金肖玲 王永 黃志龍?
(1.浙江大學(xué)工程力學(xué)系,杭州 310027) (2.浙江省軟體機(jī)器人與智能器件研究重點(diǎn)實(shí)驗(yàn)室,杭州 310027)
氣壓擾動(dòng)下介電彈性體球膜的隨機(jī)響應(yīng)分析*
金肖玲1,2王永1,2黃志龍1,2?
(1.浙江大學(xué)工程力學(xué)系,杭州 310027) (2.浙江省軟體機(jī)器人與智能器件研究重點(diǎn)實(shí)驗(yàn)室,杭州 310027)
研究隨機(jī)擾動(dòng)的壓力和恒常電壓聯(lián)合作用下的介電彈性體球膜,發(fā)展隨機(jī)響應(yīng)的分析方法并總結(jié)其規(guī)律,為計(jì)及介電彈性體的應(yīng)變強(qiáng)化現(xiàn)象,其力學(xué)性能由Gent應(yīng)變能模型描述,壓力擾動(dòng)近似為高斯白噪聲.引入能量相關(guān)變換并應(yīng)用隨機(jī)平均法導(dǎo)出了關(guān)于系統(tǒng)總能量穩(wěn)態(tài)概率密度的簡(jiǎn)化Fokker-Planck-Kolmogorov方程,并解析得到方程的解,從而得到球膜伸長(zhǎng)比及其變化率的穩(wěn)態(tài)概率密度,進(jìn)而得到伸長(zhǎng)比的各階統(tǒng)計(jì)量.研究針對(duì)兩種典型情形進(jìn)行,即球膜在伸長(zhǎng)比為1附近的振動(dòng)及球膜在材料拉伸極限附近的振動(dòng).詳細(xì)討論了激勵(lì)強(qiáng)度、材料參數(shù)及常電壓值對(duì)伸長(zhǎng)比統(tǒng)計(jì)量的影響,特別強(qiáng)調(diào)了不同的材料參數(shù)和常電壓值引起的不同振動(dòng)模式.蒙特卡洛模擬證實(shí)了分析結(jié)果的有效性和精度.
介電彈性體, 球膜, 隨機(jī)平均法, 隨機(jī)響應(yīng)
介電彈性體結(jié)構(gòu)是由典型電活性聚合物介電彈性體及其上下表面的電極構(gòu)成.在電極上施加外加電壓,介電彈性體結(jié)構(gòu)在厚度方向變薄且在面內(nèi)延展.由于介電彈性體結(jié)構(gòu)具有電致變形大、響應(yīng)快、質(zhì)量輕、費(fèi)用低及化學(xué)生物兼容性好等優(yōu)異性能,被廣泛應(yīng)用于驅(qū)動(dòng)及傳感等功能器件中,如柔性機(jī)器人、智能光學(xué)器件、自調(diào)節(jié)流控器件及發(fā)電機(jī)等[1-5].
介電彈性體結(jié)構(gòu)常工作于動(dòng)態(tài)模式下,近年來對(duì)其復(fù)雜動(dòng)力學(xué)行為有充分的研究[6-13],如用擾動(dòng)靜平衡態(tài)的方法分析振蕩、固有頻率、電壓或/和外力隨時(shí)間變化時(shí)的動(dòng)態(tài)響應(yīng)等,并發(fā)現(xiàn)了豐富的動(dòng)力學(xué)現(xiàn)象,在交變電壓激勵(lì)下,介電彈性體結(jié)構(gòu)出現(xiàn)多頻共振,如主共振、超諧共振、亞諧共振等(在實(shí)驗(yàn)中也發(fā)現(xiàn)主共振和超諧共振現(xiàn)象,但未發(fā)現(xiàn)亞諧共振[14,15]),以及突跳、分叉等現(xiàn)象,研究還發(fā)現(xiàn)可通過結(jié)構(gòu)設(shè)計(jì)或調(diào)整靜態(tài)電壓的方法來實(shí)現(xiàn)動(dòng)態(tài)調(diào)頻功能.當(dāng)前對(duì)介電彈性體結(jié)構(gòu)動(dòng)態(tài)行為的研究主要集中在確定性激勵(lì)情形,然而介電彈性體結(jié)構(gòu)不可避免受到隨機(jī)擾動(dòng),如機(jī)械力與電壓的擾動(dòng),這些隨機(jī)擾動(dòng)可能會(huì)影響功能器件的性能,為了提高功能器件性能,對(duì)介電彈性體結(jié)構(gòu)的隨機(jī)響應(yīng)分析是非常有必要的.目前,已對(duì)壓力和電壓受隨機(jī)擾動(dòng)的介電彈性球膜結(jié)構(gòu)的隨機(jī)響應(yīng)進(jìn)行分析[16,17],采用的彈性應(yīng)變能模型是neo-Hookean模型.neo-Hookean模型能較好地模擬小應(yīng)變時(shí)材料特性,然而對(duì)聚合物其他的材料特性如應(yīng)變強(qiáng)化行為,該模型就不能描述,因此隨機(jī)激勵(lì)情形的介電彈性體結(jié)構(gòu)的響應(yīng)分析還需要進(jìn)一步深入.
本文基于此,將以基于Gent模型的介電彈性體球膜為對(duì)象,預(yù)測(cè)其受隨機(jī)壓力和常電壓作用下的響應(yīng),并分析激勵(lì)強(qiáng)度、材料參數(shù)和常電壓值對(duì)隨機(jī)響應(yīng)分析的影響.
泵、揚(yáng)聲器等結(jié)構(gòu)在研究時(shí)可采用球來描述,考慮理想介電彈性體球膜,在壓力和電壓共同作用下將變形,假設(shè)其變形過程始終保持球?qū)ΨQ,則介電彈性體球膜的動(dòng)力學(xué)方程可簡(jiǎn)單用一個(gè)單自由度系統(tǒng)來描述球膜的變形.在未變形的參考狀態(tài),球膜的半徑和厚度分別是R和K.當(dāng)受到常電壓Φ0和隨機(jī)的內(nèi)外壓力差p=p0(1+ξ(t)),球膜發(fā)生變形,即時(shí)半徑為r.其中,p0為電壓差均值,ξ(t)為隨機(jī)過程,用強(qiáng)度為2D的高斯白噪聲描述.
假設(shè)介電彈性體球膜的熱力學(xué)特性可以由系統(tǒng)的Helmholtz自由能密度描述,可表示為彈性應(yīng)變能和電場(chǎng)能之和,這里采用Gent彈性應(yīng)變能模型.根據(jù)虛功原理,系統(tǒng)的自由能變化應(yīng)該等于電壓、壓力、慣性力及阻尼力(為簡(jiǎn)單起見采用粘性阻尼)作功之和,可導(dǎo)出介電彈性體球膜的無量綱動(dòng)力學(xué)方程為:
(1)
(2)
Jm是與拉伸極限有關(guān)的材料常數(shù),ε為介電常數(shù).為方便,在后文中,將均值壓力相關(guān)量sr稱為壓力,常值電壓相關(guān)量sf稱為電壓.
令g(λ)=0可得出靜態(tài)平衡位置λeq與恒常電壓sf的關(guān)系.研究發(fā)現(xiàn)當(dāng)sr=0.1,Jm取不同值時(shí),出現(xiàn)兩種典型sf~λeq曲線,如圖1所示.從圖中可以看出:當(dāng)Jm較小如Jm=5時(shí),系統(tǒng)只有一個(gè)穩(wěn)定的平衡位置;當(dāng)Jm較大如Jm=50時(shí),電壓存在局部極大值,而電壓在某個(gè)區(qū)間段時(shí)系統(tǒng)有兩個(gè)穩(wěn)定的平衡位置,如果電壓不在這個(gè)區(qū)間段系統(tǒng)只有一個(gè)穩(wěn)定的平衡位置,當(dāng)Jm=50時(shí)這個(gè)電壓區(qū)間段為(0.2571,0.8775).當(dāng)Jm→∞,Gent模型簡(jiǎn)化為neo-Hookean模型,從圖1中可以看出在小變形時(shí)確實(shí)可簡(jiǎn)化為neo-Hookean模型.
對(duì)g(λ)關(guān)于λ進(jìn)行積分可得:
(3)
V可認(rèn)為是系統(tǒng)的勢(shì)能.由式(3)的表達(dá)式中看出要使V有物理意義,即log項(xiàng)保持實(shí)數(shù),則伸長(zhǎng)比λ必須要在一范圍里,且范圍區(qū)間與Jm取值有關(guān).圖2給出了不同參數(shù)情形下的V~λ曲線及其相應(yīng)的伸長(zhǎng)比區(qū)間范圍,從圖中可以看出當(dāng)Jm較小如Jm=5時(shí),系統(tǒng)勢(shì)能曲線有一個(gè)勢(shì)阱;當(dāng)Jm較大如Jm=50時(shí),隨著電壓的變大,勢(shì)能曲線可從一個(gè)勢(shì)阱變到兩個(gè)勢(shì)阱,再到一個(gè)勢(shì)阱,即在某個(gè)電壓區(qū)間,系統(tǒng)是雙穩(wěn)的,與圖2的結(jié)論相一致;且在λ=λeq時(shí),系統(tǒng)勢(shì)能達(dá)到局部極小值Vm.雙穩(wěn)系統(tǒng)的響應(yīng)很復(fù)雜,本文先只關(guān)注單穩(wěn)系統(tǒng).
圖1 靜態(tài)平衡位置與恒常電壓的關(guān)系Fig.1 Voltage-stretch ratio curves
圖2 系統(tǒng)勢(shì)能曲線Fig.2 Curves of system potential
由式(2)可知系統(tǒng)(1)是一個(gè)強(qiáng)非線性隨機(jī)動(dòng)力學(xué)系統(tǒng),且受到隨機(jī)非線性參數(shù)激勵(lì),一般很難得到系統(tǒng)的精確解析解.本文將采用隨機(jī)平均法來近似預(yù)測(cè)系統(tǒng)的隨機(jī)穩(wěn)態(tài)響應(yīng).
首先,引入下列變換[18],
(4)
其中φ為相位角,H系統(tǒng)能量,表示為:
U(λ)=V(λ)-Vm
(5)
根據(jù)變換(4),可將系統(tǒng)的動(dòng)力學(xué)方程描述為關(guān)于系統(tǒng)能量H和相位角φ的隨機(jī)微分方程.應(yīng)用隨機(jī)平均方法,系統(tǒng)能量H(t)可近似為一個(gè)一維擴(kuò)散過程,并由下面的隨機(jī)It方程描述[19]:
dH=m(H)dt+σ(H)dB(t)
(6)
其中B(t)為一單位維納過程,漂移系數(shù)和擴(kuò)散系數(shù)分別為:
(7)
式(7)中λ1和λ2分別是方程H-U(x)=0的最小根和最大根,能量依賴的周期可由下式計(jì)算得到:
(8)
根據(jù)式(6)可導(dǎo)出相應(yīng)的關(guān)于系統(tǒng)能量穩(wěn)態(tài)概率密度的簡(jiǎn)化Fokker-Planck-Kolmogorov(FPK)方程,方程的解即系統(tǒng)能量的穩(wěn)態(tài)概率密度表示為:
(9)
其中C為歸一化常數(shù).伸長(zhǎng)比和它的變化率的聯(lián)合概率密度可由如下式近似計(jì)算得到:
(10)
(11)
為了驗(yàn)證所提方法的有效性和準(zhǔn)確性,所提方法得到的結(jié)果與對(duì)系統(tǒng)(1)的蒙特卡洛模擬方法得到的結(jié)果進(jìn)行比較,并討論材料參數(shù)和激勵(lì)參數(shù)對(duì)響應(yīng)的影響.在后面計(jì)算中選定c=0.01和sr=0.1.對(duì)單穩(wěn)情形,從圖1和圖2可看出不同的材料參數(shù)和常電壓值系統(tǒng)時(shí)動(dòng)力學(xué)行為不一樣,材料參數(shù)較小時(shí),球膜在伸長(zhǎng)比為1附近振動(dòng),而當(dāng)材料參數(shù)較大且施加的電壓也比較大時(shí),則球膜在伸長(zhǎng)比為較大的穩(wěn)定平衡位置即球膜在材料拉伸極限附近振動(dòng).圖3和圖4分別給出了兩種典型響應(yīng),圖(a)和(b)中實(shí)線表示本文方法得到的結(jié)果,三角符號(hào)表示系統(tǒng)(1)的蒙特卡洛模擬方法得到的結(jié)果,下面圖中有類似的表示.
圖3 系統(tǒng)穩(wěn)態(tài)響應(yīng)(參數(shù)取值: c=0.01,sr=0.1,sf=0.2,Jm=5,D=0.01)Fig.3 Stationary response of the system (Parameter values: c=0.01,sr=0.1,sf=0.2,Jm=5,D=0.01)
圖3和圖4的數(shù)值結(jié)果與模擬結(jié)果吻合很好,這說明本文所提方法的有效性和準(zhǔn)確性.圖4(a)中可明顯觀察到球膜伸長(zhǎng)比的穩(wěn)態(tài)概率密度曲線的不對(duì)稱性,且當(dāng)伸長(zhǎng)比超過靜態(tài)平衡點(diǎn)如圖中λeq=4.9254時(shí)其概率密度快速減小,某個(gè)響應(yīng)樣本的相圖如圖4(c)所示,這應(yīng)歸因于材料的應(yīng)變強(qiáng)化特性.
圖4 系統(tǒng)穩(wěn)態(tài)響應(yīng)(參數(shù)取值: c=0.01,sr=0.1,sf=0.2,Jm=50,D=0.01)Fig.4 Stationary response of the system (Parameter values: c=0.01,sr=0.1,sf=0.2,Jm=50,D=0.01)
下面討論激勵(lì)強(qiáng)度、材料參數(shù)及常電壓值對(duì)伸長(zhǎng)比的均值及均方值的影響.圖6給出了伸長(zhǎng)比均值和均方值隨著隨機(jī)激勵(lì)強(qiáng)度的變化,從中可觀察到伸長(zhǎng)比均值和均方值都隨著激勵(lì)強(qiáng)度的增加而增加,球膜在伸長(zhǎng)比為1附近振動(dòng),伸長(zhǎng)比的均值比靜態(tài)平衡伸長(zhǎng)比要大.伸長(zhǎng)比統(tǒng)計(jì)量隨材料參數(shù)Jm的變化如圖7所示,伸長(zhǎng)比均值和均方值都隨著材料參數(shù)Jm的增加而增加,在這些參數(shù)取值的情況下,球膜在伸長(zhǎng)比為1附近振動(dòng),當(dāng)Jm→∞,Gent模型簡(jiǎn)化為neo-Hookean模型,從圖7中也可以看出伸長(zhǎng)比統(tǒng)計(jì)量在Jm→∞時(shí)確實(shí)趨于neo-Hookean模型的結(jié)果.靜態(tài)平衡的伸長(zhǎng)比也是隨著材料參數(shù)Jm的增加而增加最后趨于穩(wěn)定.此情形下的球膜仍是在伸長(zhǎng)比為1附近振動(dòng),伸長(zhǎng)比的均值比靜態(tài)平衡伸長(zhǎng)比要大.圖8給出了伸長(zhǎng)比均值和均方值隨著常電壓值的變化曲線.由圖1常電壓值與靜態(tài)平衡伸長(zhǎng)比的曲線可知,當(dāng)取不同的材料參數(shù)Jm表現(xiàn)出兩種典型的曲線,所以圖8(a)和(b)分別給出了Jm=5和Jm=50情形.當(dāng)Jm=5時(shí),任何電壓下的球膜都是單穩(wěn)系統(tǒng),伸長(zhǎng)比均值、均方值及靜態(tài)平衡伸長(zhǎng)比都隨著常電壓值的增加而增加,而且增加的速率隨著電壓的增加先增加后減小,當(dāng)電壓比較大時(shí),球膜伸長(zhǎng)比的概率密度也出現(xiàn)不對(duì)稱性,同樣是由于應(yīng)變強(qiáng)化引起.從圖1中可看出電壓隨著平衡位置快速增加現(xiàn)象,也就是說在電壓比較小時(shí),球膜在伸長(zhǎng)比為1附近振動(dòng),而當(dāng)電壓較大時(shí),出現(xiàn)應(yīng)變強(qiáng)化現(xiàn)象,球膜在材料極限拉伸附近振動(dòng).從圖8(a)中還觀察到在電壓比較小即球膜在伸長(zhǎng)比為1附近振動(dòng)時(shí),伸長(zhǎng)比的均值比靜態(tài)平衡伸長(zhǎng)比要大,而當(dāng)電壓比較大即在材料拉伸極限附近振動(dòng)時(shí),伸長(zhǎng)比的均值比靜態(tài)平衡伸長(zhǎng)比要小.當(dāng)Jm=50時(shí),當(dāng)電壓值小于0.2571或電壓值大于0.8775時(shí),球膜是單穩(wěn)系統(tǒng),伸長(zhǎng)比均值、均方值及靜態(tài)平衡伸長(zhǎng)比都隨著常電壓值的增加而增加,其中電壓小于0.2571時(shí),球膜在伸長(zhǎng)比為1附近擾動(dòng),伸長(zhǎng)比的均值比靜態(tài)平衡伸長(zhǎng)比要大,而電壓值大于0.8775,在材料拉伸極限附近振動(dòng),伸長(zhǎng)比的均值比靜態(tài)平衡伸長(zhǎng)比要小.
圖6 伸長(zhǎng)比均值、均方值、靜態(tài)平衡伸長(zhǎng)比隨激勵(lì)強(qiáng)度的變化(參數(shù)取值: c=0.01,sr=0.1,sf=0.2,Jm=5)Fig.6 Variations of the mean value and mean-square value of the stretch ratio and the static equilibrium stretch ratio with the change of excitation intensity(Parameter values: c=0.01,sr=0.1,sf=0.2,Jm=5)
圖7 伸長(zhǎng)比均值、均方值、靜態(tài)平衡伸長(zhǎng)比隨材料參數(shù)的變化(參數(shù)取值: c=0.01,sr=0.1,sf=0.2,D=0.01)Fig.7 Variations of the mean value and mean-square value of the stretch ratio and the static equilibrium stretch ratio with the change of material parameter(Parameter values: c=0.01,sr=0.1,sf=0.2,D=0.01)
圖8 伸長(zhǎng)比均值、均方值和靜態(tài)平衡伸長(zhǎng)比隨常電壓值的變化(參數(shù)取值: c=0.01,sr=0.1,sf=0.2,D=0.01)Fig.8 Variations of the mean value and mean-square value of the stretch ratio and the static equilibrium stretch ratio with the change of voltage(Parameter values: c=0.01,sr=0.1,D=0.01)
本文研究了介電彈性體球膜的隨機(jī)響應(yīng),其中彈性應(yīng)變能模型采用能描述應(yīng)變強(qiáng)化的Gent模型,受到隨機(jī)擾動(dòng)的壓力及常電壓作用.引入系統(tǒng)能量相關(guān)的變換并應(yīng)用隨機(jī)平均法可推導(dǎo)出控制系統(tǒng)能量的穩(wěn)態(tài)概率密度的簡(jiǎn)化FPK方程,并解析得到方程的解,從而可以得到球膜伸長(zhǎng)比及其變化率的聯(lián)合概率密度,進(jìn)而可計(jì)算相應(yīng)響應(yīng)的邊緣概率密度及其各階統(tǒng)計(jì)量.數(shù)值結(jié)果與模擬結(jié)果的比較驗(yàn)證了本文所提方法的有效性和準(zhǔn)確性.對(duì)所研究系統(tǒng)的單穩(wěn)情形,主要有兩種典型的振動(dòng),其一是球膜在伸長(zhǎng)比為1附近的擾動(dòng),另一個(gè)是球膜在材料拉伸極限附近的擾動(dòng),且后一種歸因于材料的應(yīng)變強(qiáng)化.激勵(lì)強(qiáng)度、材料參數(shù)及常電壓值對(duì)伸長(zhǎng)比有很大的影響,特別是不同的材料參數(shù)和常電壓值引起不同的振動(dòng)模式.伸長(zhǎng)比均值和均方值都隨著這三個(gè)參數(shù)的增加而增加.球膜在伸長(zhǎng)比為1附近振動(dòng)時(shí),當(dāng)材料參數(shù)趨于無窮,伸長(zhǎng)比均值和均方值趨于neo-Hookean模型的結(jié)果.球膜在伸長(zhǎng)比為1附近振動(dòng)時(shí),伸長(zhǎng)比的均值比靜態(tài)平衡伸長(zhǎng)比要大,當(dāng)球膜在材料拉伸極限附近振動(dòng)時(shí),伸長(zhǎng)比的均值比靜態(tài)平衡伸長(zhǎng)比要小.
1Pelrine R, Kornbluh R, Pei Q, et al. High-speed electrically actuated elastomers with strain greater than 100%.Science, 2000,287(5454):836~839
2O′Halloran A, O′Malley F, McHugh P. A review on dielectric elastomer actuators, technology, applications, and challenges.JournalofAppliedPhysics, 2008,104(7):071101
3Suo G. Theory of dielectric elastomers.ActaMechanicaSolidaSinica, 2010,23(6):549~578
4Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles.MacromolecularRapidCommunications, 2010,31(1):10~36
5McKay T, O′Brien B, Calius E, et al. An integrated, self-priming dielectric elastomer generator.AppliedPhysicsLetters, 2010,97(6):062911
6Zhu J, Cai S Q, Suo Z G. Nonlinear oscillation of a dielectric elastomer balloon.PolymerInternational, 2010,59(3):378~383
7Zhu J, Cai S Q, Suo Z G. Resonant behavior of a membrane of a dielectric elastomer.InternationalJournalofSolidsandStructures, 2010,47(24):3254~3262
8Son S, Goulbourne N C. Dynamic response of tubular dielectric elastomer transducers.InternationalJournalofSolidsandStructures, 2010,47(20):2672~2679
9Li T F, Qu S X, Yang W. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator.InternationalJournalofSolidsandStructures, 2012,49(26):3754~3761
10 Xu B X, Mueller R, Theis A, et al. Dynamic analysis of dielectric elastomer actuators.AppliedPhysicsLetters, 2012,100(11):112903
11 Mockensturm E M, Goulbourne N. Dynamic response of dielectric elastomers.InternationalJournalofNon-LinearMechanics, 2006,41(3):388~395
12 Yong H D, He X Z, Zhou Y H. Dynamics of a thick-walled dielectric elastomer spherical shell.InternationalJournalofEngineeringScience, 2011,49(8):792~800
13 Sheng J J, Chen H L, Li B, et al. Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation.SmartMaterialsandStructures, 2014,23(4):045010
14 Fox J W, Goulbourne N C. On the dynamic electromechanical loading of dielectric elastomer membranes.JournaloftheMechanicsandPhysicsofSolids, 2008,56(8):2669~2686
15 Fox J W, Goulbourne N C. Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes.JournaloftheMechanicsandPhysicsofSolids, 2009,57(8):1417~1435
16 Jin X L, Huang Z L. Random response of dielectric elastomer balloon to electrical or mechanical perturbation.JournalofIntelligentMaterialSystemsandStructures, 2017,28(2):195~203
17 Jin X L, Wang Y, Chen M Z Q, et al. Response analysis of dielectric elastomer spherical membrane to harmonic voltage and random pressure.SmartMaterialsandStructures, 2017,26(3):035063
18 Cai G Q. Random vibration of nonlinear-system under nonwhite excitations.JournalofEngineeringMechanics-ASCE, 1995,121(5):633~639.
19 朱位秋. 隨機(jī)振動(dòng). 北京:科學(xué)出版社, 1998 (Zhu W Q. Random vibration. Beijing: Science Press, 1998 (in Chinese))
*The projects supported by the National Natural Science Foundation of China (11621062, 11672262, 11472240, 11532011)
? Corresponding author E-mail:zlhuang@zju.edu.cn
10 April 2017,revised 18 April 2017.
RANDOM RESPONSE OF DIELECTRIC ELASTOMER BALLOON SUBJECTED TO DISTURBED PRESSURE*
Jin Xiaoling1,2Wang Yong1,2Huang Zhilong1,2?
(1.DepartmentofEngineeringMechanics,ZhejiangUniversity,Hangzhou,China) (2.KeyLaboratoryofSoftMachinesandSmartDevicesofZhejiangProvince,Hangzhou,China)
The random response of dielectric elastomer balloon subjected to random pressure and constant voltage is investigated, where the mechanical property is described by Gent model in order to consider the strain-stiffening effect of the dielectric elastomer, and the random pressure is described by Gaussian white noise. By introducing the energy-dependent transformation and using the stochastic averaging, the reduced Fokker-Planck-Kolmogorov equation governing the stationary probability density of the system total energy is derived, which can be analytically solved. The marginal probability densities of the stretch ratio and its change ratio are then calculated, as well as the mean value and the mean-square value of the stretch ratio. Two typical cases are investigated in detail, i.e., one is with the stretch ratio of balloon vibrating of around 1 and the other is that around the extension limit. The influences of the random excitation intensity, material parameter and the constant voltage on the statistics of the stretch ratio are discussed in detail. Different values of the material parameter and the constant voltage can cause completely different random vibration behaviors. The efficacy and accuracy of the proposed procedure are eventually verified by comparing with the results from Monte Carlo simulation.
dielectric elastomer, balloon, stochastic averaging, random response
*國(guó)家自然科學(xué)基金資助項(xiàng)目(11621062, 11672262, 11472240, 11532011)
10.6052/1672-6553-2017-030
2017-04-10收到第1稿,2017-4-18收到修改稿.
? 通訊作者 E-mail:zlhuang@zju.edu.cn