楊國(guó)增,孔瑩瑩,曹小紅
1)鄭州師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南鄭州 450044;2)陜西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,陜西西安710062
【數(shù)學(xué)與應(yīng)用數(shù)學(xué) / Mathematics and Applied Mathematics】
有界線性算子的a-Weyl定理及亞循環(huán)性
楊國(guó)增1,孔瑩瑩2,曹小紅2
1)鄭州師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南鄭州 450044;2)陜西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,陜西西安710062
線性算子理論;a-Weyl定理;逼近點(diǎn)譜;亞循環(huán)算子;算子函數(shù);Fredholm算子;譜集;Browder譜
設(shè)H為無(wú)限維復(fù)可分的Hilbert空間,B(H)為H上的有界線性算子的全體.對(duì)于T∈B(H), 令N(T)和R(T)分別表示算子T的零空間和值域,若R(T)閉且n(T)=dimN(T)有限,稱T為上半Fredholm算子;若R(T)有有限的余維數(shù)d(T)=dim(H/R(T))=codimR(T), 則稱T∈B(H)為下半Fredholm算子.若T既為上半Fredholm算子又為下半Fredholm算子,則T∈B(H)稱為Fredholm算子.對(duì)于半Fredholm算子,其指標(biāo)定義為ind(T)=n(T)-d(T). 其中,n(T)和d(T)分別為算子T的零空間維數(shù)和值域的余維數(shù).特殊地,當(dāng)n(T)=0且R(T)閉時(shí),稱T為下有界算子.指標(biāo)為0的Fredholm算子稱為Weyl算子.算子T的升標(biāo)asc(T)為滿足N(Tn)=N(Tn+1)的最小非負(fù)整數(shù),若這樣的整數(shù)不存在,則記asc(T)=∞; 算子T的降標(biāo)為滿足R(Tn)=R(Tn+1)的最小的非負(fù)整數(shù),同樣若這樣的整數(shù)不存在,則記des(T)=∞. 當(dāng)T為有限升標(biāo)和有限降標(biāo)的Fredholm算子時(shí),稱T為Browder算子.
對(duì)T∈B(H),記σ(T),σw(T),σp(T),σa(T),σb(T),σab(T)、σSF(T)和σea(T)分別表示算子T的譜、Weyl譜、點(diǎn)譜、逼近點(diǎn)譜、Browder譜、Browder本質(zhì)逼近點(diǎn)譜、半Fredholm譜和本質(zhì)逼近點(diǎn)譜.記ρ(T)=Cσ(T)、ρa(bǔ)(T)=Cσa(T)、ρb(T)=Cσb(T)、ρa(bǔ)b(T)=Cσab(T)、ρSF(T)=CσSF(T)、ρea(T)=Cσea(T). 令Pab(T)={λ∈σa(T):T-λI為上半Fredholm算子,且asc(T-λI)<∞}, 將T的正規(guī)特征值記作σ0(T), 即σ0(T)=σ(T)σb(T). 對(duì)K?C, isoK表示集合K的孤立點(diǎn)集, accK為K的聚點(diǎn)的全體;為單位圓盤;為單位圓周.
設(shè)H(T)為在σ(T)的一個(gè)鄰域上解析,但在σ(T)的任一個(gè)分支上不為常值的函數(shù)全體.本研究用譜集σvaw(T)刻畫了對(duì)任意f∈H(T),f(T)滿足a-Weyl定理的判定方法,進(jìn)而給出當(dāng)T為亞循環(huán)算子時(shí),f(T)滿足a-Weyl定理的充要條件.
令T∈B(H), 若σ為σ(T)中的一閉開(kāi)子集,則存在一個(gè)解析的柯西鄰域Ω滿足σ?Ω, 且
(1)
(2)
按Ω的正向積分,又令H(σ;T)=R(E(σ;T)). 顯然,若λ∈isoσ(T), 則{λ}為σ(T)中的閉開(kāi)子集,記H({λ};T)為H(λ;T); 除此之外,若dimH(λ;T)<∞, 則λ∈σ0(T)[11].
為便于證明,本研究首先給出引理1至引理3.
引理1[12]設(shè)T∈B(H), 若σ(T)=σ1∪σ2, 其中,σ1和σ2為σ(T)中的閉開(kāi)子集且σ1∩σ2=?, 則
(3)
且T的分解為
(4)
其中,σ(Ti)=σi(i=1, 2).
引理2[13]設(shè)T∈B(H), 若asc(T)≤p(p為某個(gè)非負(fù)整數(shù)),則N(Tk)∩R(Tp)={0}. 其中,k=1, 2, ….
引理3[14]設(shè)T∈B(H), 若λ∈isoσ(T),則下列敘述是等價(jià)的:①λ∈ρSF(T); ②λ∈ρw(T); ③λ∈σ0(T).
定理1 設(shè)T∈B(H), 則下列敘述是等價(jià)的:
1)σ(T)=σa(T)且T滿足a-Weyl定理;
2)ρvaw(T)={λ∈isoσ(T)∶n(T-λI)=0}∪σ0(T)∪ρ(T);
3)σ(T)=σvaw(T)∪{λ∈isoσ(T)∶n(T-λI)=0}∪σ0(T).
【證】首先證明 1)?2).這只需證明
ρvaw(T)= {λ∈isoσ(T)∶n(T-λI)=
0}∪σ0(T)∪ρ(T)
(5)
假設(shè)λ∈ρvaw(T)且λ?ρ(T), 則根據(jù)引理2,n(T-λI)<∞且λ∈isoσa(T)∪ρa(bǔ)(T), 由于σ(T)=σa(T), 則有λ∈isoσ(T). 若n(T-λI) =0, 則λ∈{λ∈isoσ(T)∶n(T-λI)=0}; 若0 其次,證明 2)?1).若T-λI為下有界算子,則λ∈ρvaw(T). 當(dāng)λ∈{λ∈isoσ(T)∶n(T-λI)=0}, 根據(jù)引理3,λ∈ρ(T), 這與λ∈isoσ(T)矛盾;而當(dāng)λ∈σ0(T),λ∈ρ(T), 同樣得到與λ∈σ0(T)矛盾.于是σ(T)=σa(T). 最后證明 2)?3).對(duì)2)中的等式變形,可得該式等價(jià)于 C=σvaw(T)∪{λ∈isoσ(T)∶n(T-λI)= 0}∪σ0(T)∪ρ(T) (6) 上式等價(jià)于σ(T)=σvaw(T)∪{λ∈isoσ(T)∶n(T-λI)=0}∪σ0(T). 注解1 1) 在定理1中,σ(T)=σa(T)是本質(zhì)的.例如,設(shè)T∈B(l2)定義為T(x1,x2, …)=(0,x1,x2, …), 則有σ(T)=,σa(T)=σea(T)=,?, 以及ρvaw(T)={λ∈C于是可得σ(T)≠σa(T),T滿足a-Weyl定理,但因 {λ∈isoσ(T):n(T-λI)=0}∪σ0(T)∪ (7) 則有 ρvaw(T)≠ {λ∈isoσ(T)∶n(T-λI)= 0}∪σ0(T)∪ρ(T) (8) 推論1 當(dāng)且僅當(dāng)σ(T)∈{λ∈isoσ(T):n(T-λI)=0}∪σ0(T)時(shí),σvaw(T)=?,σ(T)=σa(T)且T滿足a-Weyl定理. 注解2 1) 在推論1中, 當(dāng)σvaw(T)=?,σ(T)=σa(T)且T滿足a-Weyl定理時(shí),σ(T)為有限集. 推論2 當(dāng)且僅當(dāng)σ(T)為有限集且σp(T)=σ0(T)時(shí),σvaw(T)=?,σ(T)=σa(T)且T滿足a-Weyl定理. 下面給出算子函數(shù)滿足a-Weyl定理的判斷方法. 定理2 若σ(T)=σa(T),則對(duì)任意的f∈H(T),f(T)滿足a-Weyl定理當(dāng)且僅當(dāng)下列條件成立: 1) 對(duì)任意給定f∈H(T), 有f(σvaw(T))?σvaw(f(T)); 2)T滿足a-Weyl定理; 3)σa(T)=σea(T)或ρvaw(T)=ρa(bǔ)(T)∪Pab(T). 【證】 必要性. 由于f(T)滿足a-Weyl定理,根據(jù)引理2,則μ0∈isoσa(f(T))∪ρa(bǔ)(f(T)). 設(shè)f(T)-μ0I=(T-λ1I)n1(T-λ2I)n2…(T-λkI)nkg(T), 其中,λi≠λj(i≠j, 1≤i,j≤k),g(T)可逆. 若μ0∈ρa(bǔ)(f(T)), 則λi∈ρa(bǔ)(T),λi∈ρvaw(T), 故μ0?f(σvaw(T)); 若μ0∈isoσa(f(T)), 則λi∈isoσa(T)∪ρa(bǔ)(T). 又因n(T-λiI) 條件 2)顯然成立. 條件 3)分兩種情況討論. 令σ1={λ1},σ2={λ2}, 則σ1和σ2為σ(T)中的閉開(kāi)子集,根據(jù)引理1,T有分解 其中,σ(T1)={λ1};σ(T2)={λ2};σ(T3)=σ(T){λ1,λ2};M為H(λ1;T1)與H(λ2;T2)的正交補(bǔ)空間. 令f(T)=(T-λ1I)(T-λ2I), 由于 充分性. 事實(shí)上,設(shè)f(T)-μ0I為上半Fredholm算子且ind (f(T)-μ0I)≤0, 并設(shè)f(T)-μ0I=(T-λ1I)n1(T-λ2I)n2…(T-λkI)nkg(T), 其中,λi≠λj(i≠j, 1≤i,j≤k),g(T)可逆. 由μ0?σvaw(f(T))可知 λi∈ρvaw(T)=ρa(bǔ)(T)∪{λ∈isoσa(T): n(T-λI)=0}∪Pab(T) (9) 綜上可知,對(duì)任意給定的f∈H(T),f(T)滿足a-Weyl定理. 下面研究算子的亞循環(huán)性與a-Weyl定理的關(guān)系. 注解3 例如,設(shè)T∈B(l2)定義為T(x1,x2, …)=(0,x1,x2, …), 通過(guò)計(jì)算可得σ(T)=σw(T)=,σa(T)=σea(T)=,?,σ0(T)=?,σvaw(T)=. 于是有但T滿足a-Weyl定理. 定理3 設(shè)T∈B(H), 則下列敘述等價(jià). 3)σ(T)=σvaw(T)∪{λ∈isoσ(T):n(T-λI)=0},且σw(T)∪?連通; 4)σ(T)=σvaw(T)∪{λ∈isoσ(T):n(T-λI)=0}, 且σ(T)∪?連通; 5)ρvaw(T)=ρ(T)∪{λ∈isoσ(T):n(T-λI)=0}, 且σw(T)∪?連通. 【證】2)? 3). 由于σ0(T)=σ0(T)∩σ(T), 而σ0(T)∩σvaw(T)=?,σ0(T)∩{λ∈isoσ(T):n(T-λI)=0}=?,于是有σ0(T)=σ0(T)∩σ(T) =?. 又由于ρSF(T)∩σ(T)=[ρSF(T)∩σvaw(T)]∪[ρSF(T)∩{λ∈isoσ(T):n(T-λI)=0}], 而[ρSF(T)∩{λ∈isoσ(T):n(T-λI)=0}]=?, 于是有ρSF(T)∩σ(T)=[ρSF(T)∩σvaw(T)]. 1)? 2),顯然成立. (10) (11) 同理可知,λi∈isoσ(T)∪ρ(T), 其中2≤i≤m. 顯然,n(T-λiI)≤n(f(T)-μ0I)<∞. 因此λ0?isoσvaw(T), 1≤i≤m. 于是有任給f∈H(T),f(σvaw(T)) ?σvaw(f(T)). 根據(jù)定理2,任給f∈H(T),f(T)滿足a-Weyl定理. 3)? 4).因?yàn)棣?T)=σvaw(T)∪{λ∈isoσ(T):n(T-λI)=0} 而σw(T)∩σvaw(T)=σvaw(T),σw(T)∩{λ∈isoσ(T):n(T-λI)=0}={λ∈isoσ(T):n(T-λI)=0},則σw(T)=σw(T)∩σ(T)=σ(T), 故結(jié)論成立. 4)? 5)顯然成立. 推論3 下列敘述是等價(jià)的. 3)σ(T)={λ∈isoσ(T):n(T-λI)=0}且σw(T)∪?連通. 推論4 下列敘述是等價(jià)的. 3)σ(T)為有限集,σp(T)=?且σw(T)∪?連通. 因此可證明,在推論4中,“σw(T)∪?連通”可改為“σ(T)∪?連通”. 本研究基于新定義的譜集σvaw(T), 給出了對(duì)任意的f∈H(T),f(T)滿足a-Weyl定理的判定方法,進(jìn)而研究了當(dāng)T為亞循環(huán)算子時(shí),f(T)滿足a-Weyl定理的充要條件.下一步,我們將對(duì)一般的算子T的函數(shù)演算滿足Weyl’s定理進(jìn)行刻畫. / References: [1] Herrero D A. Limits of hypercyclic and supercyclic operators[J]. Journal of Functional Analysis, 1991, 99(1): 179-190. [2] Weyl H. überbeschr?nkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti del Circolo Matematico di Palermo, 1909, 27(1): 373-392. [3] Coburn L A. Weyl’s theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3): 285-288. [4] Berberian S K. An extension of Weyl’s theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3): 273-279. [5] Cao Xiaohong, Guo Maozheng, Meng Bin. Drazin spectrum and Weyl’s, theorem for operator matrices[J]. Journal of Mathematical Research and Exposition, 2006, 26(3): 52-66. [6] 青 梅.無(wú)界算子的矩陣的譜和補(bǔ)問(wèn)題[D].呼和浩特:內(nèi)蒙古大學(xué),2016. Qing Mei. Spectra and completion problems of unbounded operator matrices[D]. Hohhot: Inner Mongolia University, 2016.(in Chinese) [7] Kitson D, Harte R, Hernández C. Weyl’s theorem and tensor products: a counterexample[J]. Journal of Mathematical Analysis and Applications, 2011, 378(1): 128-132. [8] 戴 磊.Weyl型定理的判定及其穩(wěn)定性[D].西安:陜西師范大學(xué),2013. Dai Lei. The judgment and the stability of Weyl type theorems[D]. Xi’an: Shaanxi Normal University.(in Chinese) [9] 李娜娜.算子與其共軛的Weyl型定理的等價(jià)性判定[D].西安:陜西師范大學(xué),2013. Li Nana. The equivalence of Weyl’s theorem of operators and their conjugate[D]. Xi’an: Shaanxi Normal University.(in Chinese) [10] Kato T. Perturbation theory for linear operators[M]. Berlin: Springer-Verlag Berlin Heidelberg, 1976: 11-12. [11] Dunford N, Schwartz J T. Linear operators: part 1 general theory[M]. Berlin: Springer-Verlag Berlin Heidelberg, 1988: 5-6. [12] H Radjavi, P Rosenthal. Invariant subspaces[M]. 2nd edit. New York, USA: Dover Publications, 2003: 63-64. [13] Taylor A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163(1): 18-49. [14] Conway J B. A course in functional analysis[M]. 2nd edit. New York: Springer-Verlag, 2003: 181-182. [15] Hassane Zguitti. A note on drazin invertibility for upper triangular block operators[J]. Mediterranean Journal of Mathematics, 2013, 10(3): 93-102. [16] 戴 磊,曹小紅. 單值延拓性質(zhì)與廣義(ω)性質(zhì)[J]. 陜西師范大學(xué)學(xué)報(bào)自然科學(xué)版,2011,39(2):32-41.DaiLei,CaoXiaohong.Thesinglevaluedextensionpropertyandgeneralizedproperty(ω)[J].JournalofShaanxiNormalUnviersityNaturalScienceEdition, 2011, 39(2): 32-41.(inChinese) [17] 周婷婷.Weyl型定理及相關(guān)問(wèn)題[D].長(zhǎng)春:吉林大學(xué),2014.ZhouTingting.Weyl’stheoremandrelatedproblems[D].Changchun:JournalofJilinUniversity, 2014.(inChinese) [18]SunChenhui,CaoXiaohong,DaiLei.AWeyl-typetheoremandperturbations[J].ActaMathtmaticaSinica, 2009, 52(1): 73-80. 【中文責(zé)編:英 子;英文責(zé)編:木 南】 2016-12-22;Accepted:2017-04-18 Professor Cao Xiaohong. E-mail: xiaohongcao@snnu.edu.cn A-Weyl’s theorem and hypercyclic property for bounded linear operators Yang Guozeng1, Kong Yingying2, and Cao Xiaohong2 1)School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, Henan Province, P.R.China; 2) Shaanxi Normal University, Institute of Mathematics and Information Science, Xi’an 710062, Shaanxi Province, P.R.China linear operator theory; a-Weyl’s theorem; approximate point spectrum; hypercyclic operators; operator function; Fredholm operator; spectrum set; Browder spectrum :Yang Guozeng, Kong Yingying, Cao Xiaohong. A-Weyl’s theorem and hypercyclic property for bounded linear operators[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(4): 372-377.(in Chinese) O A 10.3724/SP.J.1249.2017.04372 國(guó)家自然科學(xué)基金資助項(xiàng)目(11471200) 楊國(guó)增(1980—),男,鄭州師范學(xué)院講師.研究方向:泛函算子理論.E-mail:ygz_0907@163.com Foundation:National Natural Science Foundation of China (11471200) 引 文:楊國(guó)增,孔瑩瑩,曹小紅.有界線性算子的a-Weyl定理及亞循環(huán)性[J]. 深圳大學(xué)學(xué)報(bào)理工版,2017,34(4):372-377.結(jié) 語(yǔ)