attain.As the bandwidth of the actuator dynamics is close to the bandwidth of the ship motion,the modified backstepping controller with actuator dynamics is suitable to have smoother control outputs.

    Fig.8 Control outputs with actuator dynamics(dashed)and without actuator dynamics(solid)

    Fig.9 shows the ship tracks the given surge speed udperfectly.Fig.10 indicates the results of the integral action.It is worth noting that the bigger elements in the gain matrix Γ will make the bigger oscillation of the adaption forces.

    Fig.9 Ship velocity

    Fig.10 Behavior of the integral action

    6 Conclusion

    This paper demonstrates the planning of a continuous-curvature path with straight lines and circles by using a simple geometric method.In order to attenuate the oscillation of the control signal caused by the time lag,a modified backstepping controller with actuator dynamics is proposed to obtain a smooth control outputs.Integral action is adopted to adapt the slow varying environmental forces consisting of wind,wave and current forces.The stability of the closed-loop system with actuator dynamics is assured through Lyapunov stability analysis. Simulation results exactly confirm the good performance of the LOS guidance law and the control system.

    [1]Fossen T I.Guidance and control of ocean vehicles[M].John Wiley&Sons,1994.

    [2]Peymani E,Fossen T I.A Lagrangian framework to incorporate positional and velocity constraints to achieve path-following control[C].In Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC),2011:3940-3945.

    [3]Fossen T I,Breivik M,Skjetne R.Line-of-sight path following of underactuated marine craft[C]//In Proceedings of the 6th IFAC MCMC.Spain,2003:244-249.

    [4]Skjetne R,Fossen T I,Kokotovic P.Output maneuvering for a class of nonlinear systems[C]//In Proceedings of 15th IFAC World Congress on Automatic Control.Spain,2002.

    [5]Dubins L E.On curves of minimal length with a constraint on average curvature,and with prescribed initial and terminal positions and tangents[J].American Journal of Mathematics,1957:497-516.

    [6]Breivik M,Fossen T I.Path following of straight lines and circles for marine surface vessels[C]//In Proceedings of the 6th IFAC CAMS.Italy,2004:65-70.

    [7]Shanmugavel M,Tsourdos A,White B,Zbikowski R.Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs[J].Control Engineering Practice,2010,18(9):1084-1092.

    [8]Lekkas A M,Dahl A R,Breivik M,Fossen T I.Continuous-curvature path planning using Fermat’s spiral[J].Modeling, Identification and Control,2013,34(4):183-198.

    [9]Candeloro M,Lekkas A M,Soerensen A,Fossen T I.Continuous curvature path planning using Voronoi diagrams and Fermat’s spirals[J].Control Applications in Marine Systems,2013,9(1):132-137.

    [10]Yuh J,Nie J,Lee C G.Experimental study on adaptive control of underwater robots[C].In Proceedings of IEEE International Conference on Robotics and Automation,1999,1:393-398.

    [11]Sun Y C,Cheah C C.Adaptive setpoint control for autonomous underwater vehicles[C].In Proceedings of 42nd IEEE Conference on Decision and Control,2003,2:1262-1267.

    [12]Skjetne R.The maneuvering problem[D].Ph.D.thesis,Norwegian University of Science and Technology,2005.

    [13]Breivik M.Topics in guided motion control of marine vehicles[D].Ph.D.thesis,Norwegian University of Science and Technology,2010.

    [14]Fossen T I,Berge S P.Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics[C].In Proceedings of the 36th IEEE Conference on Decision and Control,1997,5:4237-4242.

    [15]Morishita H M,Souza C E S.Modified observer backstepping controller for a dynamic positioning system[J].Control Engineering Practice,2014,33:105-114.

    [16]Fossen T I,Pettersen K Y.On uniform semiglobal exponential stability(USGES)of proportional line-of-sight guidance laws[J].Automatica,2014,50(11):2912-2917.

    [17]Fossen T I.Handbook of marine craft hydrodynamics and motion control[M].John Wiley&Sons,2011.

    [18]Lekkas A M,Fossen T I.A time-varying lookahead distance guidance law for path following[C]//In Proceedings of 9th IFAC Conference on Manoeuvring and Control of Marine Craft.Italy,2012.

    [19]Breivik M,Fossen T I.Path following for marine surface vessels[C]//In Proceedings of the OTO’04.Japan,2004:2282-2289.

    [20]Skjetne R.Smogeli O N,Fossen T I.A nonlinear ship manoeuvering model:identification and adaptive control with experiments for a model ship[J].Modeling,Identification and Control,2004,25(1):3-27.

    Appendix A:The realistic ship model

    The mathematical model proposed by Fossen[17]for the ship can be given as:

    where MRBis the rigid-body inertial matrix and MAis the added inertial matrix.The term τwindand τwaveare the wind and wave forces.For the detailed calculations of wind and wave forces, see Fossen,reference(P188-199)[17].The term vr∈R3×1is the relative speed vector with respect to the effect of currents.The relation between vrand v can be expressed as[20]:

    where Vcand βcare the current speed and direction in the inertial reference frame.

    Appendix B:Some matrices used in the simulation

    The following matrices are used in this paper:

    基于動態(tài)執(zhí)行機構(gòu)的船舶循跡反步積分控制

    瞿洋a,b,徐海祥a,b,余文曌a,b
    (武漢理工大學(xué)a.高性能船舶技術(shù)教育部重點實驗室;b.交通學(xué)院,武漢430063)

    文章針對連續(xù)曲率路徑,用一種簡單的幾何方法生成連續(xù)曲率的路徑?;谠搸缀畏椒ㄉ傻倪B續(xù)路徑,文中利用line-of-sight(LOS)引導(dǎo)律解決了循跡控制中橫向偏差最小的問題。為了減弱控制輸出的振蕩和獲得平滑的控制輸出,一種基于動態(tài)執(zhí)行機構(gòu)的改進反步積分控制器在過驅(qū)動船舶循跡控制中得到了應(yīng)用。值得注意的是,文中用積分操作來抵抗風(fēng)浪流環(huán)境力。數(shù)值分析結(jié)果展示了該控制器的有效性。

    循跡控制;路徑規(guī)劃;LOS引導(dǎo)律;反步積分控制;動態(tài)執(zhí)行機構(gòu)

    U674.38

    :A

    國家自然科學(xué)基金項目資助(61301279,51479158)

    瞿洋(1992-),男,武漢理工大學(xué)交通學(xué)院碩士;

    U674.38

    :A

    10.3969/j.issn.1007-7294.2017.06.004

    1007-7294(2017)06-0685-13

    徐海祥(1975-),男,武漢理工大學(xué)交通學(xué)院教授,博士生導(dǎo)師;

    date:2016-12-16

    Supported by the National Natural Science Foundation of China(61301279,51479158)

    Biography:Qü Yang(1991-),male,master candidate;Xü Hai-xiang(1975-),male,Ph.D,professor, corresponding author,E-mail:qukaiyang@163.com;Yü Wen-zhao(1989-),male,Ph.D.

    余文曌(1989-),男,武漢理工大學(xué)交通學(xué)院講師。

    猜你喜歡
    武漢理工大學(xué)徐海循跡
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    基于DFT算法的電力巡檢無人機循跡檢測系統(tǒng)設(shè)計
    徐海根(徐海)藝術(shù)作品欣賞
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    基于單片機的智能循跡小車的設(shè)計
    電子測試(2018年15期)2018-09-26 06:01:14
    智能差分循跡小車設(shè)計
    電子制作(2017年1期)2017-05-17 03:54:20
    基于MC9S12XS128處理器的智能循跡小車分析研究
    電子制作(2016年11期)2016-11-07 08:43:49
    Lanterne-volant
    A Brief Study Of The Interactive-oriented Language Teaching
    一区二区三区国产精品乱码| 丰满的人妻完整版| a级毛片a级免费在线| 色精品久久人妻99蜜桃| 又爽又黄无遮挡网站| 真实男女啪啪啪动态图| av天堂中文字幕网| 国产一区在线观看成人免费| 听说在线观看完整版免费高清| 美女cb高潮喷水在线观看 | 国产午夜福利久久久久久| 日韩 欧美 亚洲 中文字幕| 久久久精品欧美日韩精品| 亚洲欧美日韩高清专用| 天天添夜夜摸| 别揉我奶头~嗯~啊~动态视频| 欧美中文日本在线观看视频| 无限看片的www在线观看| 久久精品人妻少妇| 亚洲无线在线观看| tocl精华| 精品国产乱子伦一区二区三区| 国产乱人伦免费视频| 午夜影院日韩av| 亚洲国产欧美人成| 女警被强在线播放| 中文字幕久久专区| 亚洲中文字幕一区二区三区有码在线看 | 99在线人妻在线中文字幕| 麻豆av在线久日| 成人三级做爰电影| 成人国产综合亚洲| 久久亚洲精品不卡| 午夜福利在线观看吧| 国产v大片淫在线免费观看| 黑人操中国人逼视频| 午夜视频精品福利| 床上黄色一级片| 午夜福利视频1000在线观看| 国产成人av激情在线播放| 黄色成人免费大全| 久久久成人免费电影| 两个人视频免费观看高清| 欧美色欧美亚洲另类二区| 窝窝影院91人妻| 欧美日韩黄片免| 国产欧美日韩一区二区三| 69av精品久久久久久| 亚洲精品456在线播放app | 狠狠狠狠99中文字幕| 欧美色欧美亚洲另类二区| 99国产精品99久久久久| 免费看a级黄色片| 久久久久久大精品| 三级毛片av免费| 中文字幕久久专区| www.自偷自拍.com| 欧美性猛交╳xxx乱大交人| 午夜激情欧美在线| 国产伦在线观看视频一区| 日韩精品青青久久久久久| 九色成人免费人妻av| 毛片女人毛片| 淫妇啪啪啪对白视频| 日韩中文字幕欧美一区二区| 18禁国产床啪视频网站| 欧美成狂野欧美在线观看| xxx96com| 国产99白浆流出| 在线免费观看的www视频| 国模一区二区三区四区视频 | 中文字幕人妻丝袜一区二区| 欧美日韩一级在线毛片| 黑人操中国人逼视频| 午夜福利在线在线| 日本免费a在线| 亚洲成a人片在线一区二区| 欧美高清成人免费视频www| 又粗又爽又猛毛片免费看| 国产成人福利小说| 三级毛片av免费| 日日摸夜夜添夜夜添小说| 每晚都被弄得嗷嗷叫到高潮| 噜噜噜噜噜久久久久久91| 美女 人体艺术 gogo| 真人做人爱边吃奶动态| 欧美日本亚洲视频在线播放| 国产成人精品无人区| 色av中文字幕| 亚洲欧美精品综合一区二区三区| 精品乱码久久久久久99久播| 成人av在线播放网站| 国产精品电影一区二区三区| 午夜影院日韩av| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| 好男人在线观看高清免费视频| 国内精品久久久久精免费| 老司机在亚洲福利影院| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久毛片微露脸| 亚洲人成伊人成综合网2020| 9191精品国产免费久久| 国产精品98久久久久久宅男小说| 亚洲av美国av| 露出奶头的视频| 一本一本综合久久| 国产成人精品久久二区二区免费| 少妇人妻一区二区三区视频| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 日本五十路高清| 国产精品自产拍在线观看55亚洲| 人妻久久中文字幕网| 婷婷亚洲欧美| 岛国视频午夜一区免费看| 成年人黄色毛片网站| 怎么达到女性高潮| 国产乱人视频| 国产精品爽爽va在线观看网站| 国内精品久久久久久久电影| 老司机深夜福利视频在线观看| 国产精品久久久av美女十八| 在线观看午夜福利视频| 国产伦精品一区二区三区四那| 欧美+亚洲+日韩+国产| 听说在线观看完整版免费高清| 首页视频小说图片口味搜索| 国产亚洲精品久久久久久毛片| 美女黄网站色视频| 精品一区二区三区四区五区乱码| 国产免费男女视频| 久久精品夜夜夜夜夜久久蜜豆| 18美女黄网站色大片免费观看| 久久午夜综合久久蜜桃| 黄色视频,在线免费观看| 热99re8久久精品国产| 韩国av一区二区三区四区| 亚洲国产精品sss在线观看| a在线观看视频网站| 高潮久久久久久久久久久不卡| 精品人妻1区二区| 欧美一区二区国产精品久久精品| 人妻久久中文字幕网| 三级男女做爰猛烈吃奶摸视频| 精品国产三级普通话版| 成人av在线播放网站| 亚洲av片天天在线观看| 日本 av在线| 嫁个100分男人电影在线观看| 日韩大尺度精品在线看网址| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久男人| 久久精品国产99精品国产亚洲性色| 亚洲午夜精品一区,二区,三区| 国产私拍福利视频在线观看| 精品无人区乱码1区二区| 搞女人的毛片| 中文字幕人妻丝袜一区二区| 国产日本99.免费观看| 免费看光身美女| 国产精品久久久久久精品电影| 国产亚洲精品久久久com| 日日夜夜操网爽| 婷婷精品国产亚洲av在线| 国产黄色小视频在线观看| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 黄频高清免费视频| 男女那种视频在线观看| 国产三级在线视频| 久久久久国内视频| 亚洲av片天天在线观看| 欧美在线黄色| 99精品久久久久人妻精品| 日日摸夜夜添夜夜添小说| 国产野战对白在线观看| 国产亚洲av嫩草精品影院| 一级毛片精品| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 亚洲在线观看片| 午夜福利在线在线| 色精品久久人妻99蜜桃| 国产伦精品一区二区三区四那| 国产三级在线视频| 中国美女看黄片| 99精品在免费线老司机午夜| 国产不卡一卡二| 高清毛片免费观看视频网站| 亚洲一区二区三区不卡视频| 亚洲av美国av| 亚洲欧美精品综合久久99| 国产亚洲精品久久久久久毛片| 色综合站精品国产| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻1区二区| 嫩草影院入口| 国产激情欧美一区二区| 午夜a级毛片| 欧美色视频一区免费| 欧美高清成人免费视频www| 美女大奶头视频| 免费看十八禁软件| 麻豆一二三区av精品| 欧美在线黄色| 18禁黄网站禁片午夜丰满| 天天一区二区日本电影三级| 老汉色av国产亚洲站长工具| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| 少妇裸体淫交视频免费看高清| www.熟女人妻精品国产| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添小说| 少妇人妻一区二区三区视频| 禁无遮挡网站| 免费看光身美女| 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 老司机在亚洲福利影院| 亚洲精品色激情综合| 无人区码免费观看不卡| 一个人看视频在线观看www免费 | 一区福利在线观看| 国产成人av教育| 曰老女人黄片| 免费高清视频大片| 日本在线视频免费播放| 国产三级在线视频| 国产精华一区二区三区| 真人做人爱边吃奶动态| 久久天堂一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 日本免费一区二区三区高清不卡| 日韩av在线大香蕉| 日韩大尺度精品在线看网址| 久久这里只有精品中国| 夜夜夜夜夜久久久久| av福利片在线观看| 国产黄色小视频在线观看| 亚洲在线自拍视频| 精品久久久久久,| 男插女下体视频免费在线播放| 欧美日本视频| 精品国产美女av久久久久小说| 国产成人av教育| 亚洲专区国产一区二区| 91av网站免费观看| 亚洲av中文字字幕乱码综合| 香蕉av资源在线| 免费在线观看成人毛片| 女同久久另类99精品国产91| 51午夜福利影视在线观看| 淫妇啪啪啪对白视频| 97人妻精品一区二区三区麻豆| 男插女下体视频免费在线播放| 久久久久免费精品人妻一区二区| 亚洲精品美女久久久久99蜜臀| 色av中文字幕| 午夜影院日韩av| 免费观看的影片在线观看| 搞女人的毛片| 国产精品爽爽va在线观看网站| 亚洲天堂国产精品一区在线| 国产精品香港三级国产av潘金莲| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲一级av第二区| 成人午夜高清在线视频| 91在线观看av| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 欧美国产日韩亚洲一区| 久久国产乱子伦精品免费另类| 久久久色成人| 日本成人三级电影网站| 亚洲av熟女| 国产亚洲精品综合一区在线观看| 久久久久久久午夜电影| 亚洲 欧美一区二区三区| 精品国产美女av久久久久小说| 老司机午夜福利在线观看视频| www.自偷自拍.com| bbb黄色大片| 午夜福利在线观看免费完整高清在 | 亚洲精品一区av在线观看| 欧美在线一区亚洲| 亚洲欧美日韩东京热| 亚洲无线在线观看| 精品久久久久久久人妻蜜臀av| 久久婷婷人人爽人人干人人爱| www国产在线视频色| 18禁观看日本| 午夜精品久久久久久毛片777| 国产黄片美女视频| 免费观看人在逋| 中文字幕高清在线视频| 亚洲精品国产精品久久久不卡| 制服人妻中文乱码| 1024香蕉在线观看| 天堂影院成人在线观看| 丰满的人妻完整版| 国产高清videossex| 国产不卡一卡二| 欧美黄色淫秽网站| 免费看a级黄色片| 亚洲成人久久爱视频| 亚洲国产高清在线一区二区三| 亚洲国产欧美一区二区综合| 曰老女人黄片| 母亲3免费完整高清在线观看| 国产伦在线观看视频一区| 久久久久久大精品| 日韩欧美在线乱码| 九九热线精品视视频播放| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 午夜福利成人在线免费观看| 亚洲,欧美精品.| 给我免费播放毛片高清在线观看| 特级一级黄色大片| 精品国产乱码久久久久久男人| 美女黄网站色视频| 丰满的人妻完整版| 久9热在线精品视频| 免费在线观看视频国产中文字幕亚洲| 男人舔女人下体高潮全视频| 黄片大片在线免费观看| 少妇的逼水好多| 精华霜和精华液先用哪个| 嫁个100分男人电影在线观看| 99国产精品99久久久久| 日本精品一区二区三区蜜桃| 91老司机精品| 男女床上黄色一级片免费看| 亚洲人成网站高清观看| 亚洲精品色激情综合| 久久国产精品人妻蜜桃| 深夜精品福利| 日韩大尺度精品在线看网址| 19禁男女啪啪无遮挡网站| 日本一本二区三区精品| 亚洲,欧美精品.| 一本精品99久久精品77| 精品乱码久久久久久99久播| 久久热在线av| 日韩欧美三级三区| 精品国产乱子伦一区二区三区| 一进一出好大好爽视频| 制服人妻中文乱码| 88av欧美| 可以在线观看毛片的网站| 亚洲av成人av| 免费观看精品视频网站| 国产成人福利小说| 亚洲av片天天在线观看| 在线观看美女被高潮喷水网站 | 黄频高清免费视频| 中亚洲国语对白在线视频| 成人永久免费在线观看视频| 黄频高清免费视频| 搞女人的毛片| 黄频高清免费视频| 无限看片的www在线观看| 美女黄网站色视频| 国产精品久久电影中文字幕| 久久天堂一区二区三区四区| 淫妇啪啪啪对白视频| 国产高清视频在线观看网站| 中文在线观看免费www的网站| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色| 国产高清视频在线播放一区| x7x7x7水蜜桃| 免费在线观看影片大全网站| a级毛片在线看网站| 免费av不卡在线播放| 中文字幕熟女人妻在线| 91九色精品人成在线观看| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久久久久| 午夜a级毛片| 色视频www国产| 好男人电影高清在线观看| 免费观看的影片在线观看| 亚洲欧美日韩东京热| 欧美激情在线99| 99精品在免费线老司机午夜| 国产三级黄色录像| 国产综合懂色| 精品久久久久久,| 久久久久国产一级毛片高清牌| 午夜福利高清视频| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 国产精品 国内视频| 少妇熟女aⅴ在线视频| 亚洲七黄色美女视频| 99国产精品99久久久久| av在线天堂中文字幕| 国产高清三级在线| 老熟妇仑乱视频hdxx| 黄频高清免费视频| 欧美乱码精品一区二区三区| 欧美性猛交黑人性爽| 亚洲男人的天堂狠狠| 此物有八面人人有两片| 久久草成人影院| 91字幕亚洲| 国产真实乱freesex| 午夜两性在线视频| 日韩欧美免费精品| 色老头精品视频在线观看| 亚洲九九香蕉| 757午夜福利合集在线观看| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| 亚洲国产看品久久| 级片在线观看| 免费高清视频大片| 日韩大尺度精品在线看网址| 国产精品自产拍在线观看55亚洲| 啦啦啦观看免费观看视频高清| 日韩三级视频一区二区三区| 91老司机精品| 久久久精品欧美日韩精品| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 亚洲午夜理论影院| 淫秽高清视频在线观看| 亚洲中文日韩欧美视频| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| 两个人视频免费观看高清| 国产精品99久久久久久久久| or卡值多少钱| 欧美精品啪啪一区二区三区| 91在线精品国自产拍蜜月 | 国产精品1区2区在线观看.| 久久久久久久精品吃奶| 日韩精品中文字幕看吧| 男插女下体视频免费在线播放| 变态另类成人亚洲欧美熟女| 好男人在线观看高清免费视频| 欧美三级亚洲精品| 三级毛片av免费| 每晚都被弄得嗷嗷叫到高潮| 麻豆av在线久日| 我的老师免费观看完整版| 男人的好看免费观看在线视频| 国产精品综合久久久久久久免费| 麻豆国产av国片精品| 激情在线观看视频在线高清| 亚洲欧美一区二区三区黑人| 国产精品亚洲美女久久久| 嫩草影院入口| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 欧美三级亚洲精品| 高潮久久久久久久久久久不卡| 久久天堂一区二区三区四区| 国产精品野战在线观看| 床上黄色一级片| 亚洲专区字幕在线| 日本免费a在线| 久久国产精品影院| 中亚洲国语对白在线视频| 人妻夜夜爽99麻豆av| 真人一进一出gif抽搐免费| 97碰自拍视频| 亚洲欧美激情综合另类| 国产午夜福利久久久久久| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看| 一个人免费在线观看电影 | 欧美黑人欧美精品刺激| 久久人妻av系列| 日本免费一区二区三区高清不卡| 男人和女人高潮做爰伦理| 手机成人av网站| a级毛片在线看网站| 小蜜桃在线观看免费完整版高清| 噜噜噜噜噜久久久久久91| 亚洲午夜理论影院| 久久精品91无色码中文字幕| 国产精品亚洲一级av第二区| 午夜激情福利司机影院| ponron亚洲| 成人性生交大片免费视频hd| 91av网一区二区| 精品久久蜜臀av无| 色吧在线观看| 最新美女视频免费是黄的| 久久99热这里只有精品18| 黄色片一级片一级黄色片| 亚洲av成人不卡在线观看播放网| 久久久久性生活片| 成人国产一区最新在线观看| 亚洲精品456在线播放app | 特大巨黑吊av在线直播| 99re在线观看精品视频| 淫妇啪啪啪对白视频| 久久中文字幕一级| 亚洲最大成人中文| 后天国语完整版免费观看| av中文乱码字幕在线| 中文字幕精品亚洲无线码一区| 啦啦啦免费观看视频1| 亚洲在线观看片| 国产黄a三级三级三级人| 亚洲最大成人中文| 好男人在线观看高清免费视频| 99久久久亚洲精品蜜臀av| 国产v大片淫在线免费观看| 18禁国产床啪视频网站| 啦啦啦韩国在线观看视频| 少妇裸体淫交视频免费看高清| 国产成+人综合+亚洲专区| 一边摸一边抽搐一进一小说| 成人国产一区最新在线观看| 国产激情久久老熟女| 他把我摸到了高潮在线观看| 9191精品国产免费久久| 午夜福利在线观看吧| 亚洲成人免费电影在线观看| 日本黄色片子视频| 宅男免费午夜| 波多野结衣巨乳人妻| 亚洲无线在线观看| 一级黄色大片毛片| 欧美在线一区亚洲| 亚洲 国产 在线| 一卡2卡三卡四卡精品乱码亚洲| 精品国产美女av久久久久小说| 免费一级毛片在线播放高清视频| 午夜福利免费观看在线| 午夜福利成人在线免费观看| 国产一区二区在线av高清观看| www日本在线高清视频| 久久久国产成人免费| 18禁黄网站禁片免费观看直播| 亚洲在线自拍视频| 欧美一区二区国产精品久久精品| 白带黄色成豆腐渣| 在线免费观看不下载黄p国产 | 五月伊人婷婷丁香| 美女扒开内裤让男人捅视频| 长腿黑丝高跟| 成人永久免费在线观看视频| 精品久久久久久久末码| 欧美又色又爽又黄视频| 一进一出抽搐动态| 国产欧美日韩一区二区三| 美女被艹到高潮喷水动态| 长腿黑丝高跟| 精品福利观看| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看| 午夜成年电影在线免费观看| 十八禁网站免费在线| 级片在线观看| 俄罗斯特黄特色一大片| 不卡一级毛片| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三| 人人妻人人看人人澡| 俄罗斯特黄特色一大片| 亚洲一区二区三区色噜噜| 老司机午夜福利在线观看视频| 美女午夜性视频免费| 一级毛片女人18水好多| 欧美黑人巨大hd| 成人特级黄色片久久久久久久| 美女高潮的动态| 长腿黑丝高跟| 9191精品国产免费久久| 久久九九热精品免费| 97人妻精品一区二区三区麻豆| 欧美中文综合在线视频| a级毛片a级免费在线| 一区二区三区激情视频| 99精品久久久久人妻精品| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久中文| 男女之事视频高清在线观看| 日韩欧美 国产精品| 蜜桃久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆 | 黄片小视频在线播放| 老司机深夜福利视频在线观看| 亚洲精华国产精华精| 国产三级中文精品| 中文在线观看免费www的网站| 香蕉丝袜av| 又紧又爽又黄一区二区| www国产在线视频色| 99在线人妻在线中文字幕| 在线观看舔阴道视频| 久久午夜亚洲精品久久| 日韩 欧美 亚洲 中文字幕| 黑人欧美特级aaaaaa片| 狠狠狠狠99中文字幕| 国产乱人视频| 成人三级做爰电影| 成年女人永久免费观看视频| 国语自产精品视频在线第100页| 丝袜人妻中文字幕| 久久久久久九九精品二区国产| 国产久久久一区二区三区| 欧美一区二区国产精品久久精品| 曰老女人黄片| 美女 人体艺术 gogo|