林巖松,楊 雪
中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)院核醫(yī)學(xué)科,北京100730
碘難治性甲狀腺癌的診治進展
林巖松,楊 雪
中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)院核醫(yī)學(xué)科,北京100730
林巖松,北京協(xié)和醫(yī)院主任醫(yī)師、教授,中國醫(yī)學(xué)科學(xué)院博士研究生導(dǎo)師,北京協(xié)和醫(yī)院核醫(yī)學(xué)科副主任,兼任中國臨床腫瘤學(xué)會(CSCO)甲狀腺癌專業(yè)委員會主任委員、中華醫(yī)學(xué)會核醫(yī)學(xué)分會治療學(xué)組副組長、國際原子能機構(gòu)IAEA RAS6082項目中國區(qū)協(xié)調(diào)員。圍繞分化型甲狀腺癌病因探討和131I靶向治療前評估等進行系列研究,以第一或通信作者發(fā)表相關(guān)論著70余篇,其中SCI收錄文章20篇,其創(chuàng)新性內(nèi)容被業(yè)界最高影響因子雜志J Nucl Med錄用并得到優(yōu)先發(fā)表,為131I治療甲狀腺疾病增加了來自中國的循證醫(yī)學(xué)證據(jù)。先后四次承擔(dān)國家自然科學(xué)基金,作為第一完成人兩次獲得中華醫(yī)學(xué)科技獎。
多數(shù)分化型甲狀腺癌(differentiated thyroid cancer,DTC)經(jīng)過規(guī)范的手術(shù)、選擇性131I治療及促甲狀腺激素抑制治療后預(yù)后良好,然而,仍有部分轉(zhuǎn)移性DTC的患者在早期或131I治療過程中失去了攝碘能力發(fā)展為碘難治性DTC(radioiodine-refractory DTC,RAIR-DTC)。RAIR-DTC病情進展快,死亡率高,為這些患者尋找有效的治療手段一直是甲狀腺癌領(lǐng)域研究的熱點。該文對碘難治性甲狀腺癌的診斷及治療進展進行綜述,為及早識別這些患者,并為其他可能獲益的治療手段如靶向治療及放療等的早期干預(yù)爭取時間。
甲狀腺癌;放射性碘;碘難治性;進展
甲狀腺乳頭狀癌(papillary thyroid cancer,PTC)及濾泡狀癌(follicular thyroid cancer,F(xiàn)TC)占甲狀腺癌的90%以上,由于它們在一定程度上保留了甲狀腺濾泡細(xì)胞的功能,如鈉碘同向轉(zhuǎn)運體(sodium iodide symporter,NIS)的表達及攝碘的能力、分泌甲狀腺球蛋白(thyroglobulin,Tg)的能力、依賴于促甲狀腺激素(thyrotropin,TSH)生長的方式等,被稱為分化型甲狀腺癌(differentiated thyroid cancer,DTC)。遠(yuǎn)處轉(zhuǎn)移是DTC患者主要的致死原因。有研究顯示,遠(yuǎn)處轉(zhuǎn)移病灶的攝碘特征與其預(yù)后密切相關(guān)[1-2],攝碘的患者10年生存率可達56%,而不攝碘患者10年生存率不足10%[2],這部分碘難治性DTC(radioiodinerefractory DTC,RAIR-DTC)的早期診斷及后續(xù)治療已成為目前甲狀腺癌領(lǐng)域的難點和熱點。
RAIR-DTC應(yīng)涵蓋所有經(jīng)過規(guī)范的131I治療后仍出現(xiàn)復(fù)發(fā)及轉(zhuǎn)移或已知病灶進展的DTC患者。在2015年美國甲狀腺協(xié)會(American Thyroid Association,ATA)指南中對RAIR-DTC進一步界定,在TSH刺激及無外源性碘負(fù)荷干擾的低碘狀態(tài)下,符合以下之一:① 腫瘤組織或轉(zhuǎn)移病灶不攝碘(在清甲成功后的首次診斷性或治療性131I全身顯像未出現(xiàn)甲狀腺床以外的碘攝取);② 曾經(jīng)攝碘的病灶在131I治療后逐漸喪失攝碘能力;③131I治療后僅部分病灶攝碘,部分病灶不攝碘;④ 盡管病灶存在碘攝取,但經(jīng)131I治療后仍出現(xiàn)進展[3-4]。目前,對這一診斷標(biāo)準(zhǔn)仍存在一定爭議,例如,目前焦點主要集中在患者的病灶是否攝碘,而病灶攝碘的判斷可受患者體內(nèi)碘負(fù)荷、TSH水平及SPECT分辨率等多種因素的影響。其次,在RAIR-DTC的界定中,應(yīng)強調(diào)病灶是否攝碘,還是碘治療后的反應(yīng),還是兩者并重?
NIS是一種DTC細(xì)胞基底膜上表達的糖蛋白,可利用細(xì)胞跨膜的鈉離子濃度梯度將碘逆濃度梯度轉(zhuǎn)運至細(xì)胞內(nèi),這也是放射性碘治療DTC的基礎(chǔ)。RAIR-DTC主要是由于NIS表達水平的下降或出現(xiàn)基底膜以外的異位表達,致使131I治療無法奏效,多種分子影像學(xué)、血清學(xué)及分子遺傳學(xué)特征的變化提示RAIR-DTC的發(fā)生涉及多種機制,因此可利用多種分子特征進行診斷評估。
2.1 分子遺傳學(xué)特征
2.1.1 雙鏈復(fù)合蛋白-8(paired box gene-8,PAX-8)-過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)重排
甲狀腺特異蛋白包括NIS、TSH受體(thyroid stimulating hormone receptor,TSHR)、Tg及甲狀腺過氧化物酶(thyriod peroxidase,TPO),其表達受特異性轉(zhuǎn)錄因子控制,即甲狀腺轉(zhuǎn)錄因子-1(thyroid transcription factor-1,TTF-1)、甲狀腺轉(zhuǎn)錄因子-2(thyroid transcription factor-2,TTF-2)及PAX-8。PAX-8與NIS基因上游增強子結(jié)合,促進NIS的表達。有研究發(fā)現(xiàn),失分化和未分化甲狀腺癌的TTF-1和PAX-8表達水平顯著降低[5]。有研究顯示,將TTF-1和PAX-8基因轉(zhuǎn)染入甲狀腺癌細(xì)胞后,檢測到NIS、Tg及TPO表達水平升高[6],這或?qū)橹委烺AIR-DTC提供新思路。
PPAR屬于類固醇-甲狀腺-維甲酸受體超家族,包括PPAR-α、β、γ三種亞型。其中PPAR-γ對于維持甲狀腺細(xì)胞生長、增殖及分化具有重要作用。PAX-8-PPAR-γ染色體質(zhì)量排是t(2;3) (q13;p25)染色體易位造成的異常分子事件,導(dǎo)致PAX-8基因與PPARs基因的融合,使得PAX-8-PPAR-γ融合蛋白(PAX-8-PPAR-γ fusion protein,PPFP)表達增高。PPFP一方面可以通過下調(diào)PAX-8的表達活性抑制NIS的表達,另一方面還能降低PPAR-γ的表達并干擾PPAR-γ與其反應(yīng)元件(PPAR-γ reaction elements,PPREs)的結(jié)合,促使甲狀腺細(xì)胞快速增殖與異常分化[7]。該分子事件可見于50%的FTC,而在PTC中則較少發(fā)生[8]。以調(diào)節(jié)PPARs通路為靶點的治療,如維甲酸及PPAR-γ激動劑噻唑烷二酮類(羅格列酮、比格列酮和曲格列酮)可以誘導(dǎo)DTC失分化細(xì)胞再分化,恢復(fù)NIS的表達,進而增強病灶的攝碘能力。然而考慮到其治療的不良反應(yīng)及實際應(yīng)用效果仍存在爭議,目前并未廣泛應(yīng)用于臨床。
2.1.2 BRAF突變
BRAF V600E突變是DTC最常見的基因改變形式,突變率約為60%,通過MAPK/ERK通路引起絲氨酸/蘇氨酸激酶持續(xù)活化[9]。BRAF基因突變后,BRAF蛋白持續(xù)激活,不需要依賴RAS信號即可使MEK和ERK磷酸化激活[10]。多項研究證實,BRAF突變與DTC細(xì)胞NIS表達降低、攝碘下降相關(guān)[11-12]。已有研究顯示,BRAF突變可引起NIS、TSHR、Tg和TPO的表達顯著下降,同時在轉(zhuǎn)錄后水平使NIS的膜定位發(fā)生障礙[13-14]。Ricarte-Filho等[15]的研究顯示,39%的RAIR-DTC含有BRAF突變。Riesco-Eizaguirre等[14]研究發(fā)現(xiàn),BRAF V600E能引起轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)表達增加。TGF-β的表達可降低PAX-8 mRNA水平并抑制PAX-8與NIS啟動子的結(jié)合,使NIS表達下降。本課題組以往研究發(fā)現(xiàn),BRAF突變的肺轉(zhuǎn)移DTC患者肺轉(zhuǎn)移病灶的不攝碘率達84.2%,而BRAF野生組僅為5.6%,這為RAIR-DTC的預(yù)判斷及早期診斷提供了預(yù)測信息,有可能為該類患者避免不必要的131I治療及盡早開始更為有效的治療爭取時間[16]。
2.1.3 TERT突變
端粒酶反轉(zhuǎn)錄酶(telomerase reverse transcriptase,TERT)是端粒酶不可缺少的催化亞單位之一,限制了端粒酶的活性,而使正常細(xì)胞的端粒修復(fù)延長。端粒酶在正常人體組織中活性被抑制。TERT啟動子突變可導(dǎo)致端粒酶活性增強,促進細(xì)胞增殖,與腫瘤發(fā)生相關(guān)。多項研究發(fā)現(xiàn),TERT基因啟動子突變(主要為C228位點突變)與甲狀腺濾泡細(xì)胞來源的PTC、FTC及未分化癌的侵襲性特征如甲狀腺外侵犯、淋巴結(jié)轉(zhuǎn)移、遠(yuǎn)處轉(zhuǎn)移、復(fù)發(fā)乃至死亡相關(guān)[17-20]。且有研究發(fā)現(xiàn),TERT啟動子與BRAF均突變可導(dǎo)致更高的侵襲性及復(fù)發(fā)風(fēng)險[21]。
最近,本課題組對66例遠(yuǎn)處轉(zhuǎn)移性DTC患者中位隨訪46.5個月后發(fā)現(xiàn),TERT啟動子突變與遠(yuǎn)處轉(zhuǎn)移患者的不攝碘特征密切相關(guān),所有TERT啟動子突變患者在隨訪終點均出現(xiàn)碘難治的情況,陽性預(yù)測值高達100%;且與BRAF突變相比,TERT啟動子突變導(dǎo)致的遠(yuǎn)處轉(zhuǎn)移病灶的不攝碘現(xiàn)象發(fā)生更早[22]。目前,TERT啟動子突變對DTC細(xì)胞攝碘機制的影響暫不明確。雖目前循證醫(yī)學(xué)證據(jù)較少,但對于遠(yuǎn)處轉(zhuǎn)移的DTC患者,TERT啟動子突變或可為預(yù)測遠(yuǎn)處轉(zhuǎn)移病灶的碘難治狀態(tài)提供新的分子標(biāo)志。
2.1.4 長鏈非編碼RNA(long non-coding RNA,lncRNA)
LncRNA是一類轉(zhuǎn)錄本長度超過200個核苷酸的非編碼RNA,缺乏明顯的開放閱讀框,無或少有編碼蛋白質(zhì)的功能。近年來研究顯示,lncRNA在表觀遺傳水平、轉(zhuǎn)錄水平及轉(zhuǎn)錄后水平調(diào)控基因的表達,參與了染色體沉默、基因組印記、轉(zhuǎn)錄激活、轉(zhuǎn)錄干擾及原癌基因活化等多種生物學(xué)過程[23]。LncRNA在DTC中的研究處于起步階段,一項DTC攝碘相關(guān)的研究顯示,lncRNA-SLC6A9-5:2在碘抵抗的細(xì)胞及局部復(fù)發(fā)不攝碘的甲狀腺癌組織中顯著低表達[24]。Qiu等[25]對5例碘難治肺轉(zhuǎn)移DTC與5例攝碘肺轉(zhuǎn)移DTC患者進行血漿lncRNA表達譜芯片研究,并在20對獨立樣本中進行了PCR驗證,結(jié)果表明,血漿ENST00000462717、ENST00000415582高表達及TCONS_00024700、NR_028494低表達的肺轉(zhuǎn)移DTC患者更容易出現(xiàn)碘難治狀態(tài)且預(yù)后更差。但由于受單中心研究、樣本量較小的局限,臨床應(yīng)用前尚需進一步驗證。利用循環(huán)外周血標(biāo)本篩選差異表達的lncRNA,或可為RAIR-DTC的早期識別提供轉(zhuǎn)化醫(yī)學(xué)的依據(jù)。
2.1.5 miRNA
miRNA是一類20~24個核苷酸長度的非編碼小分子RNA,通常與信使RNA的3’非翻譯區(qū)互補結(jié)合,在后轉(zhuǎn)錄水平調(diào)節(jié)信使RNA的表達[26]。
以往DTC中miRNA表達譜的研究多集中在PTC及FTC與良性結(jié)節(jié)的鑒別診斷[27-30],近年來深入到DTC復(fù)發(fā)及侵襲性方面。有研究顯示,miR-146b、miR-21和miR-203的高表達與DTC的侵襲性相關(guān)[31-33]。Lee等[34]的研究表明,miRNA-222及miRNA-146b在PTC腫瘤及循環(huán)外周血中的高表達可作為PTC復(fù)發(fā)的指標(biāo)。Minna等[35]的研究顯示,miRNA不僅促進致癌基因的表達,miR-199a-3p也可在PTC中發(fā)揮腫瘤抑制作用,在PTC細(xì)胞系中降低MET及mTOR蛋白表達,抑制遷移及增殖。近期有研究顯示,miRNA-339-5p的過表達可使HEK293細(xì)胞系中NIS介導(dǎo)的131I攝取降低,并使NIS信使RNA的表達下降[36]。而在DTC失分化細(xì)胞系中敲降miRNA-146b,可上調(diào)NIS信使RNA的表達[37]。目前,國內(nèi)外對RAIR-DTC的miRNA研究尚局限于體外水平,缺乏不攝碘腫瘤組織或患者外周血miRNA的研究。
2.2 分子影像學(xué)手段
NIS的表達下降或易位表達在131I全身顯像中表現(xiàn)為顯影的減淡或缺失,不攝碘病灶常用CT、超聲等影像學(xué)手段結(jié)合血清Tg水平的變化進行甄別。在臨床工作中,常見兩種情況:①Tg可疑升高,131I全身顯像陰性,其他影像學(xué)亦未提示可疑病灶,該情況探查定位難度大;②Tg陰性、131I全身顯像陰性,但超聲或CT等影像學(xué)提示存在可疑病灶。
2.2.1 18FDG-PET/CT
近年來,核醫(yī)學(xué)分子影像學(xué)手段在RAIRDTC判斷中的作用備受矚目。有研究顯示,18FDG-PET/CT探查不攝碘病灶的靈敏度及特異度均高達80%以上[38],且可靈敏提示DTC病灶的去分化趨勢[17]。2015年ATA指南強烈推薦18FDG-PET應(yīng)用于131I全身顯像陰性且Tg大于10 ng/mL的高危DTC患者[3]。
2.2.2 99mTc-MIBI顯像
18FDG-PET顯像由于價格昂貴限制了其在中國RAIR-DTC評估及隨訪中的應(yīng)用。有研究提示,99mTc-MIBI作為一種腫瘤非特異度陽性顯像劑可探查到91%的DTC轉(zhuǎn)移病灶[39]。本課題組以往的研究提示,99mTc-MIBI顯像也可用于RAIR-DTC病灶的定位[40]。
2.2.3 RGD顯像
本課題組曾首次在國際上針對RAIR-DTC遠(yuǎn)處轉(zhuǎn)移病灶采用反應(yīng)腫瘤新生血管生成的整合素ανβ3受體顯像研究,提示99mTc-RGD整合素受體SPECT可探查到攝碘較差的病灶,且病灶對示蹤劑的攝取與腫瘤生長呈正相關(guān)[41]。68Ga-RGD PET整合素ανβ3受體顯像具有相對于99mTc-RGD SPECT更高的靈敏度和分辨率,更有利于病灶的定量分析,有研究顯示出利用68Ga-RGD PET監(jiān)測碘掃描陰性且Tg升高的DTC病灶的有效性[42]。
2.3 血清學(xué)特征
多項研究證實,血清Tg與DTC的遠(yuǎn)處轉(zhuǎn)移、風(fēng)險分層及治療反應(yīng)密切相關(guān)[43-45]。Tg的動態(tài)水平變化被用于DTC碘治療前評估及監(jiān)測復(fù)發(fā)或轉(zhuǎn)移。由于受到手術(shù)后殘余甲狀腺組織、血清TSH及Tg抗體水平等因素的影響,目前的ATA指南并未給出明確的Tg臨界點用以指導(dǎo)131I治療決策。本課題組一項對244例DTC患者的研究顯示,碘治療前刺激性Tg預(yù)測遠(yuǎn)處轉(zhuǎn)移的最佳臨界點為52.75 ng/mL,該結(jié)果為治療前影像學(xué)評估陰性僅由131I治療后顯像發(fā)現(xiàn)的遠(yuǎn)處微轉(zhuǎn)移患者提供了依據(jù),避免了這部分患者的治療不足問題[43]。另一項研究證實,高刺激性Tg水平(大于26.75 ng/mL)為碘治療后影像學(xué)反應(yīng)不佳的獨立預(yù)測因素[45]。因此,Tg的動態(tài)監(jiān)測有助于RAIR-DTC的預(yù)測及療效評估。
2015年ATA指南強烈推薦:一旦DTC患者被診斷為碘難治,即不再適合給予進一步的碘治療[3]。然而上述4類RAIR-DTC經(jīng)碘治療后的臨床獲益略有不同并且仍存在爭議。對于存在可見的攝碘病灶,但經(jīng)過幾次131I治療后病灶穩(wěn)定、無法治愈且無進展的患者,尤其是在接受了超過600 mCi的131I后,是否應(yīng)該繼續(xù)131I治療或何時放棄131I治療尚未達成共識。目前指南中,針對131I治療后通過18FDG-PET/CT與131I全身顯像對比發(fā)現(xiàn)僅部分病灶攝碘的患者治療意見尚無定論,部分傾向于先對攝碘病灶進行碘治療,再針對不攝碘病灶調(diào)整治療方案[46-47]。但尚未有針對攝碘及不攝碘病灶負(fù)荷的定量評估及權(quán)重后決策治療的研究證據(jù)。
4.1 多靶點抑制劑
4.1.1 索拉非尼
索拉非尼是一種口服多激酶抑制劑,可抑制RAF-1、B-RAF激酶活性,以及VGFR-2、VGFR-3、PDGFR-β、KIT等多種受體的酪氨酸激酶活性。不僅可阻斷由RAF/MEK/ERK介導(dǎo)的細(xì)胞信號通路而直接抑制腫瘤細(xì)胞增殖,而且可直接作用于VEGFR和PDGFR,阻斷腫瘤新生血管的生成、切斷腫瘤細(xì)胞的營養(yǎng)供應(yīng),從而間接抑制腫瘤細(xì)胞的生長。美國食品藥品監(jiān)督管理局(Food and Drug Administration,F(xiàn)DA)曾于2005年批準(zhǔn)索拉非尼用于治療晚期腎癌,2007年又?jǐn)U大了該藥的適應(yīng)證,還用于治療不能手術(shù)切除的肝癌。
2014年,索拉非尼用于碘難治性分化型甲狀腺癌的Ⅲ期臨床研究結(jié)果表明,其相較于安慰劑可以延長5個月(10.8個月vs 5.8個月)的無進展生存期(progression free survival,PFS) (HR=0.59,95%CI:0.46~0.76,P<0.001)[48]。2013年11月,F(xiàn)DA通過優(yōu)先審查批準(zhǔn)了索拉非尼用于治療局部復(fù)發(fā)或轉(zhuǎn)移的進展性RAIRDTC。2017年3月,中國國家食品藥品監(jiān)督管理局(China Food and Drug Administration,CFDA)也批準(zhǔn)了索拉非尼這一適應(yīng)證。推薦劑量:400 mg/次,每天2次。
4.1.2 樂伐替尼
樂伐替尼是另外一種口服多受體酪氨酸激酶抑制劑,可選擇性抑制VEGFR1-3、FGFR1-4、PDGFR、RET和c-Kit激酶活性[49-50]。2015年Schlumberger等[51]的隨機、對照臨床Ⅲ期研究結(jié)果顯示,其效果較索拉非尼更為顯著,可以延長14.7個月(18.3個月 vs 3.6個月,HR=0.21,99%CI:0.14~0.31,P<0.001)的PFS。樂伐替尼獲得的緩解率(完全緩解率+部分緩解率)可達64.8%。目前,該研究的總生存期(overall survival,OS)數(shù)據(jù)尚未獲得。近期研究顯示,不同BRAF/RAS突變類型的RAIR-DTC患者服用樂伐替尼后獲得的PFS差異無統(tǒng)計學(xué)意義[52]。
2015年2月,F(xiàn)DA批準(zhǔn)了樂伐替尼可用于治療局部復(fù)發(fā)或轉(zhuǎn)移的進展性RAIR-DTC。推薦劑量:24 mg/次,每天1次。樂伐替尼在中國的Ⅲ期臨床研究正在開展中,CFDA暫未批準(zhǔn)其在國內(nèi)上市。
其他多靶點抑制劑包括舒尼替尼、卡博替尼和帕唑替尼的Ⅰ期/Ⅱ期臨床試驗正在研究中。
4.2 選擇性BRAF抑制劑
4.2.1 維羅非尼
維羅非尼為一種選擇性BRAF抑制劑。一項Ⅱ期研究對51例伴有BRAF突變的RAIR-DTC患者給予口服維羅非尼治療,960 mg/次,每天2次。結(jié)果顯示,以往未經(jīng)TKI治療的患者的總有效率高于以往接受過TKI治療的患者,中位PFS分別為18.2和8.9個月[53]。
4.2.2 達拉非尼
達拉非尼在一項Ⅰ期臨床研究中顯示出其對治療BRAF突變的進展期甲狀腺癌患者的顯著療效,14例BRAF突變的進展期DTC患者在接受達拉非尼治療后,4例部分緩解,6例疾病穩(wěn)定[54]。
4.3 選擇性VEGFR抑制劑
阿帕替尼是中國自主研制的一種新型小分子TKI,可高選擇性阻斷VEGFR-2及其下游信號通路,從而抑制腫瘤血管內(nèi)皮細(xì)胞的增殖及遷移,達到治療腫瘤的效果[51,55-56]。在阿帕替尼的Ⅱ期臨床研究中,中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)院核醫(yī)學(xué)科對10例進展性RAIR-DTC患者服用阿帕替尼后的短期療效進行評價,結(jié)果顯示,8例患者的Tg水平在治療8周后較基線水平下降了81.4%,短期疾病控制率和客觀緩解率分別高達100%和90%[57]。這一結(jié)果初步證實了其短期、快速的療效,但有關(guān)其長期療效及對患者生存的獲益尚有待進一步研究。目前,中國已開展阿帕替尼的Ⅲ期臨床研究。
4.4 誘導(dǎo)再分化治療
司美替尼為小分子MAPK激酶(MEK-1和MEK-2)抑制劑。其作為分子靶向治療藥物在誘導(dǎo)再分化中的作用日益凸顯,通過逆轉(zhuǎn)碘抵抗,有可能使患者再次接受碘治療,提高RAIRDTC患者的OS。而以往傳統(tǒng)誘導(dǎo)再分化治療的藥物如維甲酸類、PPAR-γ激動劑的臨床研究并不成功。2013年Ho等[58]報道了司美替尼治療RAIR-DTC,較之前的藥物明顯改善了病灶的攝碘能力和碘滯留時間,且基因攜帶RAS突變的患者獲益可能更大[58]。但其長期療效尚在觀察中。推薦劑量:75 mg/次,每天2次。
4.5 分子靶向治療挑戰(zhàn)
近年來針對RAIR-DTC分子機制的研究取得了很多進展,許多分子靶向治療藥物呈現(xiàn)出廣闊的應(yīng)用前景(表1)。但同時,應(yīng)指出即使處于碘難治性的狀態(tài),部分RAIR-DTC患者仍可生存3~5年甚至更長時間,有關(guān)靶向治療時機的把握仍是難題。在無癥狀、病情穩(wěn)定或緩慢無快速進展趨勢時,目前各指南均建議可繼續(xù)TSH抑制治療,同時每3~12個月密切隨訪血清學(xué)及影像學(xué)變化,不必開始相關(guān)其他治療[59-61]。
此外,目前靶向藥物的獲益僅在于改善了患者的PFS,在一定程度上使腫瘤縮小,但尚無任何一種靶向藥物的研究證實其延長患者的OS,且由于均具有一定的不良反應(yīng),一旦患者入組臨床試驗,獲益或風(fēng)險如何權(quán)衡,給用藥前患者的選擇、適應(yīng)證的把握帶來難度。用藥前后患者的評估、長期隨訪的評價及撤藥原則均缺乏統(tǒng)一的標(biāo)準(zhǔn)。
對于腦、肺、肝及骨轉(zhuǎn)移病灶,通常應(yīng)用局部治療而非手術(shù)治療。在遠(yuǎn)處轉(zhuǎn)移病灶出現(xiàn)癥狀時,局部治療應(yīng)優(yōu)先于全身系統(tǒng)治療。局部治療也適用于全身系統(tǒng)治療過程中某一個病灶的進展。這部分患者可通過局部治療預(yù)防局部并發(fā)癥,減輕疼痛,延遲系統(tǒng)治療開始的時間,進而延長生存時間。立體定向放療(stereotactic body radiotherapy,SBRT)、調(diào)強放療(intensity-modulated radiotherapy,IMRT)、射頻消融(radiofrequency ablation,RFA)及冷凍治療為常用的局部治療手段。2015年ATA指南強烈推薦:對于有癥狀的、伴有局部并發(fā)癥高危風(fēng)險的遠(yuǎn)處轉(zhuǎn)移RAIR-DTC,SBRT、RFA或冷凍治療應(yīng)優(yōu)先于全身系統(tǒng)治療[3]。
由于治療甲狀腺癌遠(yuǎn)處轉(zhuǎn)移病灶的經(jīng)驗及研究較少,大多可借鑒的數(shù)據(jù)來自其他原發(fā)部位腫瘤的轉(zhuǎn)移病灶。SBRT常被用于治療腦、肝、肺及骨轉(zhuǎn)移病灶。對于1~3個腦轉(zhuǎn)移病灶的RAIR-DTC,SBRT的有效性與手術(shù)治療相當(dāng)[62]。而SBRT在累積劑量20~75 Gy時,肺轉(zhuǎn)移病灶的控制率為63%~98%,肝轉(zhuǎn)移病灶的控制率為57%~100%[63]。SBRT骨轉(zhuǎn)移病灶的控制率為88%~100%,疼痛緩解率為30%~83%[64]。SBRT治療甲狀腺癌遠(yuǎn)處轉(zhuǎn)移病灶的相關(guān)研究較少,目前的治療推薦主要基于其他實體腫瘤的臨床試驗證據(jù)。RFA常用于治療肝、肺及骨轉(zhuǎn)移病灶。臨床試驗顯示,肝轉(zhuǎn)移病灶應(yīng)用RFA,局部控制率可達40%~80%[65-66]。關(guān)于遠(yuǎn)處轉(zhuǎn)移性DTC的研究顯示,RFA治療肺、骨及肝轉(zhuǎn)移病灶可獲得較好的局部控制率[63,67-68]。而冷凍治療已嘗試用于DTC骨轉(zhuǎn)移病灶的治療,可減輕癌痛,控制局部病情[69-70]。
表1 用于治療RAIR-DTC的分子靶向藥物Tab. 1 Targeted therapy for RAIR-DTC
目前尚缺乏針對上述不同局部治療措施的有效性、可耐受程度的前瞻性隨機對照實驗研究,臨床醫(yī)師的治療選擇多根據(jù)臨床實踐中積累的經(jīng)驗、轉(zhuǎn)移病灶的實際情況及患者的身體條件進行決策。
1974年FDA批準(zhǔn)多柔比星用于治療轉(zhuǎn)移性甲狀腺癌。該藥僅能使5%上皮細(xì)胞來源的甲狀腺癌獲得部分緩解,多用于綜合性姑息治療[71]。
綜上所述,RAIR-DTC是甲狀腺癌臨床診斷治療中的難點,目前RAIR-DTC的診斷體系亟待完善,分子影像學(xué)、分子遺傳學(xué)及血清學(xué)指標(biāo)的聯(lián)合應(yīng)用,將有可能為RAIR-DTC的及早發(fā)現(xiàn)并避免不必要的131I治療提供分子依據(jù),并為其他可能獲益的治療手段如手術(shù)、IMRT、RFA及分子靶向治療等的盡早干預(yù)爭取時間。靶向藥物治療的指征把握、療效及評估手段等仍存在爭議,因此如何進行RAIR-DTC的個體化治療,如何在療效及不良反應(yīng)間平衡取舍,并提高這部分患者的OS仍是今后努力的方向和在臨床研究中需要密切關(guān)注的重點。
[1] VAN TOL K M, JAGER P L, DE VRIES E G, et al. Outcome in patients with differentiated thyroid cancer with negative diagnostic whole-body scanning and detectable stimulated thyroglobulin[J]. Eur J Endocrinol, 2003, 148(6): 589-596.
[2] DURANTE C, HADDY N, BAUDIN E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy[J]. J Clin Endocrinol Metab, 2006, 91(8): 2892-2899.
[3] HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer[J]. Thyroid, 2016, 26(1): 1-133.
[4] SCHLUMBERGER M, BROSE M, ELISEI R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer[J]. Lancet Diabetes Endocrinol, 2014, 2(5): 356-358.
[5] FABBRO D, DI LORETO C, BELTRAMI C A, et al. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms[J]. Cancer Res, 1994, 54(17): 4744-4749.
[6] MU D, HUANG R, LI S, et al. Combining transfer of TTF-1 and Pax-8 gene: a potential strategy to promote radioiodine therapy of thyroid carcinoma[J]. Cancer Gene Ther, 2012, 19(6): 402-411.
[7] AU A Y, MCBRIDE C, WILHELM K G, et al. PAX8-peroxisome proliferator-activated receptor gamma (PPARgamma) disrupts normal PAX8 or PPARgamma transcriptional function and stimulates follicular thyroid cell growth[J]. Endocrinology, 2006, 147(1): 367-376.
[8] REDDI H V, MCIVER B, GREBE S K, et al. The paired box-8/peroxisome proliferator-activated receptor-gamma oncogene in thyroid tumorigenesis[J]. Endocrinology, 2007, 148(3): 932-935.
[9] ZHANG Q, LIU S Z, GUAN Y X, et al. Meta-analyses of association between BRAF(V600E) mutation and clinicopathological features of papillary thyroid carcinoma[J]. Cell Physiol Biochem, 2016, 38(2): 763-776.
[10] DAVIES H, BIGNELL G R, COX C, et al. Mutations of the BRAF gene in human cancer[J]. Nature, 2002, 417(6892): 949-954.
[11] ZHANG Z, LIU D, MURUGAN A K, et al. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer[J]. Endocr Relat Cancer, 2014, 21(2): 161-173.
[12] DURANTE C, PUXEDDU E, FERRETTI E, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism[J]. J Clin Endocrinol Metab, 2007, 92(7): 2840-2843.
[13] SOARES P, LIMA J, PRETO A, et al. Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas[J]. Curr Genomics, 2011, 12(8): 609-617.
[14] RIESCO-EIZAGUIRRE G, RODRIGUEZ I, DE LA VIEJA A, et al. The BRAF V600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer[J]. Cancer Res, 2009, 69(21): 8317-8325.
[15] RICARTE-FILHO J C, RYDER M, CHITALE D A, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinctpathogenetic roles for BRAF, PIK3CA, and AKT1[J]. Cancer Res, 2009, 69(11): 4885-4893.
[16] YANG K, WANG H, LIANG Z, et al. BRAFV600E mutation associated with non-radioiodine-avid status in distant metastatic papillary thyroid carcinoma[J]. Clin Nucl Med, 2014, 39(8): 675-679.
[17] LIU X, BISHOP J, SHAN Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers[J]. Endocr Relat Cancer, 2013, 20(4): 603-610.
[18] LIU T, WANG N, CAO J, et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas[J]. Oncogene, 2014, 33(42): 4978-4984.
[19] SHI X, LIU R, QU S, et al. Association of TERT promoter mutation 1 295 228 C>T with BRAF V600E mutation, older patient age, and distant metastasis in anaplastic thyroid cancer[J]. J Clin Endocrinol Metab, 2015, 100(4): 632-637.
[20] MUZZA M, COLOMBO C, ROSSI S, et al. Telomerase in differentiated thyroid cancer: promoter mutations, expression and localization[J]. Mol Cell Endocrinol, 2015, 399: 288-295.
[21] XING M, LIU R, LIU X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence[J]. J Clin Oncol, 2014, 32(25): 2718-2726.
[22] YANG X, LI J, LI X, et al. TERT promoter mutation predicts radioiodine refractory in distant metastatic differentiated thyroid cancer[J]. J Nucl Med, 2017, 58(2): 258-265.
[23] WANG K C, CHANG H Y. Molecular mechanisms of long noncoding RNAs[J]. Mol Cell, 2011, 43(6): 904-914.
[24] XIANG C, ZHANG M L, ZHAO Q Z, et al. LncRNASLC6A9-5:2: A potent sensitizer in131I-resistant papillary thyroid carcinoma with PARP-1 induction[J]. Oncotarget, 2017, 8(14): 22954-22967.
[25] QIU Z L, SHEN C T, SUN Z K, et al. Circulating long noncoding RNAs act as biomarkers for predicting131I uptake and mortality in papillary thyroid cancer patients with lung metastases[J]. Cell Physiol Biochem, 2016, 40(6): 1377-1390.
[26] GHILDIYAL M, ZAMORE P D. Small silencing RNAs: an expanding universe[J]. Nat Rev Genet, 2009, 10(2): 94-108.
[27] ZHANG X, LI M, ZUO K, et al. Upregulated miR-155 in papillary thyroid carcinoma promotes tumor growth by targeting APC and activating Wnt/beta-catenin signaling[J]. J Clin Endocrinol Metab, 2013, 98(8): E1305-E1313.
[28] CHOU C K, CHEN R F, CHOU F F, et al. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF (V600E) mutation[J]. Thyroid, 2010, 20(5): 489-494.
[29] LIU X, HE M, HOU Y, et al. Expression profiles of microRNAs and their target genes in papillary thyroid carcinoma[J]. Oncol Rep, 2013, 29(4): 1415-1420.
[30] ROSSING M, BORUP R, HENAO R, et al. Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma[J]. J Mol Endocrinol, 2012, 48(1): 11-23.
[31] CHEN Y T, KITABAYASHI N, ZHOU X K, et al. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma[J]. Mod Pathol, 2008, 21(9): 1139-1146.
[32] CHOU C K, YANG K D, CHOU F F, et al. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma[J]. J Clin Endocrinol Metab, 2013, 98(2): 196-205.
[33] HUANG Y, LIAO D, PAN L, et al. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAF V600E mutation[J]. Eur J Endocrinol, 2013, 168(5): 675-681.
[34] LEE J C, ZHAO J T, CLIFTON-BLIGH R J, et al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer[J]. Cancer, 2013, 119(24): 4358-4365.
[35] MINNA E, ROMEO P, DE CECCO L, et al. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma[J]. Oncotarget, 2014, 5(9): 2513-2528.
[36] LAKSHMANAN A, WOJCICKA A, KOTLAREK M, et al. microRNA-339-5p modulates Na+/I- symporter-mediated radioiodide uptake[J]. Endocr Relat Cancer, 2015, 22(1): 11-21.
[37] BASTOS A U, OLER G, NOZIMA B H, et al. BRAF V600E and decreased NIS and TPO expression are associated with aggressiveness of a subgroup of papillary thyroid microcarcinoma[J]. Eur J Endocrinol, 2015, 173(4): 525-540.
[38] LEBOULLEUX S, SCHROEDER P R, SCHLUMBERGER M, et al. The role of PET in follow-up of patients treated for differentiated epithelial thyroid cancers[J]. Nat Clin Pract Endocrinol Metab, 2007, 3(2): 112-121.
[39] CAMPENNI A, VIOLI M A, RUGGERI R M, et al. Clinical usefulness of99mTc-MIBI scintigraphy in the postsurgical evaluation of patients with differentiated thyroid cancer[J]. Nucl Med Commun, 2010, 31(4): 274-279.
[40] WANG J, ZHANG R. Evaluation of 99mTc-MIBI in thyroid gland imaging for the diagnosis of amiodarone-induced thyrotoxicosis[J]. Br J Radiol, 2017, 90(1071): 20160836.
[41] ZHAO D, JIN X, LI F, et al. Integrin alphavbeta3 imaging of radioactive iodine-refractory thyroid cancer using99mTc-3PRGD2[J]. J Nucl Med, 2012, 53:1872-1877.
[42] VATSA R, SHYKLA J, MITTAL B R, et al. Usefulness of68Ga-DOTA-RGD (ανβ3) PET/CT imaging in thyroglobulin elevation with negative iodine scintigraphy[J]. Clin Nucl Med, 2017, 42(6): 471-472.
[43] LIN Y, LI T, LIANG J, et al. Predictive value of preablation stimulated thyroglobulin and thyroglobulin/thyroid-stimulating hormone ratio in differentiated thyroid cancer[J]. Clin Nucl Med, 2011, 36(12): 1102-1105.
[44] YANG X, LIANG J, LI T J, et al. Postoperative stimulated thyroglobulin level and recurrence risk stratification in differentiated thyroid cancer[J]. Chin Med J (Engl), 2015, 128(8): 1058-1064.
[45] YANG X, LIANG J, LI T, et al. Preablative stimulated thyroglobulin correlates to new therapy response system in differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2016, 101(3): 1307-1313.
[46] ROBBINS R J, WAN Q, GREWAL R K, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning[J]. J Clin Endocrinol Metab, 2006, 91(2): 498-505.
[47] LEBOULLEUX S, EL BEZ I, BORGET I, et al. Postradioiodine treatment whole-body scan in the era of 18-fluorodeoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels[J]. Thyroid, 2012, 22(8): 832-838.
[48] BROSE M S, NUTTING C M, JARZAB B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328.
[49] MATSUI J, YAMAMOTO Y, FUNAHASHI Y, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition[J]. Int J Cancer, 2008, 122(3): 664-671.
[50] MATSUI J, FUNAHASHI Y, UENAKA T, et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase[J]. Clin Cancer Res, 2008, 14(17): 5459-5465.
[51] SCHLUMBERGER M, TAHARA M, WIRTH L J, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(7): 621-630.
[52] TAHARA M, SCHLUMBERGER M, ELISEI R, et al. Exploratory analysis of biomarkers associated with clinical outcomes from the study of lenvatinib in differentiated cancer of the thyroid[J]. Eur J Cancer, 2017, 75: 213-221.
[53] BROSE M S, CABANILLAS M E, COHEN E E, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, openlabel, phase 2 trial[J]. Lancet Oncol, 2016, 17(9): 1272-1282.
[54] FALCHOOK G S, MILLWARD M, HONG D, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer[J]. Thyroid, 2015, 25(1): 71-77.
[55] LI J, QIN S, XU J, et al. Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized, placebo-controlled, parallel-arm, phase Ⅱ trial[J]. J Clin Oncol, 2013, 31(26): 3219-3225.
[56] LI J, QIN S, XU J, et al. Randomized, double-blind, placebo-controlled phase Ⅲ trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction[J]. J Clin Oncol, 2016, 34(13): 1448-1454.
[57] LIN Y, WANG C, GAO W, et al. Overwhelming rapid metabolic and structural response to apatinib in radioiodine refractory differentiated thyroid cancer[J]. Oncotarget, 2017. [Epub ahead of print].
[58] HO A L, GREWAL R K, LEBOEUF R, et al. Selumetinibenhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7): 623-632.
[59] HAUGEN B R. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: What is new and what has changed?[J]. Cancer, 2017, 123(3): 372-381.
[60] 譚 建, 蔣寧一, 李 林, 等.131I治療分化型甲狀腺癌指南(2014版)[J].中華核醫(yī)學(xué)與分子影像雜志, 2014, 34(4): 264-278.
[61] 林巖松, 張 彬, 梁智勇, 等. 復(fù)發(fā)轉(zhuǎn)移性分化型甲狀腺癌診治共識[J].中國癌癥雜志, 2015, 25(7): 481-496.
[62] KOCHER M, SOFFIETTI R, ABACIOGLU U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study[J]. J Clin Oncol, 2011, 29(2): 134-141.
[63] BONICHON F, PALUSSIERE J, GODBERT Y, et al. Diagnostic accuracy of18F-FDG PET/CT for assessing response to radiofrequency ablation treatment in lung metastases: a multicentre prospective study[J]. Eur J Nucl Med Mol Imaging, 2013, 40(12): 1817-1827.
[64] LO S S, FAKIRIS A J, TEH B S, et al. Stereotactic body radiation therapy for oligometastases[J]. Expert Rev Anticancer Ther, 2009, 9(5): 621-635.
[65] DE BAERE T, ELIAS D, DROMAIN C, et al. Radiofrequency ablation of 100 hepatic metastases with a mean follow-up of more than 1 year[J]. AJR Am J Roentgenol, 2000, 175(6): 1619-1625.
[66] SOLBIATI L, LIVRAGHI T, GOLDBERG S N, et al. Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients[J]. Radiology, 2001, 221(1): 159-166.
[67] MONCHIK J M, DONATINI G, IANNUCCILLI J, DUPUY D E. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma[J]. Ann Surg, 2006, 244(2): 296-304.
[68] WERTENBROEK M W, LINKS T P, PRINS T R, et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma[J]. Thyroid, 2008, 18(10): 1105-1110.
[69] SUSA M, KIKUTA K, NAKAYAMA R, et al. CT guided cryoablation for locally recurrent or metastatic bone and soft tissue tumor: initial experience[J]. BMC Cancer, 2016, 16(1): 798.
[70] HEGG R M, KURUP A N, SCHMIT G D, et al. Cryoablation of sternal metastases for pain palliation and local tumor control[J]. J Vasc Interv Radiol, 2014, 25(11): 1665-1670.
[71] GOTTLIEB J A, HILL C S. Chemotherapy of thyroid cancer with adriamycin. Experience with 30 patients[J]. N Engl J Med, 1974, 290(4): 193-197.
Research progress in diagnosis and treatment of radioiodine-refractory differentiated thyroid cancer
LIN Yansong, YANG Xue (Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China)
LIN Yansong E-mail: linys@pumch.cn
Surgery, selective radioiodine therapy and thyroid stimulating hormone suppressive therapy are the standard treatment modalities for differentiated thyroid cancer (DTC). After therapy, most DTC patients could get good prognosis. However, some patients with distant metastasis lose the ability to concentrate radioiodine at early time or during the treatment, and develop radioiodine-refractory DTC (RAIR-DTC). These patients progress quickly and have high mortality. Looking for effective treatments for these patients has been the hot spot in research of thyroid carcinoma. In this paper, we summarized the recent advances in the diagnosis and treatment of RAIR-DTC, hoping to early identify these patients and buy time for early intervention of other possible beneficial treatments such as targeted therapy and radiotherapy.
Thyroid cancer; Radioiodine; Refractory; Progress
10.19401/j.cnki.1007-3639.2017.06.008
R736.1
A
1007-3639(2017)06-0442-09
2017-03-15)
國家自然科學(xué)基金資助項目(81571714)。
林巖松 E-mail: linys@pumch.cn