許勇 裴斌 徐偉
(西北工業(yè)大學(xué)應(yīng)用數(shù)學(xué)系,西安 710072)
隨機(jī)平均原理研究若干進(jìn)展*
許勇?裴斌 徐偉
(西北工業(yè)大學(xué)應(yīng)用數(shù)學(xué)系,西安 710072)
本文介紹了隨機(jī)平均原理的研究現(xiàn)狀和發(fā)展趨勢(shì),探討了基于非高斯列維噪聲、分?jǐn)?shù)高斯噪聲、Markov切換的隨機(jī)復(fù)雜動(dòng)力學(xué)系統(tǒng)隨機(jī)平均原理研究中的若干問(wèn)題及進(jìn)展.
非高斯列維噪聲, 分?jǐn)?shù)高斯噪聲, Markov切換, 隨機(jī)復(fù)雜動(dòng)力學(xué)系統(tǒng), 隨機(jī)平均原理
隨機(jī)平均法以隨機(jī)平均原理為理論基礎(chǔ)是非線性隨機(jī)動(dòng)力學(xué)響應(yīng)分析的重要工具,分為標(biāo)準(zhǔn)隨機(jī)平均法和能量包線隨機(jī)平均法兩種,其中標(biāo)準(zhǔn)隨機(jī)平均法主要應(yīng)用在多自由度擬線性隨機(jī)系統(tǒng)中,而能量包線隨機(jī)平均法主要應(yīng)用在多自由度強(qiáng)非線性擬保守隨機(jī)系統(tǒng)中.隨機(jī)平均法憑借其簡(jiǎn)單、可以降維、效率高等優(yōu)點(diǎn)在動(dòng)力學(xué)研究中被廣泛應(yīng)用.因此,對(duì)于隨機(jī)平均原理的研究也就成為一項(xiàng)具有重要科學(xué)意義和實(shí)際指導(dǎo)價(jià)值的研究.
在實(shí)際應(yīng)用中,很多系統(tǒng)的動(dòng)力學(xué)模型是既包含動(dòng)力學(xué)時(shí)間尺度較快的狀態(tài)變量,又包含時(shí)間尺度較慢的狀態(tài)變量的.若引入適當(dāng)?shù)臒o(wú)量綱參數(shù)來(lái)表示不同動(dòng)力學(xué)時(shí)間尺度的比值,則這些系統(tǒng)可表示成由快變量和慢變量相耦合的系統(tǒng),即快-慢(兩尺度)動(dòng)力系統(tǒng).快-慢系統(tǒng)中復(fù)雜的動(dòng)力學(xué)現(xiàn)象得到廣泛關(guān)注.例如,在許多工程技術(shù)領(lǐng)域中的控制問(wèn)題;在生態(tài)系統(tǒng)中,生態(tài)環(huán)境的惡化、物種的爆發(fā)和消亡所產(chǎn)生的動(dòng)力學(xué)機(jī)制已得到深入研究;在生物神經(jīng)系統(tǒng)中,存在各種快-慢過(guò)程,使得系統(tǒng)存在各種形式的分岔和豐富的放電模式.在實(shí)際科學(xué)中,許多問(wèn)題可以轉(zhuǎn)換成研究系統(tǒng)的兩個(gè)時(shí)間尺度,如出現(xiàn)在應(yīng)用程序中不同的化學(xué)反應(yīng)動(dòng)力學(xué)[1,2],細(xì)胞建模[3,4],哈密頓系統(tǒng)[5,9],電子電路[10,11]和激光系統(tǒng)[12,14]. 最著名的快-慢系統(tǒng)可以追溯到范德波[10]在1920年提出的范德波方程. 基于平均原理的平均法是分析快-慢系統(tǒng)動(dòng)力學(xué)行為的有效工具, 其目的在于構(gòu)造一個(gè)所謂的“平均化方程” (也稱為“簡(jiǎn)化方程”或“有效方程”) 來(lái)簡(jiǎn)化原來(lái)的多尺度方程, 使簡(jiǎn)化后的方程不再包含快尺度物理量, 并且使得簡(jiǎn)化方程的解可以逼近原來(lái)方程中慢尺度的物理量.具體來(lái)看,考慮一個(gè)具有快-慢兩個(gè)尺度的常微分方程:
(1)
假設(shè)對(duì)任意x∈Rn,極限:
(2)
的解軌道一致逼近(當(dāng)參數(shù)ε趨于0時(shí)).確定性方程平均化原理的研究有較長(zhǎng)的歷史,其奠基性工作由前蘇聯(lián)數(shù)學(xué)家Bogoliubov 在文獻(xiàn)[15]中完成.緊接著,Gikhman[16], Volosov[17]和Besjes[18]研究了非線性常微分方程的平均化問(wèn)題. 隨機(jī)平均原理首先由Stratonovich[19]提出,此后,Khasminskii[20,22]將平均化原理發(fā)展到具有快-慢時(shí)間尺度的隨機(jī)常微分方程的研究中,他在文獻(xiàn)[23]中證明了隨機(jī)平均化原理在較弱的收斂意義下成立.值得一提的是,Veretenniko[24,25],Freidlin & Wentzell[26,27]進(jìn)一步顯著改進(jìn)了Khasminskii的結(jié)果,將較弱收斂意義下的隨機(jī)平均化原理推廣到依概率收斂的情形.另外,文獻(xiàn)Golec & Ladde[28], Givon,Kevrekidis& Kupferman[29]研究了關(guān)于均方收斂意義下的隨機(jī)平均化原理,文獻(xiàn)Golec[30]和Givon[29]得到了強(qiáng)收斂意義下的隨機(jī)平均化原理.Zhu[31]和Roberts和Spanos[32]等人的專著及綜述中都對(duì)隨機(jī)平均法早期的發(fā)展做了詳細(xì)介紹. Zhu[5,9]的團(tuán)隊(duì)提出并發(fā)展了高斯白噪聲、諧和噪聲等作用下單自由度或多自由度擬Hamilton系統(tǒng)的隨機(jī)平均理論和方法,解決了五類擬Hamilton系統(tǒng)平均方程的求解問(wèn)題.Xu[33]等建立了高斯色噪聲驅(qū)動(dòng)下一類隨機(jī)動(dòng)力學(xué)系統(tǒng)的平均原理及高斯白噪聲與色噪聲共同激勵(lì)下一類單自由度系統(tǒng)的隨機(jī)平均法[34].
近幾年來(lái),隨機(jī)平均法理論得到進(jìn)一步完善,并已被應(yīng)用于各類隨機(jī)動(dòng)力系統(tǒng)動(dòng)力學(xué)性質(zhì)的研究,其為研究更復(fù)雜的隨機(jī)動(dòng)力學(xué)系統(tǒng)和解決各種激勵(lì)下的隨機(jī)動(dòng)力學(xué)問(wèn)題提供了良好的方法.隨機(jī)平均的方法和理論也不再僅僅基于以高斯白噪聲為代表的不相關(guān)噪聲激勵(lì)下的隨機(jī)動(dòng)力學(xué)系統(tǒng),具有相關(guān)時(shí)間的分?jǐn)?shù)高斯噪聲激勵(lì)、非高斯列維噪聲及Markov切換的隨機(jī)動(dòng)力學(xué)系統(tǒng)(包含無(wú)窮維系統(tǒng))研究越來(lái)越引起學(xué)者的關(guān)注,取得了一定的發(fā)展.
本文根據(jù)國(guó)內(nèi)外研究現(xiàn)狀和發(fā)展趨勢(shì),綜述了基于非高斯列維噪聲、長(zhǎng)相關(guān)性分?jǐn)?shù)高斯噪聲及Markov切換的隨機(jī)復(fù)雜動(dòng)力學(xué)系統(tǒng)(包含無(wú)窮維系統(tǒng))隨機(jī)平均原理研究中的若干研究方向,并對(duì)存在的一些問(wèn)題以及進(jìn)一步的研究做了展望.
在以往的大部分研究中,為了處理起來(lái)簡(jiǎn)便,研究人員考慮的都是高斯噪聲,它是布朗運(yùn)動(dòng)的形式導(dǎo)數(shù),一般用來(lái)描述連續(xù)型的微小的隨機(jī)因素.在大多數(shù)情況下,高斯的假設(shè)是比較合理的,它滿足中心極限定理,而且由于處理起來(lái)比較簡(jiǎn)單,理論推導(dǎo)比較容易,在許多領(lǐng)域都得到了廣泛的應(yīng)用.然而,高斯噪聲只是一種理想的噪聲源,它刻畫(huà)的是正常擴(kuò)散,即只能模擬均值在小范圍內(nèi)的起伏,而不能模擬大幅度的漲落.在實(shí)際應(yīng)用中,我們遇到的許多噪聲都是非高斯的,比如在生物醫(yī)學(xué)中的誘發(fā)電位噪聲、低頻的大氣噪聲以及各種其它人為噪聲等.這些噪聲的非高斯性使得它們具有更強(qiáng)的沖擊性,其所服從的分布比起正態(tài)分布,具有更多的尖峰與偶然性 (見(jiàn)圖1),而且其密度函數(shù)的拖尾與高斯密度函數(shù)相比,衰減的也更為緩慢 (見(jiàn)圖2)[35].這種情況下,以往基于高斯假定所得到的結(jié)論就需要被重新考慮,我們需要尋求一種更加廣義,能夠更好的與實(shí)際符合的分布,它的導(dǎo)數(shù)能更好地用來(lái)描述我們所遇到的噪聲.
圖1 不同的穩(wěn)定性指標(biāo)對(duì)應(yīng)的列維噪聲的概率密度函數(shù)Lα,β(ζ;D,μ)Fig.1 Probability density functions Lα,β(ζ;D,μ) for Lévy noise with different stability indexes
圖2 不同的偏斜參數(shù)對(duì)應(yīng)的列維噪聲的概率密度函數(shù)Lα,β(ζ;D,μ),α=1.2Fig.2 Probability density functions Lα,β(ζ;D,μ),α=1.2 for Lévy noise with different skewness parameters
Zhu[36]首先將隨機(jī)平均法運(yùn)用到泊松白噪聲激勵(lì)下的非線性系統(tǒng)的研究中,Zeng 和Zhu[37,40]研究了非高斯隨機(jī)激勵(lì)下非線性系統(tǒng)的隨機(jī)平均法.Xu[41]給出了非高斯列維噪聲驅(qū)動(dòng)下的隨機(jī)動(dòng)力系統(tǒng)的平均原理,Xu[42]還給出了在一類弱化的李普希茲條件下非高斯列維噪聲驅(qū)動(dòng)下的隨機(jī)動(dòng)力系統(tǒng)的平均原理,證明了平均后隨機(jī)動(dòng)力學(xué)系統(tǒng)的解依概率和均方收斂于原系統(tǒng)的解,給出了隨機(jī)平均法的理論依據(jù). Givon[43]根據(jù)快變量存在的不變測(cè)度,研究了兩尺度跳擴(kuò)散過(guò)程均方意義下的隨機(jī)平均原理,并得到相應(yīng)的收斂階為O(lnε):
(3)
(4)
在自然界等很多現(xiàn)象中的噪聲往往表現(xiàn)出相關(guān)性甚至是長(zhǎng)相關(guān)性的顯著特征,而分?jǐn)?shù)布朗運(yùn)動(dòng)為長(zhǎng)相關(guān)性噪聲的研究提供了重要的理論基礎(chǔ),它是一種比布朗運(yùn)動(dòng)更廣泛的隨機(jī)過(guò)程,具有的長(zhǎng)相關(guān)性、增量非獨(dú)立性已經(jīng)在金融[48,49]、地球物理學(xué)[50,51]、生物學(xué)[52,53]和腦功能信號(hào)分析[54,55]等方面有了一定的應(yīng)用.1968年,Mandelbrot和Van Ness[56]首先定義了“分?jǐn)?shù)布朗運(yùn)動(dòng)”,并給出分?jǐn)?shù)布朗運(yùn)動(dòng)的構(gòu)造.此后,分?jǐn)?shù)布朗運(yùn)動(dòng)驅(qū)動(dòng)隨機(jī)動(dòng)力系統(tǒng)的研究引起學(xué)者的關(guān)注.由于分?jǐn)?shù)布朗運(yùn)動(dòng)既不是半鞅又不是馬爾可夫過(guò)程,使得隨機(jī)積分這個(gè)完備的理論基礎(chǔ)并不適用于分?jǐn)?shù)布朗運(yùn)動(dòng)的研究.Xu[57-59]在前向路徑積分意義下,根據(jù)Khasminskii平均法,研究具有長(zhǎng)相關(guān)性分?jǐn)?shù)布朗運(yùn)動(dòng)的隨機(jī)平均原理,證明了具有長(zhǎng)相關(guān)性分?jǐn)?shù)布朗運(yùn)動(dòng)驅(qū)動(dòng)的動(dòng)力系統(tǒng)與平均后的隨機(jī)動(dòng)力系統(tǒng)在均方意義下是收斂的,并利用數(shù)值模擬的方法,驗(yàn)證了定理的正確性.Xu[60,61]還進(jìn)一步研究了分?jǐn)?shù)布朗運(yùn)動(dòng)驅(qū)動(dòng)的快-慢變系統(tǒng)的隨機(jī)平均原理.Deng和Zhu[62,64]根據(jù)分?jǐn)?shù)布朗運(yùn)動(dòng)驅(qū)動(dòng)的兩尺度隨機(jī)動(dòng)力系統(tǒng)隨機(jī)平均原理結(jié)果[60,61],提出并發(fā)展了分?jǐn)?shù)高斯噪聲等作用下單自由度或多自由度擬Hamilton系統(tǒng)的隨機(jī)平均理論和方法,解決了擬Hamilton系統(tǒng)平均方程的求解問(wèn)題.
1961年Krasovskii和Lidskii[65]首次提出Markov切換系統(tǒng).近些年來(lái),Markov切換系統(tǒng)在復(fù)雜網(wǎng)絡(luò)等非線性系統(tǒng)建模中起不可替代的作用,使得其迅速成為國(guó)內(nèi)外發(fā)展最活躍的前沿學(xué)科和研究熱點(diǎn)之一.所謂Markov切換系統(tǒng),即是以一個(gè)連續(xù)時(shí)間有限狀態(tài)的Markov鏈來(lái)控制系統(tǒng)的切換時(shí)刻和切換狀態(tài).由于Markov切換系統(tǒng)貼近應(yīng)用背景,數(shù)學(xué)描述清晰,可操作性強(qiáng),因而很快成為復(fù)雜網(wǎng)絡(luò)及其他非線性系統(tǒng)建模的重要參考依據(jù).事實(shí)上,自然界和人類社會(huì)中廣泛存在著的各種各樣的復(fù)雜系統(tǒng)都可以通過(guò)復(fù)雜網(wǎng)絡(luò)模型來(lái)描述.復(fù)雜網(wǎng)絡(luò)模型描述了復(fù)雜系統(tǒng)中元素之間、子系統(tǒng)之間、層次之間的相互作用以及系統(tǒng)與環(huán)境的相互作用.而當(dāng)系統(tǒng)元件出現(xiàn)突發(fā)故障或突然修復(fù)狀況,或突然出現(xiàn)外部干擾,以及子系統(tǒng)連接方式發(fā)生突變時(shí),復(fù)雜網(wǎng)絡(luò)系統(tǒng)很可能產(chǎn)生結(jié)構(gòu)或參數(shù)上的突發(fā)改變.例如種群系統(tǒng)中的環(huán)境噪音和地震等突發(fā)性現(xiàn)象對(duì)種群數(shù)量變化的影響;通訊系統(tǒng)中數(shù)據(jù)交換的障礙和機(jī)器故障對(duì)數(shù)據(jù)傳輸?shù)挠绊懀唤?jīng)濟(jì)金融系統(tǒng)中,國(guó)家宏觀調(diào)控對(duì)經(jīng)濟(jì)變化的影響等等.考慮到Markov切換系統(tǒng)在描述系統(tǒng)結(jié)構(gòu)或參數(shù)突然變化方面具有很大的優(yōu)勢(shì),因此,選用Markov切換系統(tǒng)來(lái)描述網(wǎng)絡(luò)的狀態(tài)更加貼合實(shí)際應(yīng)用背景.具有Markov切換的隨機(jī)動(dòng)力系統(tǒng)的隨機(jī)平均原理得到了廣泛的研究.Yin[66]研究了具有兩尺度Markov切換的跳擴(kuò)散模型的隨機(jī)平均原理:
dXε(t)=f(Xε(t),αε(t),t)dt+
g(Xε(t),αε(t),t)dw(t)+
∫Γh(Xε(t),αε(t),t,γ)N(dt,dγ)
(5)
其中αε(t)代表連續(xù)時(shí)間兩尺度Markov切換.以及快變量慢變量耦合的Markov切換調(diào)制兩尺度隨機(jī)跳擴(kuò)散過(guò)程的隨機(jī)平均原理:
(6)
(7)
其中αε(t)代表連續(xù)時(shí)間兩尺度Markov切換,v(t)表示W(wǎng)iener過(guò)程. Bao,Yin和Yuan[68]考慮了加性α穩(wěn)定噪聲激勵(lì)的兩尺度隨機(jī)微分方程的隨機(jī)平均原理.宦榮華教授和朱位秋院士[69-70]等人給出了具有Markov切換的隨機(jī)平均法,并用此方法研究了Markov切換多自由度隨機(jī)擬不可積哈密頓系統(tǒng)的概率1穩(wěn)定性和在時(shí)滯反饋控制下Markov切換擬可積哈密頓系統(tǒng)的概率1穩(wěn)定性.
本文僅就我們關(guān)心的領(lǐng)域?qū)Ψ歉咚沽芯S噪聲、分?jǐn)?shù)高斯噪聲、Markov切換,及無(wú)窮維隨機(jī)系統(tǒng)隨機(jī)平均原理的研究做了介紹,還有許多方面沒(méi)有涉及.
目前來(lái)說(shuō),對(duì)于高斯白噪聲、列維噪聲激勵(lì)的有窮維系統(tǒng)的隨機(jī)平均原理較為系統(tǒng),已經(jīng)存在大量成熟的結(jié)果,而對(duì)于列維噪聲、分?jǐn)?shù)高斯噪聲激勵(lì)的無(wú)窮維系統(tǒng)及含Markov切換的隨機(jī)系統(tǒng)的隨機(jī)平均原理的研究尚在起步階段,研究還相當(dāng)?shù)厣?特別是針對(duì)于乘性列維噪聲、分?jǐn)?shù)高斯噪聲激勵(lì)的無(wú)窮維系統(tǒng)及含兩尺度Markov切換的隨機(jī)平均原理的研究是未來(lái)的重點(diǎn).
1Koper M T M. Bifurcations of mixed-mode oscillations in a three variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram.PhysicaD, 1995,80(1):72~94
2Larter R, Steinmetz C G, Aguda B D. Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction.JournalofChemicalPhysics, 1988,89(10):6506~6514
3Krupa M, Popovic N, Kopell N and Rotstein H G. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron.Chaos, 2008,18(1):015106
4Rubin J, Wechselberger M. Giant squid-hidden canard: the 3D geometry of the Hodgkin-Huxley model.BiologicalCybernetics, 2007,97(1):5~32
5朱位秋. 非線性隨機(jī)動(dòng)力學(xué)與控制-Hamilton理論體系框架. 北京:科學(xué)出版社, 2003 (Zhu W Q. Nonlinear stochastic dynamics and control-Hamiltonian theoretical framework. Beijing: Science Press, 2003 (in Chinese))
6Zhu W Q, Huang Z L, Suzuki Y. Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems.InternationalJournalofNon-LinearMechanics, 2002,37(3):419~437
7Zhu W Q, Yang Y Q. Stochastic averaging of quasi-nonintegrable Hamiltonian systems.ASMEJournalofAppliedMechanics, 1997,64(1):157~164
8Zhu W Q, Huang Z L, Yang Y Q. Stochastic averaging of quasi-integrable Hamiltonian systems.ASMEJournalofAppliedMechanics, 1997,64(4):975~984
9Huang Z L, Zhu W Q. Stochastic averaging of quasi-generalized Hamiltonian systems.InternationalJournalofNon-LinearMechanics, 2009,44(1):71~80
10 Van der Pol B. A theory of the amplitude of free and forced triode vibrations.RadioReview, 1920,1:701~710
11 Bernd K, Hinke M O, Jorge G V. Numerical continuation methods for dynamical systems: Path following and boundary value problems, Dordrecht: Springer,2007:221~251
12 Braza P, Erneux E. Singular Hopf bifurcation to unstable periodic solutions in an NMR laser.PhysicalReviewA, 1989,40(5):2539
13 Dubbeldam J L, Krauskopf B. Self-pulsations in lasers with saturable absorber: dynamics and bifurcations. Optics Communications, 1999,159(4-6):325~38
14 Erneux T, Mandel P. Bifurcation phenomena in a laser with a saturable absorber.ZeitschriftfürPhysikBCondensedMatter, 1981,44(4):365~374
15 Bogoliubov N N, Mitropolsky Y A. Asymptotic Methods in the Theory of Nonlinear Oscillations. New York: Gordon & Breach Science Publishers, 1961
16 Sorokina N G. On a theorem of N N Bogoliubov. Ukrain. Math. Zhurn, 1959,11:220~222
17 Volosov V M. Averaging in systems of ordinary differential equations.RussianMathematicalSurveys, 1962,17(6):1~126
18 Besjes J G. On the asymptotic methods for non-linear differential equations.JournalDeMecanique, 1969,8(3):357~373
19 Stratonovich R L. Topics in the theory of random noise, New York, Gordon and Breach, 1963,1967,2
20 Khasminskii R. On stochastic processes defined by differential equations with a small parameter.TheoryofProbability&ItsApplications, 1966,11(2):211~228
21 Khasminskii R. A limit theorem for the solutions of differential equations with random right-hand sides.TheoryofProbability&ItsApplications, 1966,11(3):390~406
22 Khasminskii R Z. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion.TheoryofProbability&ItsApplications, 1963,8(1):1~21
23 Khasminskii R Z. On the principle of averaging the Ito stochastic differential equations.Kibernetika, 1968,4:260~279
24 Veretennikov A Y. On the averaging principle for systems of stochastic differential equations.MathematicsoftheUSSR-Sbornik, 1991,69(1):271~284
25 Veretennikov A. Y. On large deviations in the averaging principle for SDEs with full dependence.AnnalsofProbability, 1999,27(1):284~296
26 Freidlin M I, Wentzell A D. Long-time behavior of weakly coupled oscillators.JournalofStatisticalPhysics, 2006,123(6):1311~1337
27 Freidlin M I, Wentzell A D. Random perturbations of dynamical systems, Springer, 1998
28 Golec J, Ladde G. Averaging principle and systems of singularly perturbed stochastic differential equations.JournalofMathematicalPhysics, 1990,31(5):1116~1123
29 Givon D, Kevrekidis I G, Kupferman R. Strong convergence of projective integration schemes for singular perturbed stochastic differential systems.CommunicationsinMathematicalSciences, 2006,4(4):707~729
30 Golec J. Stochastic averaging principle for systems with pathwise uniqueness.StochasticAnalysis&Applications, 1995,13(3):307~322
31 Zhu W Q. Stochastic averaging methods in random vibration.ASMEAppliedMechanicsReviews, 1988,41(5):189~199
32 Roberts J B, Sranos P D. Stochastic averaging: an approximate method of solving random vibration problems.InternationalJournalofNon-LinearMechanics, 1986,21(2):111~134
33 Xu Y, Gu R C, Zhang H Q, Xu W, Duan J Q. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise.PhysicalReviewE, 2011,83(5):056215
34 Xu Y, Guo R, Jia W T, Li J J. Stochastic averaging for a class of single degree of freedom systems with combined Gaussian noises.ActaMechanica, 2014,225(9):2611~2620
35 Xu Y, Li Y, Zhang H, et al. The Switch in a genetic toggle system with Lévy noise.ScientificReports, 2016,6:31505
36 Zeng Y, Zhu W Q. Stochastic averaging of quasi-non-integrable Hamiltonian systems under Poisson white noise excitation.ASMEJournalofAppliedMechanics, 2011,78(2):856~875
37 曾巖. 非高斯隨機(jī)激勵(lì)下非線性系統(tǒng)的隨機(jī)平均法[博士學(xué)位論文]. 杭州:浙江大學(xué), 2010 (Zeng Y. Stochastic averaging method of nonlinear system under non-gaussian random excitations[PhD Thesis]. Hangzhou: Zhejiang University, 2010 (in Chinese))
38 Zeng Y, Zhu W Q. Stochastic averaging of n-dimensional non-linear dynamical systems subject to non-Gaussian wide-band random excitations.InternationalJournalofNon-LinearMechanics, 2010,45(5):572~586
39 Zeng Y, Zhu W Q. Stochastic averaging of quasi-linear systems driven by Poisson white noise.ProbabilisticEngineeringMechanics, 2010,25(1):99~107
40 Zeng Y, Zhu W Q. Stochastic averaging of strongly nonlinear oscillators under poisson white noise excitation.IUTAMSymposiumonNonlinearStochasticDynamicsandControl, 2011,29(2):147~155
41 Xu Y, Duan J, Xu W. An averaging principle for stochastic dynamical systems with Lévy noise.PhysicaD, 2011,240(17):1395~1401
42 Xu Y, Pei B, Li Y G. Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise.MathematicalMethodsintheAppliedSciences, 2015,38 (11):2120~2131
43 Givon D. Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems.SiamJournalonMultiscaleModeling&Simulation, 2007,6(2):577~594
44 Liu D. Strong convergence of principle of averaging for multiscale stochastic dynamical systems.CommunicationsinMathematicalSciences. 2010,8(4):999~1020
45 Liu D. Strong convergence rate of principle of averaging for jump-diffusion processes.FrontiersofMathematicsinChina, 2012,7(2):305~320
46 Xu J, Miao Y.Lp(p>2)-strong convergence of an averaging principle for two-time-scales jump-diffusion stochastic differential equations.NonlinearAnalysis:HybridSystems, 2015,18:33~47
47 Thompson W, Kuske R, Monahan A. Stochastic averaging of dynamical systems with multiple time scales forced with α-stable noise.SiamJournalonMultiscaleModeling&Simulation, 2015,13(4):1194~1223
48 Backus D K, Zin S E. Long-memory inflation uncertainty: evidence from the term structure of interest rate.JournalofMoneyCreditandBanking, 1993,25(3):701~708
49 Rostek S. Option Pricing in Fractional Brownian Markets, Springer, Berlin, 2009
50 Granger C W, Joyeux R. An Introduction to long-memory time series models and fractional differencing.JournalofTimeSeriesAnalysis, 2010,1(1):15~29
51 Mandelbrot B B, Wallis J R. Some long-run properties of geophysical records.WaterResourcesResearch, 1969,5(2):321~340
52 Peng C K, Havlin S V, et al. Mosaic organization of DNA nucleotides.PhysicalReviewE, 1994,49(2):1685
53 Roche S, Bicout D, et al. Long range correlations in DNA: scaling properties and charge transfer efficiency.PhysicalReviewLetters, 2003,91(22):228101
54 Maxim V, Sendur L, et al. Fractional Gaussian noise functional MRI and Alzheimer′s disease.Neuroimage, 2005,25(1):141~58.
55 Wink A M, Bernard F, et al. Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus.NeurobiologyofAging, 2006,27(10):1395
56 Mandelbrot B B, Van Ness J W. Fractional brownian motions, fractional noises and applications.SiamReview, 1968,10(4):422~437
57 Xu Y, Guo R, et al. Stochastic averaging principle for dynamical systems with fractional Brownian motion.DiscreteandContinuousDynamicalSystems-SeriesB, 2014,19(4):1197~1212
58 Xu Y, Pei B, Wu J L. Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion.StochasticsandDynamics, 2017,17:1750013
59 Xu Y, Pei B, Li Y G. An averaging principle for stochastic differential delay equations with fractional Brownian motion.AbstractandAppliedAnalysis, 2013,2014(1):1~10
60 Xu Y, Pei B, Guo R. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion.DiscreteandContinuousDynamicalSystemsSeriesB, 2015,20(7):2257~2267
61 Xu Y, Guo R, et al. A limit theorem for the solutions of slow-fast systems with fractional Brownian motion.TheoreticalandAppliedMechanicsLetters, 2014,4(1):22~25
62 Lü Q F, Deng M L, Zhu W Q. Stochastic averaging of quasi integrable and resonant Hamiltonian systems excited by fractional Gaussian noise with Hurst index 1/2 63 Deng M L, Zhu W Q. Responses of linear and nonlinear oscillator to fractional Gaussian noise with Hurst index between 1/2 and 1.JournalofAppliedMechanics, 2015,82(10):101008 64 Deng M L, Zhu W Q. Stochastic averaging of quasi-non-integrable Hamiltonian systems under fractional Gaussian noise excitation.NonlinearDynamics., 2016,83(1-2):1015~1027 65 Kats I, Krasovskii N. On the stability of systems with random parameters.JournalofAppliedMathematicsandMechanics, 1960,24(5):1225~1246 66 Yin G, Yang H. Two-time-scale jump-diffusion models with Markovian switching regimes.StochasticsandStochasticReports, 2004,76(2):77~99 67 Yin G, Talafha Y, Xi F. Stochastic Liénard equations with random switching and two-time scales.CommunicationsinStatistics-TheoryandMethods, 2014,43(7):1533~1547 68 Bao J, Yin G, Yuan C. Two-time-scale stochastic partial differential equations driven by alpha-stable noises: Averaging principles.Bernoulli, 2017,23(1):645~669 69 Huan R H, Zhu W, Ma F, et al. Stationary response of a class of nonlinear stochastic systems undergoing Markovian jumps.ASMEJournalofAppliedMechanics, 2015,82(5):051008 70 Huan R H, Zhu W Q, Ma F, et al. Asymptotic stability of a class of nonlinear stochastic systems undergoing Markovian jumps.ProbabilisticEngineeringMechanics, 2016,45(5):13~21 71 Cerrai S. A khasminskii type averaging principle for stochastic reaction-diffusion equations.AnnalsofAppliedProbability, 2008,19(3):899~948 72 Cerrai S, Freidlin M. Averaging principle for a class of stochastic reaction-diffusion equations.ProbabilityTheory&RelatedFields, 2009,144(1-2):137~177 73 Wang W, Roberts A J. Average and deviation for the stochastic FitzHugh-Nagumo system.Australian&NewZealandIndustrial&AppliedMathematicsJournal, 2008,50:292~307 74 Fu H, Duan J. An averaging principle for two time-scales stochastic partial differential equations.StochasticandDynamics, 2011,11:353~367. 75 Fu H, Liu J. Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations.JournalofMathematicalAnalysis&Applications, 2011,384(1):70~86 76 Xu J, Miao Y, Liu J. Strong averaging principle for slow-fast SPDEs with Poisson random measures.DiscreteandContinuousDynamicalSystems:B, 2015,20(7):2233~2256 77 Xu J. Lp-strong convergence of the averaging principle for slow-fast SPDEs with jumps.JournalofMathematicalAnalysisandApplications, 2017,445(1):342~373 78 Pei B, Xu Y, Wu J L. Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: Existence, uniqueness and averaging principles.JournalofMathematicalAnalysisandApplications, 2017,447(1):243~268 *The project supported by the National Natural Science Foundation of China(11372247, 11572247) ? Corresponding author E-mail:hsux3@nwpu.edu.cn 3 April 2017,revised 18 April 2017. SOME RECENT DEVELOPMENTS OF STOCHASTIC AVERAGING PRINCIPLE* Xu Yong?Pei Bin Xu Wei (DepartmentofAppliedMathematics,NorthwesternPolytechnicalUniversity,Xi′an710072,China) Based on the recent research status and development trend of the stochastic averaging principle, we discussed the averaging principles with respect to non-Gaussian Lévy noise, fractional Gaussian noise and complex dynamics system with Markov switching. non-Gaussian Lévy noise, fractional Gaussian noise, Markov switching, stochastic complex dynamics system, stochastic averaging principle *國(guó)家自然科學(xué)基金資助項(xiàng)目(11372247, 11572247) 10.6052/1672-6553-2017-022 2017-04-03收到第1稿,2017-4-21收到修改稿. ? 通訊作者 E-mail:hsux3@nwpu.edu.cn
動(dòng)力學(xué)與控制學(xué)報(bào)2017年3期