林琴琴,耿元文,田振軍
間歇有氧運(yùn)動(dòng)激活miR-21/SIRT1/NF-κB通路改善心梗大鼠腎功能研究
林琴琴1,耿元文1,田振軍2
臨床上,心肌梗死 (Myocardial Infarction,MI) 患者常伴有由腎小球?yàn)V過功能受損和水重吸收異常引起腎功能不全而導(dǎo)致的下肢浮腫[9,13]。水通道蛋白家族(aquaproins,AQPs),尤其是通過精氨酸加壓素 (arginine vassopressin,AVP) 2型受體(Vasopressin V2-receptor,V2R)調(diào)控的AQP2在腎臟水的重吸收中發(fā)揮主要作用[11]。我們的前期研究表明,持續(xù)和間歇有氧運(yùn)動(dòng)均可減少慢性心衰大鼠腎臟AQP2的表達(dá)[1,23],但間歇有氧運(yùn)動(dòng)對急性心梗后腎臟AQP2蛋白表達(dá)及其機(jī)制尚不清楚。
有文獻(xiàn)報(bào)道,心梗大鼠心肌缺血部位外源性注射microRNA-21 (miR-21)可減少心肌纖維化,降低心梗面積,抑制細(xì)胞凋亡,保護(hù)心臟組織結(jié)構(gòu)和功能[15]。除心臟保護(hù)作用外,miR-21過表達(dá)可抑制腎臟炎癥反應(yīng)和細(xì)胞凋亡,保護(hù)缺血再灌注導(dǎo)致的腎臟損傷[31]。運(yùn)動(dòng)干預(yù)可上調(diào)創(chuàng)傷性腦損傷大鼠大腦miR-21表達(dá),進(jìn)而減輕腦水腫,降低病變體積[3]。但針對間歇有氧運(yùn)動(dòng),是否可通過上調(diào)心梗大鼠腎臟miR-21表達(dá),改善腎臟功能,鮮有文獻(xiàn)報(bào)道。
組蛋白去乙?;窼irtuin1 (SIRT1) 在腎臟疾病發(fā)生發(fā)展中的作用及其調(diào)控機(jī)制日益受到關(guān)注。腎臟特異過表達(dá)SIRT1可顯著增加線粒體數(shù)目和功能,降低活性氧產(chǎn)生,抑制腎臟細(xì)胞凋亡,減緩順鉑導(dǎo)致的急性腎損傷[16]。而通過核因子κB (nuclear factor-kappa B,NF-κB) 信號通路,SIRT1抑制腎臟炎癥反應(yīng)[12],減少腦、肺水容量[25,27]。新近研究表明,miRs是SIRT1的重要調(diào)節(jié)者[6],但miR-21與SIRT1信號通路間的關(guān)系及間歇有氧運(yùn)動(dòng)是否通過miR-21激活SIRT1-NF-κB通路參與腎臟功能的調(diào)節(jié),少見文獻(xiàn)報(bào)道。因此,本研究擬探討間歇有氧運(yùn)動(dòng)對MI大鼠腎臟miR-21及其下游通路SIRT1-NF-κB表達(dá)和腎臟功能的影響。
1.1 主要儀器和試劑
主要試劑:DAB顯色試劑盒(購于武漢博士德)、生化試劑(購于南京建成生物科技有限公司)、TRIzol(購于Inventragtion)、反轉(zhuǎn)錄試劑盒(購于TAKARA)、兔抗多克隆抗體SIRT1(購于Bioworld)、乙?;疦F-κBp65 (Lys310,購于美國Abcam)、AQP2(購于美國Santa)、PCR引物(購于上海生工)、ELISA試劑盒(購于美國R&D公司)等。
主要儀器: PowerLab 8/30生理信號采集系統(tǒng)、BM-Ⅱ型病理組織包埋機(jī)、YT-6C生物組織攤烤片機(jī)、LEICA RM2126切片機(jī)、Bio-Rad電泳儀和轉(zhuǎn)移槽、Bio-Rad凝膠成像系統(tǒng)、BX51奧林巴斯光學(xué)顯微鏡、Thermo低溫高速離心機(jī)、尼康熒光顯微鏡、Bio-Rad PCR擴(kuò)增儀等。
1.2 動(dòng)物分組與MI模型制備
動(dòng)物分組: 3月齡雄性SD大鼠36只,初始體重180~220 g,由西安交通大學(xué)醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心提供。隨機(jī)分為假手術(shù)組 (Sham組)、心肌梗死組 (MI組)、心梗+間歇運(yùn)動(dòng)組(ME組),每組12只。動(dòng)物室內(nèi)溫度為20℃~23℃,濕度為50%~60%,標(biāo)準(zhǔn)嚙齒類動(dòng)物干燥飼料喂養(yǎng),自由飲食,光照與非光照各12 h。Sham組大鼠常規(guī)籠內(nèi)安靜飼養(yǎng),MI 組結(jié)扎左冠狀動(dòng)脈前降支(LAD)建立MI 模型。ME 組進(jìn)行為期8周的動(dòng)物跑臺(tái)訓(xùn)練。
MI模型制備: 5%戊巴比妥鈉腹腔麻醉,采用自制大鼠呼吸面罩進(jìn)行輔助呼吸(60次/min,潮氣量10 mL,呼吸比1:2),PowerLab 8/30生理信號采集系統(tǒng)記錄大鼠肢導(dǎo)心電圖 (ECG)。開胸暴露心臟,體視顯微鏡下,在左心耳根部和肺動(dòng)脈圓錐左緣交界下1~2 mm 處結(jié)扎左冠狀動(dòng)脈前降支( LAD)。結(jié)扎后可見左室靠近心尖部位的顏色逐漸變淺或變白,心電圖出現(xiàn)S-T段抬高或T波倒置現(xiàn)象。以此判定MI造模成功,之后逐層縫合關(guān)胸。為了排除手術(shù)因素干擾,Sham組大鼠手術(shù)過程同上,但僅穿線而不結(jié)扎LAD。ME組大鼠在MI模型成功后1 周開始訓(xùn)練。
1.3 間歇有氧運(yùn)動(dòng)方案
運(yùn)動(dòng)方案參考Wisloff訓(xùn)練模型略加改動(dòng)[31]。ME組大鼠術(shù)后1周進(jìn)行跑臺(tái)運(yùn)動(dòng)。第1周為適應(yīng)性訓(xùn)練 (10~15 m/min,30 min/天,共5 天)。正式訓(xùn)練采用遞增式跑臺(tái)訓(xùn)練,起始速度10 m/min,時(shí)間為10 min。之后進(jìn)行間歇有氧運(yùn)動(dòng),速度為25 m/min,運(yùn)動(dòng)時(shí)間7 min;后間歇3 min,速度為15 m/min,依次交替進(jìn)行。每天運(yùn)動(dòng)總時(shí)間為60 min,每周訓(xùn)練5 天,連續(xù)訓(xùn)練8周。
1.4 樣本處理及生化指標(biāo)測定
8 周運(yùn)動(dòng)結(jié)束后次日,測定心電圖,膀胱取尿、腹主動(dòng)脈取血后,迅速摘取腎臟,置于10%中性甲醛溶液中固定24 h,常規(guī)石蠟包埋、制片(5 μm),用于免疫熒光染色實(shí)驗(yàn)。另取腎臟,液氮驟冷,轉(zhuǎn)移至-80℃超低溫冰箱保存?zhèn)溆谩?/p>
血液及尿液樣本離心后留取上清液,嚴(yán)格參照試劑說明書對血清尿酸(uric acid,UA)及尿液尿酸和尿蛋白(urine protein,UP)含量進(jìn)行測定;運(yùn)用ELISA法,嚴(yán)格按照試劑盒說明書操作步驟對血清AVP及尿液AQP2的含量進(jìn)行檢測。
1.5 免疫熒光化學(xué)染色
切片脫蠟至水,PBS清洗,微波抗原修復(fù),PBS清洗,正常山羊血清封閉液 (37℃,60 min),一抗孵育 (AQP2,1:100),4℃過夜,PBS清洗,孵育二抗 (37℃,30 min),PBS清洗,甘油封閉液封片。每組均設(shè)置空白對照(PBS代替一抗和二抗)和陰性對照(PBS代替一抗)。尼康熒光顯微鏡觀察拍片。
1.6 Western Blot
采用RIPA提取腎臟總蛋白質(zhì),Bradford法測定蛋白濃度。10%~12% SDS聚丙烯酰胺凝膠垂直電泳分離后,轉(zhuǎn)至PVDF膜,麗春紅染膜,3% BSA室溫封閉30 min后,分別加入兔抗多克隆抗體SIRT1 (1:400)、乙?;疦F-κBp65 (1:400)和NF-κBp65 (1:400),4℃過夜,室溫復(fù)溫30 min后,加入HRP標(biāo)記的羊抗兔IgG二抗抗體 (1:10 000) 孵育30 min,TBST清洗,ECL發(fā)光。內(nèi)參為GAPDH (1:10 000)。
1.7 RT-qPCR
用TRIzol試劑提取腎臟總RNA,嚴(yán)格按照反轉(zhuǎn)錄試劑盒說明書操作步驟反轉(zhuǎn)錄合成cDNA,后進(jìn)行RT-qPCR反應(yīng),內(nèi)參為GAPDH。引物序列如下,V2R上游引物:5’-ATCTGCCGCCCTATGCTA-3’,下游引物:5’-CTGCCATTTCCCACATCAC-3’,擴(kuò)增產(chǎn)物長度為140 bp。GAPDH 上游引物:5’-ACAGCAACAGGGTGGTGGAC-3’,下游引物:5’-TTTGAGGGTGCAGCGAACTT-3’,擴(kuò)增產(chǎn)物為252 bp。反應(yīng)條件如下:95℃ 10 min,1 循環(huán);95℃ 15 s,60℃ 30 s,72℃ 30 s,40 循環(huán);72℃ 10 min。每個(gè)樣品重復(fù)檢測3次。利用2-△△Ct法計(jì)算相對基因表達(dá)量。
用TRIzol試劑提取腎臟總RNA,按microRNA反轉(zhuǎn)錄試劑盒說明書方法反轉(zhuǎn)錄合成cDNA,再以此cDNA為模板按PCR試劑盒進(jìn)行PCR反應(yīng)。引物和探針由寶生物工程有限公司(TaKaRa)設(shè)計(jì)和合成,U6為內(nèi)參。反應(yīng)條件如下:95℃ 30 s,1 個(gè)循環(huán);95℃ 5 s,60℃ 20 s,39 個(gè)循環(huán)。每個(gè)樣品重復(fù)檢測3次。利用2-△△Ct法計(jì)算miR-21的相對表達(dá)量。
1.8 數(shù)據(jù)統(tǒng)計(jì)
所有數(shù)據(jù)均采用SPSS 17.0統(tǒng)計(jì)軟件進(jìn)行處理,采用單因素方差分析 (One-way Analysis of Variance,ANOVA)進(jìn)行統(tǒng)計(jì)學(xué)分析。顯著性差異選擇P<0.05和P<0.01水平。所有數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差 (X±SD)表示。
2.1 心電圖記錄結(jié)果
ME 組8 周有氧運(yùn)動(dòng)后,觀察各組大鼠心電圖 (圖1):Sham組大鼠心電圖正常,P、Q、R、S、T 各波段規(guī)則;大鼠MI 后心電圖出現(xiàn)S-T 段抬高或T 波倒置現(xiàn)象,由此斷定MI模型造模成功; ME 組大鼠心電圖趨于正常,表明間歇有氧運(yùn)動(dòng)對MI模型大鼠是安全有效的,具有保護(hù)作用。
圖1 本研究8周實(shí)驗(yàn)結(jié)束后各組大鼠心電圖Figure 1. ECG Maps in Rats After 8 Weeks
2.2 腎臟miR-21、 SIRT1和NF-κBp65表達(dá)結(jié)果
與Sham組比較,MI組大鼠腎臟miR-21表達(dá)增加,SIRT1表達(dá)減少,NF-κBp65乙?;斤@著升高 (均為P<0.01)。與MI組比較,ME組腎臟miR-21表達(dá)增加,SIRT1表達(dá)增加,NF-κBp65乙?;矫黠@減少 (分別為P<0.01、P<0.01和P<0.05)。相關(guān)性分析結(jié)果顯示,腎臟miR-21與SIRT1呈顯著正相關(guān) (R=0.608,P<0. 01,圖2)。
圖2 各組大鼠腎臟miR-21、SIRT1和NF-κBp65表達(dá)變化示意圖Figure 2. The Changed Expression of miR-21,SIRT1 and NF-κBp65 in Rat Kidney
2.3 腎臟AVP和V2R表達(dá)結(jié)果
ELISA和RT-qPCR結(jié)果如圖3所示:與Sham組比較,MI組大鼠血清AVP水平升高,腎臟V2R mRNA表達(dá)顯著增加 (P<0.01)。與MI組比較,ME組血清AVP水平降低,腎臟V2R mRNA表達(dá)減少 (P<0.01) 。
圖3 各組大鼠AVP和V2R表達(dá)變化柱狀圖Figure 3. The Changed Expression of AVP and V2R in Rat Kidney
2.4 腎臟AQP2表達(dá)結(jié)果
圖4 各組大鼠AQP2表達(dá)變化Figure 4. The Changed Expression of AQP2 in Rat Kidney and Urine
免疫熒光染色結(jié)果如圖4所示,Sham組大鼠AQP2主要表達(dá)于腎臟集合管主細(xì)胞膜上。與Sham組比較,MI組大鼠AQP2在腎臟集合管主細(xì)胞膜和基底膜上均有表達(dá),且熒光強(qiáng)度較強(qiáng)。與MI組比較,ME組大鼠AQP2在腎臟集合管主細(xì)胞膜和基底膜上表達(dá)減少,且熒光強(qiáng)度明顯減弱。利用Western Blot、RT-qPCR和ELISA方法進(jìn)一步探討了間歇運(yùn)動(dòng)對MI大鼠腎臟AQP2表達(dá)的影響。結(jié)果顯示,MI組大鼠腎臟AQP2蛋白和mRNA表達(dá)及尿液AQP2水平顯著高于Sham組 (均為P<0.01)。與MI組比較,間歇運(yùn)動(dòng)可顯著減少M(fèi)E組大鼠腎臟AQP2蛋白和mRNA的表達(dá),降低尿液AQP2含量 (均為P<0.01)。
2.5 腎功能測定結(jié)果
與Sham組比較,MI組大鼠血清尿酸和尿液尿蛋白水平顯著增加 (均為P<0.01),尿液尿酸水平明顯減少 (P< 0.01)。與MI組比較,ME組大鼠血清尿酸和尿液尿蛋白水平顯著減少 (分別為P<0.05和P<0.01),而尿液尿酸水平明顯增加 (P<0.01,圖5)
圖5 各組大鼠尿酸和尿蛋白表達(dá)變化柱狀圖Figure 5. The Changed Expression of Uric Acid and Urine Protein
3.1 間歇運(yùn)動(dòng)可改善心梗后腎功能,減緩水潴留
心梗后腎臟膠原合成與降解失衡,心肌細(xì)胞外基質(zhì)沉積異常,氧化應(yīng)激增加[18],腎血流減少[27,28],腎臟纖維化與液體潴留,導(dǎo)致腎臟病理性重構(gòu)和腎臟功能紊亂[23]。本實(shí)驗(yàn)室前期研究證實(shí),持續(xù)和間歇運(yùn)動(dòng)可有效改善心衰大鼠腎臟纖維化和腎臟功能紊亂[1,23]。本研究結(jié)果顯示,MI大鼠血清尿酸水平和尿液尿蛋白較Sham組大鼠顯著升高,尿液尿酸濃度明顯降低。8周間歇有氧運(yùn)動(dòng)后,ME組大鼠血清尿酸水平顯著減少,尿液尿酸水平明顯增加,同時(shí)伴隨尿液尿蛋白水平的明顯降低。表明,間歇運(yùn)動(dòng)干預(yù)改善了心梗大鼠腎臟功能。同時(shí),本研究還發(fā)現(xiàn),心梗大鼠8周間歇運(yùn)動(dòng)干預(yù)后血清AVP濃度和腎臟V2R mRNA水平降低,腎臟內(nèi)髓質(zhì)AQP2表達(dá)減少,腎臟集合管主細(xì)胞膜上AQP2表達(dá)降低,腎臟AQP2蛋白和mRNA表達(dá)減少,尿液AQP2濃度亦顯著降低。說明,間歇運(yùn)動(dòng)可抑制AVP及V2R mRNA的表達(dá),從而抑制AQP2表達(dá),減少水通路開放數(shù)量,降低水的重吸收,增加尿排出量,緩解水潴留。但間歇運(yùn)動(dòng)對心梗后腎臟保護(hù)效應(yīng)的機(jī)制研究,缺少文獻(xiàn)報(bào)道。本研究重點(diǎn)關(guān)注間歇運(yùn)動(dòng)對改善心梗大鼠腎臟水潴留及miR-21-SIRT1-NF-κB通路激活是否會(huì)產(chǎn)生影響。
3.2 間歇運(yùn)動(dòng)可激活心梗大鼠腎臟miR-21/SIRT1/NF-κB通路,保護(hù)腎功能
有研究表明, miR-21高表達(dá)于心血管系統(tǒng),且在心肌成纖維細(xì)胞和心梗后心室重塑中發(fā)揮重要作用[4,5]。心梗大鼠心肌缺血部位外源性注射miR-21可減少心肌纖維化,降低心梗面積,抑制細(xì)胞凋亡,保護(hù)心臟組織結(jié)構(gòu)和功能[15]。除保護(hù)心臟作用外,miR-21在腎臟功能調(diào)節(jié)中發(fā)揮重要作用。病理情況下,miR-21預(yù)處理抑制腎臟纖維化,提高腎小球?yàn)V過功能,減緩病理性腎臟損傷[19,22]。上調(diào)miR-21表達(dá)可抑制腎臟炎癥反應(yīng),抑制腎小管上皮細(xì)胞凋亡,保護(hù)缺血再灌注導(dǎo)致的腎臟損傷[32]。推測miR-21可能與改善心梗后腎功能不全關(guān)系密切。因此認(rèn)為,miR-21高表達(dá)有助于保護(hù)腎臟功能,內(nèi)源性miR-21分泌增多的技術(shù)與方法值得高度關(guān)注。運(yùn)動(dòng)是刺激機(jī)體內(nèi)源性物質(zhì)表達(dá)分泌極其重要的方法之一。研究發(fā)現(xiàn),有氧運(yùn)動(dòng)可顯著增加慢性心力衰竭患者主動(dòng)脈內(nèi)皮細(xì)胞miR-21的表達(dá)[30]。運(yùn)動(dòng)能否有效刺激心梗后腎臟大量產(chǎn)生miR-21保護(hù)腎臟功能研究值得探討。本研究結(jié)果顯示,間歇有氧運(yùn)動(dòng)顯著促進(jìn)心梗后腎臟miR-21的表達(dá)。
新近研究發(fā)現(xiàn),SIRT1高表達(dá)于腎髓質(zhì)小管細(xì)胞中,保護(hù)和維持腎臟功能[10]。SIRT1的腎臟保護(hù)作用與其負(fù)性調(diào)節(jié)核因子NF-κB密切相關(guān),NF-κB是參與腎臟疾病發(fā)展的主要轉(zhuǎn)錄因子[20,24]。SIRT1可直接與NF-κB轉(zhuǎn)錄活性至關(guān)重要的位點(diǎn)RelA/p65亞基相互作用,去乙?;疪elA/p65亞基的Lys310殘基,抑制其活性,進(jìn)而抑制下游通路靶基因的表達(dá),保護(hù)受損腎臟[8,21]。體外實(shí)驗(yàn)證實(shí),SIRT1激活可明顯抑制小鼠皮質(zhì)集合管細(xì)胞NF-κB活性,減緩腎臟損傷[2]。動(dòng)物實(shí)驗(yàn)進(jìn)一步證實(shí),SIRT1活化可顯著下調(diào)代謝綜合征大鼠腎臟乙?;?NF-κB表達(dá), 降低血清尿酸水平,緩解腎臟損傷[25]。研究表明,NF-κB參與腎臟AQP2的表達(dá)調(diào)控[17]。本研究發(fā)現(xiàn),心梗大鼠腎臟SIRT1表達(dá)減少,NF-κB乙?;皆黾?,血清尿酸水平升高,AQP2表達(dá)增加;間歇有氧運(yùn)動(dòng)組心梗大鼠腎臟SIRT1表達(dá)增加, NF-κB乙酰化表達(dá)減少,血清尿酸水平和AQP2表達(dá)降低。提示,間歇有氧運(yùn)動(dòng)可能通過上調(diào)腎臟SIRT1表達(dá),靶向NF-κB信號通路,提升心梗大鼠腎臟功能。另有研究證實(shí),miRs通過調(diào)節(jié)靶基因表達(dá)在腎臟疾病進(jìn)展中發(fā)揮重要作用[7,14],且SIRT1表達(dá)受miRs調(diào)節(jié)[6]。有研究表明,抑制miR-449可增強(qiáng)腎小管上皮細(xì)胞SIRT1表達(dá),減緩順鉑導(dǎo)致的急性腎損傷[29];而減少miR-23b-3p表達(dá)可提高視網(wǎng)膜內(nèi)皮細(xì)胞SIRT1表達(dá),抑制乙?;疦F-κB表達(dá),減輕高糖誘導(dǎo)的糖尿病性視網(wǎng)膜病變[33]。
本研究發(fā)現(xiàn),間歇有氧運(yùn)動(dòng)顯著增加心梗大鼠腎臟miR-21和SIRT1的表達(dá),同時(shí),腎臟miR-21表達(dá)水平和SIRT1表達(dá)呈顯著正相關(guān)。推測,間歇有氧運(yùn)動(dòng)可能通過增加心梗大鼠腎臟局部miR-21表達(dá),激活其下游信號通路SIRT1-NF-κB。表明,間歇運(yùn)動(dòng)改善心梗大鼠腎臟功能,發(fā)揮腎臟保護(hù)效應(yīng),可能與miR-21-SIRT1-NF-κB通路的激活有關(guān)。
間歇有氧運(yùn)動(dòng)可顯著提高心梗大鼠腎臟miR-21表達(dá),激活miR-21/SIRT1/NF-κB通路,改善心梗大鼠腎臟功能。間歇有氧運(yùn)動(dòng)改善心梗大鼠腎臟功能與提高心梗大鼠腎臟miR-21表達(dá),激活miR-21/SIRT1/NF-κB通路關(guān)系密切。運(yùn)動(dòng)干預(yù)microRNAs表達(dá)研究與心腎保護(hù)效應(yīng),將為心梗及腎臟疾病患者運(yùn)動(dòng)康復(fù)手段篩選提供新思路。
[1] 林琴琴,耿元文,田振軍. 間歇有氧運(yùn)動(dòng)對慢性心衰大鼠腎臟功能和腎臟AQP2表達(dá)的影響及可能機(jī)制 [J]. 北京體育大學(xué)學(xué)報(bào),2014,37(9):61-67.
[2] BAE E H,JOO S Y,MA S K,et al. Resveratrol attenuates 4-hydroxy-2-hexenal-induced oxidative stress in mouse cortical collecting duct cells [J]. Korean J Physiol Pharmacol,2016,20(3):229-236.
[3] BAO T H,MIAO W,HAN J H,et al. Spontaneous running wheel improves cognitive functions of mouse associated with miRNA expressional alteration in hippocampus following traumatic brain injury [J]. J Mol Neurosci,2014,54(4):622-629.
[4] CAROLI A,CARDILLO M T,GALEA R,et al. Potential therapeutic role of microRNAs in ischemic heart disease [J]. J Cardiol,2013,61(5):315-320.
[5] CHENG Y,ZHANG C. MicroRNA-21 in cardiovascular disease [J]. J Cardiovasc Transl Res,2010,3(3):251-255.
[6] CHOI S E,KEMPER J K. Regulation of SIRT1 by microRNAs [J]. Mol Cells,2013,36(5):385-392.
[7] CHUNG A C. MicroRNAs in diabetic kidney disease [J]. Adv Exp Med Biol,2015,888:253-269.
[8] CHUNG S,YAO H,CAITO S,et al. Regulation of SIRT1 in cellular functions:Role of polyphenols [J]. Arch Biochem Biophys,2010,501(1):79-90.
[9] CLELAND J G,CARUBELLI V,CASTIELLO T,et al. Renal dysfunction in acute and chronic heart failure:Prevalence,incidence and prognosis [J]. Heart Fail Rev,2012,17(2):133-149.
[10] DONG Y J,LIU N,XIAO Z,et al. Renal protective effect of sirtuin 1 [J]. J Diabetes Res,2014,2014:843786.
[11] FUSHIMI K,UCHIDA S,HARA Y,et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule [J]. Nature,1993,361(6412):549-552.
[12] GAO R,CHEN J,HU Y,et al. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury [J]. PLoS One,2014,9(6):e98909.
[13] GIAMOUZIS G,KALOGEROPOULOS A P,BUTLER J,et al. Epidemiology and importance of renal dysfunction in heart failure patients [J]. Curr Heart Fail Rep,2013,10(4):411-420.
[14] GOMEZ I G,GRAFALS M,PORTILLA D,et al. MicroRNAs as potential therapeutic targets in kidney disease [J]. J Formos Med Assoc,2013,112(5):237-243.
[15] GU G L,XU X L,SUN X T,et al. Cardioprotective effect of microRNA-21 in murine myocardial infarction [J]. Cardiovasc Ther,2015,33(3):109-117.
[16] HASEGAWA K,WAKINO S,YOSHIOKA K,et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function [J]. J Biol Chem,2010,285(17):13045-13056.
[17] HASLER U,LEROY V,JEON U S,et al. NF-kappaB modulates aquaporin-2 transcription in renal collecting duct principal cells [J]. J Biol Chem,2008,283(42):28095-28105.
[18] ITO D,ITO O,MORI N,et al. Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure [J]. Clin Exp Pharmacol Physiol,2013,40(9):617-625.
[19] JIAO X,XU X,TENG J,et al. miR-21 contributes to renal protection by targeting prolyl hydroxylase domain protein 2 in delayed ischemic preconditioning [J]. Nephrology (Carlton),2017,22(5):366-373.
[20] JUNG Y J,LEE J E,LEE A S,et al. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-kappaB p65 subunit and cytotoxicity in renal proximal tubule cells [J]. Biochem Biophys Res Commun,2012,419(2):206-210.
[21] KONG L,WU H,ZHOU W,et al. Sirtuin 1:A target for kidney diseases [J]. Mol Med,2015,21:87-97.
[22] LI Z,DENG X,KANG Z,et al. Elevation of miR-21,through targeting MKK3,may be involved in ischemia pretreatment protection from ischemia-reperfusion induced kidney injury [J]. J Nephrol,2016,29(1):27-36.
[23] LIN Q Q,LIN R,JI Q L,et al. Effect of exercise training on renal function and renal aquaporin-2 expression in rats with chronic heart failure [J]. Clin Exp Pharmacol Physiol,2011,38(3):179-185.
[24] LIU R,ZHONG Y,LI X,et al. Role of transcription factor acetylation in diabetic kidney disease [J]. Diabetes,2014,63(7):2440-2453.
[25] MA C H,KANG L L,REN H M,et al. Simiao pill ameliorates renal glomerular injury via increasing Sirt1 expression and suppressing NF-κB/NLRP3 inflammasome activation in high fructose-fed rats [J]. J Ethnopharmacol,2015,172:108-117.
[26] MA L,ZHAO Y,WANG R,et al. 3,5,4’-Tri-O-acetylresveratrol attenuates lipopolysaccharide-induced acute respiratory distress syndrome via MAPK/SIRT1 pathway [J]. Mediators Inflamm,2015,2015:143074.
[27] MARCUS N J,PUGGE C,MEDIRATTA J,et al. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure [J]. Am J Physiol Heart Circ Physiol,2015,309(2):H259-H266.
[28] PUGGE C,MEDIRATTA J,MARCUS N J,et al. Exercise training normalizes renal blood flow responses to acute hypoxia in experimental heart failure:Role of the alpha1-adrenergic receptor [J]. J Appl Physiol (1985),2016,120(3):334-343.
[29] QIN W,XIE W,YANG X,et al. Inhibiting microRNA-449 Attenuates cisplatin-induced injury in NRK-52E cells possibly via regulating the SIRT1/P53/BAX pathway [J]. Med Sci Monit. 2016,22:818-823.
[30] RIEDEL S,RADZANOWSKI S,BOWEN T S,et al. Exercise training improves high-density lipoprotein-mediated transcription of proangiogenic microRNA in endothelial cells [J]. Eur J Prev Cardiol,2015,22(7):899-903.
[31] WISLOFF U,LOENNECHEN J P,CURRIE S,et al. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility,Ca2+sensitivity and SERCA-2 in rat after myocardial infarction [J]. Cardiovasc Res,2002,54(1):162-174.
[32] ZHANG W,SHU L. Upregulation of miR-21 by ghrelin ameliorates ischemia/reperfusion-induced acute kidney injury by inhibiting inflammation and cell apoptosis [J]. DNA Cell Biol,2016,35(8):417-425.
[33] ZHAO S,LI T,LI J,et al. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway [J]. Diabetologia,2016,59(3):644-654.
Aerobic Interval Training Activates the Renal miR-21/SIRT1/NF-κB Signalling Pathway and Improves Renal Function in a Rat Model with Myocardial Infarction
LIN Qin-qin1,GENG Yuan-wen1,TIAN Zhen-jun2
目的:探討間歇有氧運(yùn)動(dòng)激活心肌梗死(Myocardial Infarction,MI)大鼠腎臟miR-21/ SIRT1/NF-κB通路改善腎功能的作用。方法:3月齡雄性SD大鼠,隨機(jī)分為假手術(shù)組( Sham)、心肌梗死組( MI)、心梗+間歇運(yùn)動(dòng)組(ME),每組12只。左冠狀動(dòng)脈前降支(Left Anterior Descending Coronary Artery,LAD)結(jié)扎建立MI模型,ME組在心梗1周后采用小動(dòng)物跑臺(tái)進(jìn)行8周間歇訓(xùn)練。訓(xùn)練結(jié)束后測定各組大鼠心電圖變化,采用紫外分光光度法測定尿酸和尿蛋白水平,免疫熒光染色法測定AQP2表達(dá),ELISA法測定血清AVP和尿液AQP2,RT-qPCR 檢測腎臟AQP2、V2R和miR-21表達(dá),Western Blot 檢測腎臟AQP2、SIRT1和乙?;疦F-κBp65 蛋白表達(dá)。結(jié)果:心梗大鼠腎臟功能顯著降低,腎臟AVP、V2R和AQP2表達(dá)增多,尿液AQP2表達(dá)增多,水潴留嚴(yán)重。間歇運(yùn)動(dòng)可有效改善心梗大鼠腎臟功能,降低腎臟AVP、V2R和AQP2表達(dá),減少尿液AQP2水平,上調(diào)腎臟miR-21和SIRT1的表達(dá),抑制NF-κB乙酰化水平;且發(fā)現(xiàn)腎臟miR-21表達(dá)水平與SIRT1表達(dá)呈顯著正相關(guān)。結(jié)論:間歇有氧運(yùn)動(dòng)可顯著提高心梗大鼠腎臟miR-21表達(dá),激活miR-21/SIRT1/NF-κB通路,改善心梗大鼠腎臟功能。間歇有氧運(yùn)動(dòng)改善心梗大鼠腎臟功能與提高心梗大鼠腎臟miR-21表達(dá),激活miR-21/SIRT1/NF-κB通路關(guān)系密切。運(yùn)動(dòng)干預(yù)microRNAs表達(dá)研究與心腎保護(hù)效應(yīng),將為心梗及腎臟疾病患者運(yùn)動(dòng)康復(fù)手段篩選提供新思路。
心肌梗死;間歇有氧運(yùn)動(dòng);腎功能;miR-21;SIRT1/NF-κB;大鼠
Objective:To determine the effects of aerobic interval training (AIT) on the expressions of renal miR-21,SIRT1,Ac-NF-κB and AQP2 in rats with myocardial infarction (MI). Methods:male Sprague Dawley rats were randomly divided into Sham-operated group (Sham),Sedentary MI group (MI) and MI with AIT group (ME) (n=12). The MI model was established by ligation the left anterior descending coronary artery (LAD),and rats in ME were subjected to 8 weeks treadmill exercise training. After training,cardiaorenal function was evaluated. The localization of AQP2 expression was determined by immunofluorescence staining. The levels of serum AVP and urine AQP2 were assessed by ELISA. The expression of renal AQP2,V2R and miR-21 was examined by RT-qPCR. The expression of renal SIRT1,Ac-NF-κBp65 and NF-κBp65 protein was examined by western blotting. Results:MI increased the expression of renal AVP,V2R and AQP2 and the level of urine AQP2,and then increased water reabsorption,thereby resulted in renal dysfunction. Compared with MI group,AIT obviously improved renal function and ameliorated the expression of renal AVP,V2R and AQP2 and the level of urine AQP2. Meanwhile,AIT up-regulated the expression of renal miR-21 and SIRT1,and inhibited the acetylation of NF-κBp65 in kidney of rats with MI. miR-21 expression was positively related to the expression of SIRT1. Conclusion:AIT up-regulates the expression of renal miR-21,activates miR-21/SIRT1/NF-κB signalling pathway,and then improve the renal function in rats after MI. The protective effect of AIT on renal function in MI rats was related to the increased expression of miR-21 and the activation of the miR-21/SIRT1/NF-κB signaling pathway.
myocardial infarction;aerobic interval training;renal function;miR-21;SIRT1/NF-κB;rats
G804.7
A
1000-677X(2017)07-0044-06
10. 16469/j. css. 201707006
2016-12-07;
2017-06-09
國家自然科學(xué)基金項(xiàng)目(31300978)。
林琴琴,女,副教授,碩士研究生導(dǎo)師,主要研究方向?yàn)檫\(yùn)動(dòng)心血管生物學(xué),E-mail:linqinqin@ysu.edu.cn;耿元文,男,講師,主要研究方向?yàn)檫\(yùn)動(dòng)心血管生物學(xué),E-mail:gengyuanwen0407@ysu.edu.cn;田振軍,男,教授,博士研究生導(dǎo)師,主要研究方向?yàn)檫\(yùn)動(dòng)心血管生物學(xué),E-mail:tianzj611@hotmail.com。
1.燕山大學(xué) 體育學(xué)院,河北 秦皇島 066004; 2. 陜西師范大學(xué) 體育學(xué)院暨運(yùn)動(dòng)生物學(xué)研究所,陜西 西安710119 1.Yanshan University,Qinhuangdao 066004,China;2. Shaanxi Normal University,Xi’an 710119,China.